Processamento de Imagens CPS755
|
|
|
- Terezinha Peixoto Álvaro
- 8 Há anos
- Visualizações:
Transcrição
1 Processamento de Imagens CPS755 aula 07 - modelos de câmera Antonio Oliveira Ricardo Marroquim 1 / 32
2 laboratório de processamento de imagens tópicos matriz de calibração câmera finita câmera projetiva geral câmera no infinito 2 / 32
3 intro até agora homografia entre dois planos todas coordenadas eram em 2D as transformações se referiam em como levar pontos de um plano a outro plano 3 / 32
4 câmeras finitas pinhole ponto no espaço é levado a um ponto na imagem: (X, Y, Z) T (f X Z, f Y Z )T Y C camera centre X x p y x image plane X Z principal axis C Y f p f Y / Z Z 4 / 32
5 câmeras finitas projeção central mapeamento linear entre coordenadas homogêneas X X Y fx f 0 Z fy = f 0 Y Z Z notação curta para matriz: P = diag(f, f, 1)[I 0] P 3 4 é a matriz de projeção da câmera x = PX onde X é um ponto no espaço e x é um ponto na imagem 5 / 32
6 câmeras finitas principal point nem sempre a origem do sistema de coordenadas está no ponto principal (p x, p y ) T (X, Y, Z) T (f X Z + p x, f Y Z + p y) T em coordenadas homogêneas: X X Y fx + Zp x f p x 0 Z fy + Zp y = f p y 0 Y Z Z / 32
7 câmeras finitas matriz de calibração matriz de calibração de câmera: f K = f p x p y 1 ou, em notação curta: x = K[I 0]X cam para uma câmera com centro na origem do sistema de coordenadas e eixo principal coincidente com o eixo z: sistema de coordenadas da câmera 7 / 32
8 câmeras finitas rotação e translação um ponto no espaço geralmente não é expresso em coordenadas de câmera, mas sim coordenadas de mundo os dois sistemas são relacionados via uma rotação e uma translação Ycam Z C Zcam X cam R, t O Y X 8 / 32
9 câmeras finitas transformação mundo para câmera se C representa o centro da câmera em coordenadas do mundo (coordenadas não-homogêneas): X cam = [ ] X [ ] R R C Y R R 0 1 Z = C X / 32
10 câmeras finitas mapeamento geral de uma câmera pinhole juntando tudo: 9 graus de liberdade: 3 para K : f, p x, p y 3 para R 3 para C parâmetros x = KR[I C]X K : parâmetros internos, ou intrínsecos R e C : parâmetros externos, ou extrínsecos 10 / 32
11 câmeras finitas mapeamento geral muitas vezes o centro C não é colocado de forma expĺıcita P = K[R t]x analogia OpenGL note como o modelo OpenGL é análogo K ProjectionMatrix [R t] ModelViewMatrix 11 / 32
12 câmeras finitas câmeras com CCD geralmente coordenadas de imagem são medidas em pixels e coordenadas do mundo em algum sistema métrico (m, cm, mm...) se m x e m y correspondem ao número de pixels por unidade de distância precisamos multiplicar por mais um fator diag(m x, m y, 1) matrix de calibração para uma câmera com CCD α x x 0 K = α y y / 32
13 câmeras finitas câmeras com CCD matrix de calibração para uma câmera com CCD α x x 0 K = α y y 0 1 α x = fm x e α y = fm y representam a distância focal da câmera em dimensões de pixels x = (x 0, y 0 ) é o ponto principal em pixels x 0 = m x p x e y 0 = m y p y temos 10 graus de liberdade para uma câmera CCD 6 para (R, t) + 4 para (α x, α y, x 0, y 0 ) 13 / 32
14 câmeras finitas câmera projetiva finita para completude, podemos adicionar o parâmetro de cisalhamento α x s x 0 K = α y y 0 1 porém, s = 0 na maioria dos casos este modelo tem 11 graus de liberdade ou seja, o mesmo da matriz 3 4 a menos de uma escala note que a submatriz 3 3 da esquerda é não-singular matriz KR (decomposição RQ) 14 / 32
15 câmera projetiva projetiva se retirarmos a restrição de que a submatriz seja não-singular, chegamos ao modelo mais geral possível: câmera projetiva geral p 11 p 12 p 13 p 14 P = p 21 p 22 p 23 p 24 = p 31 p 32 p 33 p 34 P 1T P 2T P 3T vamos ver como extrair informações dessa matriz 15 / 32
16 câmera projetiva centro o centro da câmera está no ponto (0, 0, 0) T em relação ao seu sistema de coordenadas o centro C em coordenadas do mundo multiplicado pela matriz de projeção P deve leva C (0, 0, 0) T logo PC = 0 p 3 Z C p 2 O Y p 1 X 16 / 32
17 câmera projetiva colunas projeções dos eixos das coordenadas do mundo correspondem aos pontos de fuga p i = PD i onde D x = (1, 0, 0, 0) T, D y = (0, 1, 0, 0) T e D z = (0, 0, 1, 0) T a última coluna corresponde a imagem da origem do mundo (0, 0, 0, 1) 17 / 32
18 câmera projetiva linhas representam planos (normais) y x 2 P P 3 y x principal plane 18 / 32
19 câmera projetiva linhas plano principal plano contendo centro da câmera paralelo ao plano de imagem plano contendo pontos no infinito PX = (x, y, 0) T ou seja P 3T X = 0 19 / 32
20 câmera projetiva linhas plano dos eixos plano P 1 contém os pontos PX = (0, y, w) T P 1T X = 0 plano P 2 contém os pontos PX = (x, 0, w) T P 2T X = 0 ponto C satisfaz as equações para todos os 3 planos P 1 e P 2 estão associados à escolha do sistema de coordenadas da imagem 20 / 32
21 câmera projetiva linhas repare também que a interseção dos planos P 1 e P 2 não passam necessariamente pelo ponto principal y x 2 P P 3 y x principal plane 21 / 32
22 câmera projetiva ponto principal interseção do eixo principal com o plano de imagem interseção no plano de imagem do raio passando pelo centro C perpendicular ao plano principal P 3 y x 2 P P 3 y x principal plane 22 / 32
23 câmera projetiva decomposição da matriz da câmera a partir desta matriz p 11 p 12 p 13 p 14 P = p 21 p 22 p 23 p 24 p 31 p 32 p 33 p 34 como extrair a rotação, translação e parâmetros intrínsecos? temos que: P = [M M C] = K[R R C] = K[R t] 23 / 32
24 câmera projetiva decomposição da matriz da câmera podemos separar K e R de M utilizando uma decomposição QR Q é uma matriz ortogonal: matriz de rotação R R é uma matriz triangular superior: matriz de calibração K atenção com as notações! f p x 0 r 11 r 12 r 13 M = KR = f p y 0 r 21 r 22 r r 31 r 32 r / 32
25 câmera projetiva decomposição da matriz da câmera centro C lembrando que PC = 0 basta encontrar a solução do sistema (ex. SVD) 25 / 32
Processamento de Imagens CPS755
Processamento de Imagens CPS755 aula 03 - visualizando a planar Antonio Oliveira Ricardo Marroquim 1 / 40 laboratório de processamento de imagens tópicos visualizando a planar discussão dos primeiros 2
Objetivos. Aprender a propriedade reflexiva da parábola.
Aula 16 Parábola - continuação MÓDULO 1 - AULA 16 Objetivos Descrever a parábola como um lugar geométrico, determinando a sua equação reduzida nos sistemas de coordenadas com eixo y paralelo à diretriz
Reconstrução Geométrica a Partir de Imagens TIC
29/3/26 Reconstrução Geométrica a Partir de Imagens TIC-.73 Aula 4 Conteúdo Geometria Projetiva 2D Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/26./tic-.73
aula9 Coordenadas homogêneas e projeções 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula9 P p O Coordenadas homogêneas e projeções 2016/2 IC / UFF 2D TODAS AS Transformações Lineares Bidimensionais São representadas por matrizes 2 x
Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:
Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,
CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE
CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos
Transformações Geométricas em C.G.
Transformações Geométricas em C.G. Cap 2 (do livro texto) Aula 3, 4 e 5 UFF - 214 Geometria Euclideana : 3D Geometria Axiomas e Teoremas Coordenadas de pontos, equações dos objetos Geometria Euclideana
Projeções. Cap 2 (do livro texto) Aula 6 UFF
Projeções Cap 2 (do livro texto) Aula 6 UFF - 2014 Projeções PLANAS: Classificação BÁSICA: B Características: Um objeto no espaço o 3D A forma mais simples de representar um objeto 3D em 2D é simplesmente
Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE
Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.
Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico
Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1
Coordenadas Homogêneas
Coordenadas Homogêneas André Tavares da Silva [email protected] Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Coordenadas Homogêneas Promovem uniformidade no tratamento de qualquer transformação
CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE
CÔNICAS - MAT 2127 - CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco No plano euclidiano consideremos F 1 e F 2 dois pontos (focos) distintos. ELIPSE (1) Se
0 < c < a ; d(f 1, F 2 ) = 2c
Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Geometria Analítica - Aula
Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola
Retas e círculos, posições relativas e distância de um ponto a uma reta
Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
Um Estudo das Técnicas de Obtenção de Forma a partir de Estéreo e Luz Estruturada para Engenharia
Um Estudo das Técnicas de Obtenção de Forma a partir de Estéreo e Luz Estruturada para Engenharia Aluno: Gabriel Malizia Orientador: Professor Marcelo Gattass Co-Orientador: Professor Paulo Cezar Carvalho
ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).
QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos
Geometria Analítica - Aula
Geometria Analítica - Aula 18 228 IM-UFF K. Frensel - J. Delgado Aula 19 Continuamos com o nosso estudo da equação Ax 2 + Cy 2 + Dx + Ey + F = 0 1. Hipérbole Definição 1 Uma hipérbole, H, de focos F 1
G1 de Álgebra Linear I Gabarito
G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (
Coordenadas Homogêneas no Plano e no Espaço
http://computacaografica.ic.uff.br/conteudocap2.html Curso de CG 2019/1 IC / UFF Coordenadas Homogêneas no Plano e no Espaço (AB) T = B T A T Esse material estáno Livro do curso no cap 2. Resumindo transformações
Exercício Resolvido Cinemática direta para o manipulador Stanford
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA 44646-04 SISTEMAS ROBOTIZADOS (Eng. Controle e Automação) Prof. Felipe Kühne Exercício Resolvido Cinemática direta para o manipulador
Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)
ROBÓTICA. Equacionamento da Cinemática Direta de Robôs
ROBÓTICA Equacionamento da Cinemática Direta de Robôs Prof. Dr. Carlo Pece Depto. de Eletrotécnica UTFPR Transparências adaptadas de material fornecido pelo prof. Winderson E. dos Santos UTFPR 1 Cinemática
3.2 Determine a equação da circunferência de raio 5, tangente à reta 3x +4y =16no ponto A (4, 1).
3.1 Obtenha a equação e esboce o gráfico da circunferência caracterizada por: (a) Centro C (, 1) eraior =5; (b) Passa pelos pontos A (1, ),B(1, 1) e C (, 3) ; (c) Inscrita no triângulo determinado pelas
Universidade Federal de Mato Grosso do Sul - UFMS VGA - 2 a Prova - Engenharia Civil + Física 03 de Julho de Prof o. E.T.
Universidade Federal de Mato Grosso do Sul - UFMS VGA - 2 a Prova - Engenharia Civil + Física 0 de Julho de 2014 - Prof o ETGalante 1 (2,0 pontos) Na gura acima ABCDEF GH é um paralelepípedo O ponto M
Aula 10 Produto interno, vetorial e misto -
MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando
5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R.
G1 de Álgebra Linear I 20072 5 de setembro de 2007 Gabarito 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas r: (2 t, 1 t, 1 + t), t R (a) Determine a equação cartesiana do plano
Conceitos de vetores. Decomposição de vetores
Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas
Aula9 e 10. Projeções Planas. Como representar objetos 3D em dispositivos 2D? 2019/1 IC / UFF. Paginas 91 a 101 livro texto de computacao grafica
Aula9 e 10 Como representar objetos 3D em dispositivos 2D? Projeções Planas 2019/1 IC / UFF P p O Paginas 91 a 101 livro texto de computacao grafica Como desenhar o mundo 3D no planos? Fazendo as projeções
Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos
Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes
Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.
NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto
10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.
Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x
GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS
GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do
Lista 3: Geometria Analítica
Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma
Universidade Federal de Mato Grosso do Sul - UFMS VGA - 2 a Prova - Engenharia de Computação 03 de Julho de Prof o. E.T.
Universidade Federal de Mato Grosso do Sul - UFMS VGA - 2 a Prova - Engenharia de Computação 0 de Julho de 2014 - Prof o ETGalante 1 (2,0 pontos) Na gura acima ABCDEF GH é um paralelepípedo O ponto M é
Visualização por Computador: Teoria, Prática e Aplicações
Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,
Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia
Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte
Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q
Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
Projeções. Prof. Márcio Bueno
Projeções Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com Projeções Visão humana: enxerga em 2D, a sensação de profundidade vem da diferença entre as vistas esquerda e direita do mesmo objeto Projeção:
. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1
QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,
G2 de Álgebra Linear I
G2 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Suponha
ROBÓTICA TRANSFORMAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial
SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial TRANSFORMAÇÕES MATRICIAIS https://giovanatangerino.wordpress.com [email protected] [email protected]
Equações paramétricas das cônicas
Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:
Pipeline de Visualização 3D
Pipeline de Visualização 3D André Tavares da Silva [email protected] Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Processo de Visualização https://www.youtube.com/watch?v=ogqam2mykng Processo de
FIS 26. Mecânica II. Aula 3: Corpo rígido. Momento angular.
FIS 26 Mecânica II Aula 3:. Momento angular. - Roteiro Resumo das últimas aulas Momento de Inércia - Momento angular no movimento planar - Momento de inércia em relação a um eixo - Raio de giração - Teorema
SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais
SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,
Geometria Analítica II - Aula 4 82
Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio
Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto
Computação Gráfica Prof. MSc. André Yoshimi Kusumoto [email protected] Para que objetos tridimensionais possam ser visualizados é necessário que suas imagens sejam geradas na tela. Para isso,
EEC1515 Visão computacional. Formação das imagens
EEC1515 Visão computacional Formação das imagens Revisão aula passada Imagem Imagem Desejamos obter informações a partir de imagens de forma computacional O que é uma imagem? Etimologia da palavra: latim
Geometria Analítica - Sistemas de Coordenadas no Plano
Geometria Analítica - Sistemas de Coordenadas no Plano Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Retas e Elipses Turmas E1 e E3 1 / 1 Para denir um sistema de coordenadas no
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1
Curso de Geometria Analítica. Hipérbole
Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 03 - Cônicas- Circunferência, Elipse, Hipérbole e Parábola
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 7 1 Geometria Analítica I 01/03/2011 Respostas dos Exercícios do Módulo I - Aula 7 Aula 7 1. a. Procedendo como nos Exemplos 7.1 e 7.2, ou a Proposição 7.15
Perspectiva no espaço
Tópico 1 Perspectiva no espaço 1.1 Perspectiva. Projecção central ou cónica... No espaço afim E = A 3, consideremos um plano π, a tela, e um ponto V, o ponto de vista, não pertencente a π. Seja π o o plano
Gabarito Lista 3 Cálculo FAU
Gabarito Lista Cálculo FAU Prof. Jaime Maio 018 Questão 1. O produto vetorial entre dois vetores a = (a 1, a, a ) e b = (b 1, b, b ) em R é um terceiro vetor c, ortogonal a ambos a e b, dado por c = a
Aula 19 Elipse - continuação
MÓDULO 1 - AULA 19 Aula 19 Elipse - continuação Objetivos Desenhar a elipse com compasso e régua com escala. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio
MAE125 Álgebra Linear /2 Turmas EQN/QIN
MAE25 Álgebra Linear 2 205/2 Turmas EQN/QIN Planejamento (última revisão: 26 de outubro de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as
FAMEBLU Arquitetura e Urbanismo
FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 8: Revisão Geral Exercícios Professor: Eng. Daniel Funchal, Esp. Revisão PLANOS Um plano pode ser determinado
Equação Geral do Segundo Grau em R 2
8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................
Matrizes e Determinantes
Aula 10 Matrizes e Determinantes Matrizes e Determinantes se originaram no final do século XVIII, na Alemanha e no Japão, com o intuito de ajudar na solução de sistemas lineares baseados em tabelas formadas
