Transformações Geométricas 3D
|
|
|
- Ana Sofia Álvaro Lemos
- 7 Há anos
- Visualizações:
Transcrição
1 Transformações Geométricas 3D
2 Introdução Transformações 3D são uma etensão dos métodos 2D, incluindo-se a coordenada Z. Especificação de vetores em 3D translação: vetor de translação 3D escalonamento: 3 fatores Rotação: 2D: sobre eios perpendiculares ao plano 3D: qualquer orientação espacial para os eios de rotação Utiliação de Matries, assim como em 2D 2
3 Fundamentos álgebra Pontos pontos em 3D serão representados por vetores colunas um ponto (,,) será representado por Coordenada d Ponto 3D Cartesiana do Ponto 3D ponto 3D Coordenada Coordenada d homogêneo Homogênea Cartesiana w / w / w / w 3
4 Translação Transformação de corpo rígido, pois não modifica a forma do objeto 4
5 Translação com operação de matri Transladar de um ponto P (,,) para P (,, ) t t t ou P = TP 5
6 Escalonamento Escalonar um ponto P (,,) por um fator S = (s,s,s ) em relação à origem s s s s ou P = SP Observe que este escalonamento também deslocará o objeto de 6 j sua posição de origem
7 Escalonamento Escalonar com relação a uma posição fia ( ): Escalonar com relação a uma posição fia ( f, f, f ): transladar o ponto fio para origem escalonar objeto com equação anterior j q ç transladar de volta para a posição original ) ( ) ( ) ( T S T ),, ( ),, ( ),, ( f f f f f f T s s s S T ) ( ) ( f f s s s s ) ( f s s 7
8 Refleão Pode ser feita sobre um eio selecionado ou com respeito a um determinado plano de refleão. Por eemplo, a refleão sobre o plano será: Como seria a refleão sobre o plano? E b l? 8 E sobre o plano?
9 Relembrando Rotação 2D cos sen sen cos Cada vetor que compõe a submatri 22 tem a seguinte propriedade: É unitário É perpendicular aos outros (seu produto escalar é ero) Nessas condições: O primeiro vetor irá ser rotacionado de R( para alinhar com o eio, o segundo vetor irá ser rotacionado R() para alinhar com o eio. 9
10 Deve-se designar um eio de rotação (e valor) eio sobre o qual o objeto será rotacionado; Rotação Em 2D o eio de rotação é sempre perpendicular ao plano ; Em 3D este eio pode ter várias orientações espaciais As rotações mais simples são aquelas sobre os 3 eios principais Lousa eios principais e regra da mão direita
11 Rotação sobre os eios principais: i i Regra da mão direita cos sen (sentido positivo de rotação) sen cos cos sen sen cos P R ( ) P
12 R t ã b i i i i Rotação sobre os eios principais: sen cos cos sen cos sen sen cos cos sen 2 P R P ) (
13 R t ã b i i i i Rotação sobre os eios principais: sen cos cos sen sen cos cos sen sen cos cos sen 3 P R P ) (
14 Composição de Transformação 3Ds Similar a composição de matri 2D Vamos entender através de um eemplo. O objetivo é transformar os segmentos de linha P P 2 e P P 3 da posição da Figura A para a posição da Figura B Figura A Figura B O ponto P vai para a origem. P P 2 estará sobre o eio positivo. P P 3 estará na parte positiva do eio sobre o plano. O tamanho das linhas não é afetado pela transformação. 4
15 Figura A Figura B Maneira, passos:. Transladar P para origem: T(-,- ) 2. Rotacionar em torno do eio de maneira que P P 2 fique no plano (, ) 3. Rotacionar em torno do eio de maneira que P P 2 fique no eio ; 4. Rotacionar em torno do eio de maneira que P P 3 fique no plano (, ); 5
16 . Transladar P para origem: T(-,- ) Maneira : Passo Aplicando T aos pontos 6
17 Maneira : Passo 2 2. Rotacionar -(9 -θ) em torno do eio para P2 ficar no plano (,), ou seja no plano =. Mesmo que rotacionar θ-9 emtornodoeio eio. 7
18 Maneira : Passo 2 P 2 após o passo 2 8
19 Maneira : Passo 3 3 Rotacionar em torno do eio, até P P 2, ou seja P 2,ficar sobre o eio Realiando as contas, temos que após a rotação = D 2 Como rotação preserva o comprimento das linhas 9
20 Maneira : Passo 3 Projeção de P 3 no plano (,) 2
21 Maneira : Passo 4 Projeção de P 3 no plano (,) Maneira : Passo 4, Rotação positiva R(α) em torno do eio. 2
22 Maneira A matri de composição da transformação é: M R ( ) R ( ) R ( 9) T (, ) R T Eercício para casa: Verificar que P foi transformado para a origem, P2 foi transformado para o eio positivo e P3 foi transformado para o plano (,) 22
23 Usando a propriedade das matries ortogonais: Maneira 2 Os vetores unitários de R rotacionam em torno dos eios principais; Idéia básica: -definir qual vetor unitário R que após rotacionar ficará alinhado sobre eio Z; -definir qual vetor unitário R que após rotacionar ficará alinhado sobre eio X;... Esses vetores devem ser ortogonais entre si... 23
24 Vamos colocar P P 2 para rotacionar em torno de ; Maneira 2 Lembre-se P P 3 ficará no plano (,) perpendicular ao eio. Além disso P P 2 e P 2 P 3 ficarão em um plano (,) ortogonal ao eio. Assim um vetor, perpendicular ao plano defino por P P 2 e P 2 P 3 ficará após a transformação alinhado com. R é perpendicular ao plano definido por P P 2 ep P 3 Os três vetores devem ser perpendiculares entre si R é perpendicular a R e R 24
25 Então Produto vetorial a = a i + a 2 j + a 3 k = [a, a 2, a 3 ] b = b i + b 2 j + b 3 k = [b, b 2, b 3 ]. Relembrando... a b = [a 2 b 3 a 3 b 2, a 3 b a b 3, a b 2 a 2 b ]. 25
26 Maneira 2 A matri de composição é dada por: Eercício 26
Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro
Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Introdução A manipulação, visualiação e a construção de imagens gráficas tridimensionais
Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D
Translação Transformações Geométricas 3D Um ponto (objeto) é deslocado de uma posição para outra posição no mesmo espaço 3D Rosane Minghim Maria Cristina F. de Oliveira ICMC Universidade de São Paulo 26
Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho
de Carvalho Revisão Analise Vetorial e Sist. de Coord. Revisão básica álgebra vetorial e Sist. de Coordenadas (Páginas 1 a 22 no Livro texto) Objetivo: Introduzir notação que será usada neste e nos próximos
REVISÃO DE NÚMEROS COMPLEXOS
REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é
CSE-MME Revisão de Métodos Matemáticos para Engenharia
CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia
Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco
Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação
CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS
82 CPÍTULO 9 CINEMÁTIC DO MOVIMENTO ESPCIL DE CORPOS RÍGIDOS O estudo da dinâmica do corpo rígido requer o conhecimento da aceleração do centro de massa e das características cinemáticas do corpo denominadas
Transformações (Cap 4.3, 4.4 e 4.6 a 4.10)
4.6 a 4.) Transformações (Cap 4.3, 4.4 e 4.6 a 4.) Instituto Superior Técnico, 26/27 Sumário Revisões Transformações Elementares Coordenadas Homogéneas Composição de Transformações Transformações em OpenGL
com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.
Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi
Universidade Federal de Alagoas Instituto de Matemática. Geometria. Prof. Thales Vieira
Universidade Federal de Alagoas Instituto de Matemática Geometria Prof. Thales Vieira 2014 Geometria Euclidiana Espaço R n R n = {(x 1,...,x n ); x i 2 R} Operações entre elementos de R n Soma: (x 1,x
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o
Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes [email protected]
Curso de Geomática Aula 2. Prof. Dr. Irineu da Silva EESC-USP
Curso de Geomática Aula Prof. Dr. Irineu da Silva EESC-USP Sistemas de Coordenadas Determinar a posição de um ponto, em Geomática, significa calcular as suas coordenadas. Calcular as coordenadas de um
Equação Geral do Segundo Grau em R 2
8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................
Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC
Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante
MULTIPLICAÇÃO DE UM VETOR POR UM ESCALAR
FÍSICA I AULA 01: GRANDEZAS FÍSICAS; SISTEMAS DE UNIDADES; VETORES TÓPICO 06: MULTIPLICANDO VETORES Os vetores podem ser multiplicados de três maneiras. Entretanto o que chamamos de multiplicação de vetores
Retas e planos no espaço
Retas e planos no espaço Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Retas e Segmentos de Reta no Espaço 2 Equação vetorial
Superfícies e Curvas no Espaço
Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi [email protected] 11 de deembro de 2001 1 Quádricas Nesta
4 Estática das estruturas espaciais 1
35 4 Estática das estruturas espaciais 4. omponentes Retangulares de uma orça Espacial. Vamos discutir os problemas que envolvem as três dimensões do espaço. onsideremos uma força atuante na origem de
4. Curvas Paramétricas e Transformações 2D
4. Curvas Paramétricas e Transformações 2D Curvas Paramétricas (fonte: Wikipédia) Em matemática, uma equação paramétrica é uma forma de representar uma curva (ou, em geral, uma superfície) como a imagem
Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação
3º Período 2º Período 1º Período AGRUPAMENTO DE ESCOLAS DE CASTRO DAIRE Escola Secundária de Castro Daire Grupo de Recrutamento 500 MATEMÁTICA Ano lectivo 2012/2013 Planificação Anual Disciplina: Matemática
Álgebra Linear I - Aula 5. Roteiro
1. Produto vetorial. 2. Aplicações. 3. Produto misto. Álgebra Linear I - Aula 5 1 Produto vetorial Roteiro Definição: Dados vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3 definimos o produto
Aula 31 Funções vetoriais de uma variável real
MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução
SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea:
Disciplina: Álgebra Linear e Geometria Analítica Curso: Engenharia Mecânica Professora: Valéria Lessa APOSTILA SISTEMAS LINEARES Muitos problemas em várias áreas da Ciência recaem na solução de sistemas
1 Matrizes Ortogonais
Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos
Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido
Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado
1 Segmentos orientados e vetores, adição e multiplicação
MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )
1 Cônicas Não Degeneradas
Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi [email protected] 11 de dezembro de 2001 Estudaremos as (seções) cônicas,
Transformações geométricas planas
9 Transformações geométricas planas Sumário 9.1 Introdução....................... 2 9.2 Transformações no plano............... 2 9.3 Transformações lineares................ 5 9.4 Operações com transformações...........
aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF Definição Transformações geométricas são operações que podem ser utilizadas para
Aula 3 VETORES. Introdução
Aula 3 VETORES Introdução Na Física usamos dois grupos de grandezas: as grandezas escalares e as grandezas vetoriais. São escalares as grandezas que ficam caracterizadas com os seus valores numéricos e
Exercícios Resolvidos Integral de Linha de um Campo Escalar
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Eercícios Resolvidos Integral de Linha de um ampo Escalar Eercício onsidere o caminho g : [, ] R definido por g(t) = (e
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto
Sistemas de Referência
Sistemas de Referência Um sistema de coordenada é denominado de Sistema de Referência quando servir para alguma finalidade específica; Aspectos a serem observados na definição de um sistema de referência:
G1 de Álgebra Linear I Gabarito
G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (
Mudança de Coordenadas
Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,
REVISÃO DE ANÁLISE TENSORIAL
REVISÃO DE ANÁLISE TENSORIAL 1.1- Vetores Espaciais Def.: Para cada par de pontos (a,b) do espaço E, existe um segmento de linha ab, caracterizado por um comprimento e uma direção. -Conjunto de vetores
Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco
Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Mário Prof. Mário Luiz Tronco Luiz Tronco Transformação direta de coordenadas θ 1 θ 2... θ N Variáveis de junta Variáveis cartesianas
Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*
ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular
CAPÍTULO 03 CINEMÁTICA DIRETA DE POSIÇÃO. REPRESENTAÇÃO DE DENAVIT-HARTENBERG
Capítulo 3 - Cinemática Direta de Posição. Representação de Denavit-Hartenberg 27 CAPÍTULO 03 CINEMÁTICA DIRETA DE POSIÇÃO. REPRESENTAÇÃO DE DENAVIT-HARTENBERG 3.1 INTRODUÇÃO Neste capítulo serão desenvolvidas
Vetores e Geometria Analítica
Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três
Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções
Vetores no plano Cartesiano
Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A
Da aula passada... Posição relativa entre duas retas no espaço: { paralelas concorrentes COPLANARES. NÃO COPLANARES = reversas
Simulados Na semana passada foi divulgado o primeiro simulado de gaal: vetores e produto escalar. Hoje será divulgado o segundo simulado: retas, planos e produto vetorial. Procure Monitoria GAAL 2013/1
(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente
Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto
Análise Vetorial na Engenharia Elétrica
nálise Vetorial na Engenharia Elétrica ula 13/03/09 1.3 - Medida algébrica de um segmento Segmento: um segmento é determinado por um par ordenado d de pontos. figura 1.8 apresenta um segmento Figura 1.8
1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47
ÍNDICE Números e operações Geometria e medida Relação de ordem em R 4 Intervalos de números reais 8 Valores aproimados de resultados de operações Eercícios resolvidos 6 Eercícios propostos 0 Eercícios
Capítulo 6: Transformações Lineares e Matrizes
6 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 6: Transformações Lineares e Matrizes Sumário 1 Matriz de uma Transformação Linear....... 151 2 Operações
Geometria Computacional
Geometria Computacional Claudio Esperança Paulo Roma Cavalcanti Estrutura do Curso Aspectos teóricos e práticos Construção e análise de algoritmos e estruturas de dados para a solucionar problemas geométricos
Transformações Geométricas
Transformações Geométricas Computação Gráfica DCC065 Prof. Rodrigo Luis de Souza da Silva, D.Sc. Sumário Tópicos da aula de hoje: Por que transformações? Classificação das transformações Transformações
FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães
VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos
GEOGEBRA GUIA RÁPIDO. Na janela inicial temos a barra de ferramentas:
GeoGebra: Guia Rápido GEOGEBRA GUIA RÁPIDO O GeoGebra é um programa educativo de Geometria Dinâmica que permite construir, de modo simples e rápido, pontos, segmentos de reta, retas, polígonos, circunferências,
n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas
n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor
M0 = F.d
Marcio Varela M0 = F.d M = F.d M R = F.d Exemplo: Determine o momento da força em relação ao ponto 0 em cada caso ilustrado abaixo. Determine os momentos da força 800 N que atua sobre a estrutura na figura
Exercícios Resolvidos Mudança de Coordenadas
Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida
Ponto 1) Representação do Ponto
Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria
Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto
Aula 19 Operadores ortogonais
Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
Aula 9 Cônicas - Rotação de sistemas de coordenadas
MÓDULO 1 - AULA 9 Aula 9 Cônicas - Rotação de sistemas de coordenadas Objetivos Entender mudanças de coordenadas por rotações. Identificar uma cônica rotacionada a partir da sua equação geral. Identificar
CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais.
CAPÍTULO CÁLCULO VECTORIAL.1. Grandeas escalares e vectoriais. Noção de Vector. As grandeas físicas podem ser escalares ou vectoriais. As grandeas massa, comprimento, tempo ficam completamente definidas
APLICAÇÕES NA GEOMETRIA ANALÍTICA
4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas
MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO
MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO INTRODUÇÃO ESTUDO DE CASO À medida que o caminhão da figura ao lado se retira da obra, o trabalhador na plataforma no topo do braço gira o braço para baixo e em
Roteiros e Exercícios - Álgebra Linear v1.0
Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará
FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO
EXERCÍCIOS COMPLEMENTARES ALUNO TURMA: FÍSICA B - 2012 1ª SÉRIE DATA: / / 1) Analise as afirmativas abaixo sobre o conceito de grandezas escalares e vetoriais. I Uma grandeza é chamada de escalar quando
Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum.
Vetores Uma partícula que se move em linha reta pode se deslocar em apenas uma direção, sendo o deslocamento positivo em uma e negativo na outra direção. Quando uma partícula se move em três dimensões,
Álgebra Linear I - Aula 9. Roteiro
Álgebra Linear I - Aula 9 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. oteiro 1 Distância de um ponto
2 Conceitos Básicos da Geometria Diferencial Afim
2 Conceitos Básicos da Geometria Diferencial Afim Antes de iniciarmos o estudo das desigualdades isoperimétricas para curvas convexas, vamos rever alguns conceitos e resultados da Geometria Diferencial
Capítulo 11 Rotações e Momento Angular
Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:
Ângulo e ortogonalidade em espaços com produto interno
Ângulo e ortogonalidade em espaços com produto interno Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 Definir a noção de ângulo
PMR2560 Visão Computacional Detecção de bordas. Prof. Eduardo L. L. Cabral
PMR56 Visão Computacional Detecção de bordas Prof. Eduardo L. L. Cabral Objetivos Processamento de imagens: Características; Detecção de bordas. Características Tipos de características: Bordas; Cantos;
Robótica. Linguagens de Programação para Robótica (manipuladores)
Linguagens de Programação para (manipuladores) -Orientados para o Robô -Tarefa descrita como sequência de movimentos -Ex: VAL (Puma), AL (IBM) -Orientada para as Tarefas (ou para os Objectos) -Descrição
MAT 105- Lista de Exercícios
1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero
Coordenadas Homogêneas
Coordenadas Homogêneas André Tavares da Silva [email protected] Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Coordenadas Homogêneas Promovem uniformidade no tratamento de qualquer transformação
Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:
Universidade Federal do Paraná 2 semestre 2016. Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada
- identificar operadores ortogonais e unitários e conhecer as suas propriedades;
DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;
6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0
QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
Superfícies (2) 1 Cilindro. Sadao Massago. 3 de novembro de Paramétrica. P curva. reta.
Superfícies (2) Sadao Massago 3 de novembro de 2009 http://www.dm.ufscar.br/~sadao DM-UFSCar 1 Cilindro Dado uma e uma reta, podemos obter família de retas passando no ponto da e sendo paralela a reta
Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho
de Carvalho - Eletrostática (Capítulo 4 Páginas 96 a 100) Cálculo da distribuição de potencial de um dipolo elétrico. Cálculo da distribuição de campo elétrico de um dipolo elétrico. 2 - Eletrostática
Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho
Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
Capítulo 1 - Cálculo Matricial
Capítulo 1 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo
MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro
MAT 1202 ÁLGEBRA LINEAR II 2012.2 SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro 1. Subespaços Fundamentais de uma Matriz (1.1) Definição. Seja A uma matriz retangular m
Computação Gráfica - 09
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 9 [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav Objetos
Lista 5 Leis de Newton
Sigla: Disciplina: Curso: FISAG Física Aplicada a Agronomia Agronomia Lista 5 Leis de Newton 01) Um corpo de massa m sofre ação de duas forças F1 e F2, como mostra a figura. Se m = 5,2 kg, F1 = 3,7 N e
x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:
Vetor Tangente, Normal e Binormal. T(t) = r (t)
CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)
Projeções. Cap 2 (do livro texto) Aula 6 UFF
Projeções Cap 2 (do livro texto) Aula 6 UFF - 2014 Projeções PLANAS: Classificação BÁSICA: B Características: Um objeto no espaço o 3D A forma mais simples de representar um objeto 3D em 2D é simplesmente
Disciplina: Sistemas Estruturais Assunto: Principios da Estática e da Mecânica Prof. Ederaldo Azevedo Aula 2 e-mail: [email protected] 2. PRINCIPIOS BÁSICOS DA ESTÁTICA E DA MECÂNICA A ciência
