Geometria Computacional
|
|
|
- Luana Mangueira Amaral
- 9 Há anos
- Visualizações:
Transcrição
1 Geometria Computacional Claudio Esperança Paulo Roma Cavalcanti
2 Estrutura do Curso Aspectos teóricos e práticos Construção e análise de algoritmos e estruturas de dados para a solucionar problemas geométricos Implementação Programas em C++ / STL Uso da biblioteca CGAL ( 2
3 O que é Geometria Computacional? Origem do termo (?) Livro Perceptron de Marvin Minsky Usado para denotar algoritmos de modelagem de sólidos Campo da teoria de algoritmos Entradas são coleções de objetos geométricos Normalmente, objetos planos tais como pontos, retas, polígonos, poliedros Saídas são estruturas de dados geométricos Surgiu do campo dos algoritmos discretos Até hoje há ênfase em problemas de matemática discreta (conjuntos de objetos, grafos) Componente geométrica pode oferecer subsídios para soluções mais eficientes 3
4 Exemplo: Caminho mais curto Pode ser reduzido ao problema de encontrar o caminho mais curto em um grafo (grafo de visibilidade) Resolve-se com algoritmos não geométricos Ex.: Algoritmo de Dijkstra Algoritmos geométricos podem dar uma solução mais eficiente 4
5 Eficiência dos Algoritmos Complexidade assintótica de pior caso Problema do Caminho mais curto Algoritmo simples O (n 2 log n) Algoritmo complexo O (n log n) Casos médios Difíceis de se caracterizar Requerem que se estipule uma distribuição típica Muitas estruturas de dados e algoritmos que se conjectura serem eficientes para casos típicos Quadtrees em geral BSP trees 5
6 Limitações da Geometria Computacional Dados discretos Aproximações de fenômenos contínuos Funções quantizadas ao invés de funções contínuas (e.g. imagens) Objetos geométricos planos Aproximações de geometrias curvas Dimensionalidade Normalmente, 2D e um pouco de 3D Problemas n-dimensionais são pouco abordados 6
7 Técnicas usadas em GC Técnicas convencionais de desenho de algoritmos Dividir para conquistar Programação dinâmica Técnicas próprias para algoritmos geométricos Varredura (plane sweep) Construções randomizadas incrementais Transformações duais Fractional Cascading 7
8 Tendências Muitas soluções ótimas foram obtidas mas as implementações... Muito complicadas Muito sensíveis a casos degenerados Problemas de precisão Complexidade inaceitável para problemas pequenos Foco em obter soluções práticas Algoritmos simples Freqüentemente randomizados Tratamento de casos degenerados Engenharia de software 8
9 Problemas Fecho Convexo Menor polígono (poliedro) convexo que contém uma coleção de objetos (pontos) 9
10 Problemas - Interseções Determinar interseções entre coleções de objetos 0
11 Problemas Triangulações Dividir domínios complexos em coleções de objetos simples (simplexes)
12 Problemas Prog.. Linear em 2d e 3d Problemas de otimização Ex.: menor disco que contém um conjunto de pontos 2
13 Problemas Arranjos de Retas Dada uma coleção de retas, é o grafo formado pelos pontos de interseção e segmentos de reta entre eles Problemas sobre pontos podem ser transformados em problemas sobre retas (dualidade) 3
14 Problemas Diagramas de Voronoi e Triangulações de Delaunay Dada uma coleção de pontos S Diagrama de Voronoi delimita as regiões de pontos mais próximos Triangulação de Delaunay é o dual do D. V. 4
15 Problemas Busca Geométrica Algoritmos e estruturas de dados para responder consultas geométricas. Ex.: Todos os objetos que interceptam uma região Polígono Disco Par de pontos mais próximos Vizinho mais próximo Caminho mais curto 5
16 Geometria Afim Composta dos elementos básicos escalares pontos - denotam posição vetores - denotam deslocamento (direção e magnitude) Operações escalar vetor = vetor vetor + vetor ou vetor vetor = vetor ponto ponto = vetor ponto + vetor ou ponto vetor = ponto 6
17 Combinações Afim Maneira especial de combinar pontos α P onde + α P n 2 i= α α = i Para 2 pontos P e Q poderíamos ter uma combinação afim R = ( α)p +αq = P +α(p Q) n P n P R= P+α(P Q) α < 0 P 0 < α < Q Q α > 7
18 Combinações Convexas Combinações afim onde se garante que todos os coeficientes α i são positivos (ou zero) Usa-se esse nome porque qualquer ponto que é uma combinação convexa de n outros pontos pertence à envoltória convexa desses pontos P 2 P 3 Q P P 4 P 5 8
19 Geometria Euclidiana Extensão da geometria afim pela adição de um operador chamado produto interno Produto interno é um operador que mapeia um par de vetores em um escalar. Tem as seguintes propriedades: Positividade : (u,u) 0 e (u,u) = 0 sse u=0 Simetria: (u,v) = (v,u) Bilinearidade: (u,v+w)= (u,v)+ (u,w) e (u,αv)= α(u,v) 9
20 Geometria Euclidiana Normalmente usamos o produto escalar como operador de produto interno: d r v r = u v i i u i= Comprimento de um vetor é definido como: r r r v = v v Vetor unitário (normalizado): vˆ = v r r v 20
21 Geometria Euclidiana Distância entre dois pontos P e Q = P Q O ângulo entre dois vetores pode ser determinado por ângulo r r ( u, v ) = Projeção ortogonal: dados dois vetores u e v, deseja-se decompor u na soma de dois vetores u e u 2 tais que u é paralelo a v e u 2 é perpendicular r r a v u r u v r r r r u 2 u = r r v u2 = u u v v v cos r r u v r r u v = cos ( uˆ vˆ) u 2
22 22 Produto Vetorial (3D) Produto Vetorial (3D) Permite achar um vetor perpendicular a outros dois dados Útil na construção de sistemas de coordenadas z y x z y x x y y x z x x z y z z y v v v u u u k j i v u v u v u v u v u v u v u r r r r r = = u v u v. Propriedades (assume-se u, v linearmente independentes): Antisimetria: u v = v u Bilinearidade: u (αv)= α (u v) e u (v + w)= (u v) + (u w) u v é perpendicular tanto a u quanto a v O comprimento de u v é igual a área do paralelogramo definido por u e v, isto é, u v = u v sin θ
23 Sistemas de coordenadas Um sistema de coordenadas para R n é definido por um ponto (origem) e n vetores Ex. Seja um sistema de coordenadas para R 2 definido pelo ponto O e os vetores X e Y. Então, Um ponto P é dado por coordenadas x P e y P tais que P = xp. X + yp. Y + O Um vetor V é dado por coordenadas x V e y V tais que V x. X + y. Y = V V 23
24 Coordenadas Homogêneas Coordenadas homogêneas permitem unificar o tratamento de pontos e vetores Problema é levado para uma dimensão superior: Coordenada extra w= 0 para vetores e = p/ pontos O significado da coordenada extra é levar ou não em consideração a origem do sistema Coordenadas homogêneas têm diversas propriedades algébricas interessantes Ex. Subtração de dois pontos naturalmente resulta em um vetor 24
25 Orientação Orientação de 2 pontos em D P < P 2, P = P 2 ou P > P 2 Orientação de 3 pontos em 2D O percurso P, P 2, P 3 é feito no sentido dos ponteiros do relógio, no sentido contrário ou são colineares Or (P, P 2, P 3 ) = - P Or (P, P 2, P 3 ) = + P 3 Or (P, P 2, P 3 ) = 0 P 3 P 2 P 3 P 2 P P2 P 25
26 Orientação Orientação de 4 pontos em 3D O percurso P, P 2, P 3, P 4 define um parafuso segundo a regra da mão direita, mão esquerda ou são coplanares Or (P, P 2, P 3, P 4 ) = + P 3 P P 4 P 2 O conceito pode ser estendido a qualquer número de dimensões... 26
27 27 Computando Orientação Computando Orientação A orientação de n+ pontos em um espaço n-dimensional é dado pelo sinal do determinante da matriz cujas colunas são as coordenadas homogêneas dos pontos com o vindo primeiro = sign ),,, ( Or z z z z y y y y x x x x P P P P = sign ),, ( Or y y y x x x P P P
Visualização por Computador: Teoria, Prática e Aplicações
Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,
Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas
Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado
Arranjos. Claudio Esperança Paulo Roma LCG/UFRJ. All rights reserved.
Arranjos Claudio Esperança Paulo Roma 1 Arranjos Arranjos de retas e planos são a terceira estrutura em importância em GC. Arranjos de retas são coleções de retas infinitas distribuídas no plano. Arranjos
Geometria e Programação Geométrica
Geometria e Programação Geométrica Capítulo 5 (Foley & van Dam) Programação geométrica Existem muitas áreas da Ciência da Computação que exigem o uso de entidades geométricas Computação gráfica CAD - computer
2 - VETORES. Geométricamente, vetores são representados por segmentos orientados no plano ou no espaço. Figura 1: Vetor
2 - VETORES Geométricamente, vetores são representados por segmentos orientados no plano ou no espaço. Figura 1: Vetor Segmentos orientados com mesma direção, mesmo sentido e mesmo comprimento representam
Geometria Computacional - Notas de aulas. André Guedes
Geometria Computacional - Notas de aulas André Guedes 24 de novembro de 2016 Aula 1 Introdução O nome Geometria Computacional é bastante recente, e se refere ao estudo de algoritmos para a solução de problemas
Interseção de Semiplanos
Interseção de Semiplanos Claudio Esperança Paulo Roma 1 Interseção de Semiplanos Problema consiste em construir a região convexa dada pela interseção de um conjunto de n semiplanos H = { h 1, h 2..., h
CSE-MME Revisão de Métodos Matemáticos para Engenharia
CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia
Algoritmos geométricos
Algoritmos geométricos introdução a conceitos básicos de geometria computacional que serão abordados de forma mais avançada na disciplina Computação Gráfica disciplina de computação gráfica arquitetura
aula6 Curvas de Hermite 2016/2 IC / UFF Criadas por Charles Hermite ( ) https://pt.wikipedia.org/wiki/charles_hermite
Criadas por Charles Hermite (1822-1901) https://pt.wikipedia.org/wiki/charles_hermite aula6 Vetor é : Na matemática - um elemento com de um espaço vetorial Em Física em oposição as grandezas escalares,
Grandezas Escalares e Vetoriais
VETORES Grandezas Escalares e Vetoriais Uma grandeza física é um escalar quando pode ser caracterizada apenas por um número, sem necessidade de associar-lhe alguma orientação. Exemplos: Massa de uma bola:
Geometria e Programação Geométrica
Geometria e Programação Geométrica Capítulo 5 (Foley & van Dam) Carlos Hitoshi Morimoto ([email protected]) Exemplos Intersecções geométricas: Como sabemos quando uma bola bate na parede? Orientação Como
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3,
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de 2015 1 Sendo E = { e 1 e 2 e 3 } F = { f 1 f 2 f 3 } bases com: f 1 = 2 e 1 e 3 f 2 = e 2 + 2 e 3 f 3 = 7 e 3 e w = e
Professor: Anselmo Montenegro Conteúdo: Aula 2. - Primitivas Geométricas. Instituto de Computação - UFF
Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: Aula - Primitivas Geométricas 1 Roteiro Introdução Operações primitivas Distâncias Ângulos Ângulos orientados Áreas
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.
Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais
Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado
Vetores. A soma, V+W, de dois vetores V e W é determinada da seguinte forma:
Vetores Geometricamente, vetores são representados por segmentos de retas orientadas no plano ou no espaço. A ponta da seta do segmento orientado é chamada ponto final ou extremidade e o outro ponto extremo
com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.
Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi
(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente
Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto
1 Segmentos orientados e vetores, adição e multiplicação
MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )
Vetores e Geometria Analítica
Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três
2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC
1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015
MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base
Lista de Exercícios de Cálculo 3 Primeira Semana
Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.
Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc..
Introdução a vetor Professor Fiore O que são grandezas? Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. O que são
Poliedros. INF2604 Geometria Computacional. Waldemar Celes. Departamento de Informática, PUC-Rio. W.
Poliedros INF2604 Geometria Computacional Waldemar Celes [email protected] Departamento de Informática, PUC-Rio W. Celes Poliedros 1 Poliedros Poliedros Região 3D delimitada por uma fronteira composta
Fundamentos Matemáticos de Computação Gráfica
Fundamentos Matemáticos de Computação Gráfica Fundamentos Matemáticos de CG Vetores e Pontos Matrizes Transformações Geométricas Referências: Mathematics for Computer Graphics Applications. M. E. Mortenson.
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
ESPAÇOS VETORIAIS EUCLIDIANOS
ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma
Reconstrução Geométrica a Partir de Imagens TIC
29/3/26 Reconstrução Geométrica a Partir de Imagens TIC-.73 Aula 4 Conteúdo Geometria Projetiva 2D Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/26./tic-.73
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
Geometria Analítica. Prof. M.Sc. Guilherme Schünemann
Geometria Analítica Prof. M.Sc. Guilherme Schünemann Ponto de partida Um ponto é a unidade básica de toda a geometria analítica. A partir dele, definem-se retas, segmentos, vetores, planos, etc. Reta definida
Da aula passada... Posição relativa entre duas retas no espaço: { paralelas concorrentes COPLANARES. NÃO COPLANARES = reversas
Simulados Na semana passada foi divulgado o primeiro simulado de gaal: vetores e produto escalar. Hoje será divulgado o segundo simulado: retas, planos e produto vetorial. Procure Monitoria GAAL 2013/1
Exercícios de Geometria Analítica - Prof. Ademir
Exercícios de Geometria nalítica - Prof. demir Vetores 1. onsidere o triângulo, onde = (1, 1, 1), = (2, 1, 0) e = (3, 2, 3). Verifique que este triângulo é retângulo, diga qual vértice contém o ângulo
Representação Gráfica
Vetores Vetores: uma ferramenta matemática para expressar grandezas Grandezas escalares e vetoriais; Anotação vetorial; Álgebra vetorial; Produtos escalar e vetorial. Grandezas Físicas Grandezas Escalares:
Bacharelado Engenharia Civil. Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz
Bacharelado Engenharia Civil Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz Cálculo Vetorial Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES DURANTE AS AULAS DE VETORES VOCÊ APRENDERÁ: Diferença entre grandezas escalares e vetoriais
Definição. Geometria plana
Geometria analítica Definição A palavra geometria vem do grego geometrien onde geo significa terra e metrien medida. Geometria foi, em sua origem, a ciência de medição de terras. O historiador grego Heródoto
1 Vetores no Plano e no Espaço
1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no
Geometria Analítica - Retas e Planos
Geometria Analítica - Retas e Planos Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Ângulos Turmas E1 e E3 1 / 10 Objetivos 1 Estudar ângulos entre retas, entre planos e entre retas
Parte 3 - Produto Interno e Diagonalização
Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é
Geometria Analítica. Prof Marcelo Maraschin de Souza
Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que
Otimização Combinatória - Parte 4
Graduação em Matemática Industrial Otimização Combinatória - Parte 4 Prof. Thiago Alves de Queiroz Departamento de Matemática - CAC/UFG 2/2014 Thiago Queiroz (DM) Parte 4 2/2014 1 / 33 Complexidade Computacional
Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 3 Vetores, Retas e lanos roduto interno em R n [3 01] Dados os vetores X =
Lista 1: Vetores - Engenharia Mecânica. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra är de Figueiredo Lista 1: Vetores - Engenharia Mecânica 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente
Lista de Álgebra Linear Aplicada
Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes [email protected]
Disciplina: Álgebra Linear e Geometria Analítica
Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O
6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2
Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)
Vetores e Geometria Analítica
Vetores e Geometria Analítica Prof. Wellington Lista 1 - E para final 4 ou 5 do RGA Instruções Assinale as alternativas corretas na folha de respostas que está no final da lista. É permitido deixar questões
n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas
n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor
Lista 3.2: Retas - Planos e Distâncias PARTE 1: RETAS. 1. Verificar se os pontos P 1 (5, 5,6) e P 2 (4, 1,12) pertencem à reta r : x 3 1 = y + 1
Curso:Licenciatura em Matemática Professor: Luis Gustavo Longen Lista 3.: Retas - Planos e Distâncias PARTE 1: RETAS 1. Verificar se os pontos P 1 (5, 5,6) e P (4, 1,1) pertencem à reta r : x 3 1 = y +
Vetores no plano Cartesiano
Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A
Ga no plano 1. GA no plano. Prof. Fernando Carneiro Rio de Janeiro, Outubro de u v = aa + bb.
Ga no plano 1 GA no plano Prof. Fernando Carneiro Rio de Janeiro, Outubro de 015 1 Introdução Estudaremos as retas no plano euclidiano bidimensional e uma interessante aplicação, que recebe o nome de programação
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04 Assunto:Produto escalar, bases canônicas do R 2 e R 3, produto vetorial, produto misto, equação da reta no R 2 Palavras-chaves: Produto
Capítulo 1 - Cálculo Matricial
Capítulo 1 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo
Álgebra Linear I - Aula 9. Roteiro
Álgebra Linear I - Aula 9 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. oteiro 1 Distância de um ponto
Variantes... O que isso significa? Qual a importância disso? Isso está relacionado a que?
Variantes... O que isso significa? Qual a importância disso? Isso está relacionado a que? GRANDEZA ESCALAR: São grandezas físicas em que apenas o seu valor numérico, com uma unidade correspondente, é
Geometria Computacional: Fecho convexo
Geometria Computacional: INF2604 Geometria Computacional Prof. Hélio Lopes [email protected] sala 408 RDC O que é uma região convexa? Uma região é convexa se para qualquer par de pontos dessa região,
Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.
Material Teórico - Módulo de Geometria Anaĺıtica 1 Equação da Reta Terceiro Ano - Médio Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Condição de alinhamento de três pontos Consideremos
Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial
Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial 9 de abril de 2017 1. Dados os pontos R = (1, 2) e S = ( 2, 2) (a) Encontrar as coordenadas do vetor que tem origem no ponto R e o extremos
SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea:
Disciplina: Álgebra Linear e Geometria Analítica Curso: Engenharia Mecânica Professora: Valéria Lessa APOSTILA SISTEMAS LINEARES Muitos problemas em várias áreas da Ciência recaem na solução de sistemas
O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.
1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:
x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Mateus Barros 3º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2018.1 Vetores Mateus Barros 3º Período Engenharia Civil Definição O que é um vetor? Um vetor é um segmento de reta orientado, que representa uma grandeza
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Vetorial. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Produto Vetorial Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta aula, estudaremos uma operação definida
Capítulo 1 - Cálculo Matricial
Capítulo 1 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo
Lista 2 com respostas
Lista 2 com respostas Professora Nataliia Goloshchapova MAT0112-1 semestre de 2015 Exercício 1. Sejam OABC um tetraedro e M o ponto médio de BC. Explique por que ( OA, OB, OC ) é base e determine as coordenadas
UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO
UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO Disciplina: Introdução ao Cálculo Ementa Conjuntos numéricos: números
Programa Princípios Gerais Forças, vetores e operações vetoriais
Programa Princípios Gerais Forças, vetores e operações vetoriais Representação gráfica de vetores Graficamente, um vetor é representado por uma flecha: a intensidade é o comprimento da flecha; a direção
Aula 24 mtm B GEOMETRIA ESPACIAL
Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas
Álgebra Linear I - Aula 5. Roteiro
1. Produto vetorial. 2. Aplicações. 3. Produto misto. Álgebra Linear I - Aula 5 1 Produto vetorial Roteiro Definição: Dados vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3 definimos o produto
(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas
Transformações Geométricas. Transformações Geométricas. Sistemas de Coordenadas. Translação: M.C.F. de Oliveira Rosane Minghim 2006
Transformações Geométricas Transformações Geométricas 2D M.C.F. de Oliveira Rosane Minghim 2006 Aplicadas aos modelos gráficos para alterar a geometria dos objetos, sem alterar a topologia Porque são necessárias:
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
