Interseção de Semiplanos
|
|
|
- Marcela Alvarenga Ventura
- 8 Há anos
- Visualizações:
Transcrição
1 Interseção de Semiplanos Claudio Esperança Paulo Roma 1
2 Interseção de Semiplanos Problema consiste em construir a região convexa dada pela interseção de um conjunto de n semiplanos H = { h 1, h 2..., h n } em d dimensões Resultado tipicamente é um politopo convexo limitado de dimensão d Pode ser também o conjunto vazio, um politopo ilimitado ou mesmo um politopo de dimensão menor que d Vamos nos concentrar em semiplanos (semiespaços planos) em R 2 2
3 Interseção de Semiplanos Cada semiplano é dado por uma inequação da forma ax + by c Semiplano complementar é dado por (-a)x + (-b)y -c Reta de suporte é dada por ax+by = c 3
4 Motivação Livro fala do problema de remoção de objetos de moldes A manufatura do molde depende de se escolher uma direção de onde o objeto possa ser depois retirado sem danificar o molde Pode ser reduzido ao problema de interseção de semiplanos Em computação gráfica, objetos convexos são comumente expressos sob a forma de interseção de semiplanos Usados como aproximações de objetos complexos Aplicação: Detecção de colisões 4
5 Complexidade Complexidade do resultado: O (n) Cada semiplano pode figurar como lado do resultado Problema é redutível ao problema do fecho convexo: Ω (n log n) 5
6 Algoritmo Dividir para Conquistar Se n = 1, retornar h 1 Dividir H em 2 subconjuntos H 1 e H 2, com n/2 e n/2 semiplanos, respectivamente Computar recursivamente C 1 e C 2, como a interseção dos semiplanos em H 1 e em H 2, respectivamente. Combinar o resultado computando a interseção dos polígonos C 1 e C 2 6
7 Interseção de 2 polígonos convexos Polígonos podem ser ilimitados Estruturas de dados apropriadas Ex.: representar polígono por uma lista dos semiplanos que fazem parte da fronteira Usar um flag para denotar polígonos ilimitados Conhecemos um algoritmo de varredura para computar a interseção de n segmentos de reta em tempo O ((n + I) log n) 2 polígonos convexos de n lados não podem se intersectar em mais do que 2n pontos Uma reta intersecta um polígono convexo em 2 pontos no máximo Complexidade do algoritmo: O (n log n) 7
8 Interseção de 2 polígonos convexos Neste caso, entretanto, um algoritmo de varredura simples pode fazer o serviço em O(n) Como os polígonos são dados como listas, ordenação pode ser feita em O(n) reta de varredura intersecta cada polígono em 2 pontos no máximo Estado da reta de varredura tem complexidade constante Cada evento pode ser processado em O(1) Possíveis próximos eventos 8
9 Complexidade do Algoritmo Algoritmo para computar a interseção de 2 polígonos convexos é O(n) Algoritmo dividir para conquistar tem complexidade dada pela fórmula de recorrência T( n) = 1 2T( n / 2) + n para para n n = > 1 1 Idêntica à fórmula de recorrência do MergeSort Solução: T(n) O (n log n) 9
10 Envelopes superior e inferior Variante do problema de interseção de semiplanos É dado um conjunto de n retas L={l 1, l 2,... l n } não verticais Cada reta l i dada na forma y = a i x + b i Semiplano inferior associado: y a i x + b i Envelope inferior é a interseção desses semiplanos envelope superior envelope inferior 10
11 Envelopes superior e inferior Problema de interseção de semiplanos pode ser reduzido ao de computar os envelopes inferior e superior Dividir semiplanos h i de H em 2 classes Se forma é y a i x + b i então semiplano inferior Se forma é y a i x + b i então semiplano superior Computar os envelopes Achar a interseção dos 2 polígonos convexos Envelopes têm também relação com problema do fecho convexo Achar envelope inferior de um conjunto de retas L={l 1, l 2,... l n } é equivalente a achar a parte superior do fecho convexo do conjunto de pontos P={p 1, p 2,... p n } onde p i é o dual de l i 11
12 Dualidade (transformada de Hough) Seja uma reta na forma y = ax b Uma reta qualquer (não vertical) pode ser representada por um par de coeficientes (a,b) Podemos pensar em (a,b) como coordenadas de um ponto no plano dual (Diz-se que a reta está no plano primal) Uma reta no plano dual pode ser escrita na forma b = xa y e portanto pode ser representada por dois coeficientes (x,y) Corresponde a um ponto no plano primal A transformada de Hough, que vamos denotar pelo sufixo (*), leva pontos e retas do plano primal em retas e pontos do plano dual l* = (a,b) p* : (b = p x a p y ) 12
13 Propriedades da relação de dualidade Auto-inversa: (p*)* = p Reversão de ordem: ponto p está acima / sobre / abaixo da reta l se e somente se o ponto l* está abaixo / sobre / acima da reta p* Preservação de interseções: retas l 1 e l 2 se intersectam no ponto p se e somente se a reta p* passa pelos pontos l 1 * e l 2 * Colinearidade e coincidência: três pontos são colineares se e somente se seus duais se intersectam num ponto comum 13
14 Propriedades da relação de dualidade y p*:(b=-2a 2) b r*:(b=-2a+1) p:(-2,2) q:(-1,1) s*:(b=a+1) x a r:(-2,-1) s:(1,-1) q*:(b=-a 1) 14
15 Fecho convexo superior e envelope inferior Lema: Seja P um conjunto de pontos e P* o conjunto de retas dual de P. A ordem antihorária entre os vértices do fecho convexo superior de P é igual à ordem da esquerda para a direita do envelope inferior de P* p 4 p 3 p 2 p 5 p 1 p 2 * p 3 * p 4 * p 1 * p 5 * 15
16 Fecho convexo superior e envelope inferior Prova: (Assume-se que não há 3 pontos colineares) p i p j é aresta do fecho superior sse a reta l ij que passa por ambos os pontos tem todos os demais pontos de P abaixo de si As retas duais p i * e p j * são adjacentes no envelope inferior sse o ponto de interseção l ij * está abaixo de todos as demais retas do plano dual P* A propriedade de reversão de ordem assegura que a condição primal acontece sse a condição dual acontece logo a seqüência entre pontos primais e retas duais é idêntica Observe a ordem anti-horária dos pontos no primal corresponde a valores decrescentes de x, enquanto que as retas duais apresentam inclinações a decrescentes 16
Arranjos. Claudio Esperança Paulo Roma LCG/UFRJ. All rights reserved.
Arranjos Claudio Esperança Paulo Roma 1 Arranjos Arranjos de retas e planos são a terceira estrutura em importância em GC. Arranjos de retas são coleções de retas infinitas distribuídas no plano. Arranjos
Geometria Computacional
Geometria Computacional Claudio Esperança Paulo Roma Cavalcanti Estrutura do Curso Aspectos teóricos e práticos Construção e análise de algoritmos e estruturas de dados para a solucionar problemas geométricos
Geometria Computacional: Fecho convexo
Geometria Computacional: INF2604 Geometria Computacional Prof. Hélio Lopes [email protected] sala 408 RDC O que é uma região convexa? Uma região é convexa se para qualquer par de pontos dessa região,
Algoritmos geométricos
Algoritmos geométricos introdução a conceitos básicos de geometria computacional que serão abordados de forma mais avançada na disciplina Computação Gráfica disciplina de computação gráfica arquitetura
Introdução à Computação Gráfica Ray Tracing. Claudio Esperança Paulo Roma Cavalcanti
Introdução à Computação Gráfica Ray Tracing Claudio Esperança Paulo Roma Cavalcanti Características Principais Tipicamente implementado em Software Combina um modelo de iluminação com determinação de visibilidade
Geometria Computacional
Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Polígonos 1 Roteiro Introdução Polígonos Teorema da Curva de Jordan Decomposição de polígonos Triangulações Estrutura
5. Invólucros Convexos no Plano (cont )
5. Invólucros Convexos no Plano (cont ) António Leslie Bajuelos Departamento de Matemática Universidade de Aveiro Mestrado em Matemática e Aplicações Algoritmo Quickhull Foi proposto independentemente
Objetos Gráficos Planares
Universidade Federal de Alagoas Instituto de Matemática Objetos Gráficos Planares Prof. Thales Vieira 2011 Objetos Gráficos Computação Gráfica é a área que estuda a síntese, o processamento e a análise
Introdução à Computação Gráfica Recorte. Claudio Esperança Paulo Roma Cavalcanti
Introdução à Computação Gráfica Recorte Claudio Esperança Paulo Roma Cavalcanti O Problema de Recorte Dada uma superfície M fechada de codimensão 1 do R n, o complemento de M, (R n -M), possui duas componentes
Características Principais. Introdução à Computação Gráfica Ray Tracing. Ray Casting. Contexto Histórico. Claudio Esperança Paulo Roma Cavalcanti
Características Principais Introdução à Computação Gráfica Ray Tracing Claudio Esperança Paulo Roma Cavalcanti Tipicamente implementado em Software Combina um modelo de iluminação com determinação de visibilidade
Estudo e implementação de um algoritmo eficaz de detecção de retas
Estudo e implementação de um algoritmo eficaz de detecção de retas André M L G Cerqueira Universidade Federal de Minas Gerais Departamento de Ciência da Computação [email protected] Resumo Este
Pesquisa Operacional
Pesquisa Operacional Teoria da Dualidade Profa. Sheila Morais de Almeida DAINF-UTFPR-PG outubro - 2015 Problema Dual Cada problema de Programa de Programação Linear está associado a um outro problema de
Professor: Computação Gráfica I. Anselmo Montenegro Conteúdo: - Objetos gráficos planares. Instituto de Computação - UFF
Computação Gráfica I Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Objetos gráficos planares 1 Objetos gráficos: conceitos O conceito de objeto gráfico é fundamental para a Computação
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos
Geometria Computacional - Notas de aulas. André Guedes
Geometria Computacional - Notas de aulas André Guedes 24 de novembro de 2016 Aula 1 Introdução O nome Geometria Computacional é bastante recente, e se refere ao estudo de algoritmos para a solução de problemas
3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta
1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada
Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.
Material Teórico - Módulo de Geometria Anaĺıtica 1 Equação da Reta Terceiro Ano - Médio Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Condição de alinhamento de três pontos Consideremos
Divisão e conquista. Eficiência de divisão e conquista
Divisão e conquista Divisão: resolver recursivamente problemas mais pequenos (até caso base) Conquista: solução do problema original é formada com as soluções dos subproblemas á divisão quando o algoritmo
Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R
Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R
Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1
Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.
Geometria Computacional
Geometria Computacional Cristina G. Fernandes Departamento de Ciência da Computação do IME-USP http://www.ime.usp.br/ cris/ segundo semestre de 2009 GeoComp 2009 p. 1 Combinação convexa P : coleção de
Lista 1 - PMR2300. Fabio G. Cozman 3 de abril de 2013
Lista 1 - PMR2300 Fabio G. Cozman 3 de abril de 2013 1. Qual String é impressa pelo programa: p u b l i c c l a s s What { p u b l i c s t a t i c void f ( i n t x ) { x = 2 ; p u b l i c s t a t i c void
ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012
1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Professor: José Tinoco 04/05/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma clara,
Equação fundamental da reta
GEOMETRIA ANALÍTICA Equação fundamental da reta (Xo, Yo) (X, Y) (Xo, Yo) (X, Y) PARA PRATICAR: 1. Considere o triângulo ABC, cujos vértices são A (3, 4), B (1, 1) e C (2, 4). Determine a equação fundamental
Computação Gráfica. Rasterização. Aula 4. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro
Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 4 Rasterização Representação Vetorial x Matricial Normalmente, gráficos são definidos através de primitivas
Otimização Combinatória - Parte 4
Graduação em Matemática Industrial Otimização Combinatória - Parte 4 Prof. Thiago Alves de Queiroz Departamento de Matemática - CAC/UFG 2/2014 Thiago Queiroz (DM) Parte 4 2/2014 1 / 33 Complexidade Computacional
Linguagens Formais e Problemas de Decisão
Linguagens Formais e Problemas de Decisão Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Formais e Problemas
- Plano Anual 4º Ano de Escolaridade -
Números e Operações TEM A - Plano Anual 4º Ano de Escolaridade - Matemática Domínios de Referência Contar 1.Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de construção
PLANIFICAÇÃO ANUAL MATEMÁTICA 4º ANO
PLANIFICAÇÃO ANUAL MATEMÁTICA 4º ANO Domínios Subdomínios Objetivos Descritores/ Metas de Aprendizagem ORGANIZAÇÃO E TRATAMENTO DE DADOS Tratamento dados de Representar e interpretar dados e situações
Geometria Computacional
GeoComp 2014 p. 1/29 Geometria Computacional Cristina G. Fernandes Departamento de Ciência da Computação do IME-USP http://www.ime.usp.br/ cris/ segundo semestre de 2014 GeoComp 2014 p. 2/29 Poliedros
MÓDULO 1 - AULA 21. Objetivos
Aula 1 Hipérbole - continuação Objetivos Aprender a desenhar a hipérbole com compasso e régua com escala. Determinar a equação reduzida da hipérbole no sistema de coordenadas com origem no ponto médio
Unidade: Modelo Simplex e Modelo Dual. Unidade I:
Unidade: Modelo Simplex e Modelo Dual Unidade I: 0 Unidade: Modelo Simplex e Modelo Dual Segundo Wikipédia (2008), em teoria da otimização matemática, o algoritmo simplex de George Dantiz é uma técnica
Curvas e Superfícies. 35M34 Sala 3E1 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 DIM102
Curvas e Superfícies 35M34 Sala 3E1 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 1 Introdução A modelagem e desenho de curvas suaves são necessárias em várias aplicações de computação gráfica, seja
A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por:
. Plano Cartesiano: é formado por dois eixos perpendiculares, um horizontal (eixo das abscissas) e outro vertical (eixo das ordenadas), dividido em quatro quadrantes contados no sentido anti-horário como
Curvas e Superfícies de Bézier
Modelagem Geométrica SME0271 Curvas e Superfícies de Bézier Luiz Otávio Toratti ICMC-USP 07 de outubro de 2016 Curvas de Bézier Objetivo: Construir curvas de fácil controle para auxiliar no design e fabricação
Preenchimento de Polígonos
Preenchimento de Polígonos SCC0250 - Computação Gráca Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic [email protected] Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade
1º Período MATEMÁTICA 4.º ANO. setembro. Domínios Conteúdos programáticos Objetivos/Descritores de desempenho
1º Período setembro Números e Operações Dezenas e centenas de milhar. Resolução de problemas. Rever a matéria do ano anterior Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo
Planificação do 1º Período
Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano
Processamento digital de imagens
Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 6 de outubro de 2016 Segmentação de imagens A segmentação
Solução de Recorrências
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Solução de Recorrências Algoritmos e Estruturas de Dados I Natália Batista https://sites.google.com/site/nataliacefetmg/ [email protected]
Método de Eliminação de Fourier-Motzkin
ERMAC 200: I ENCONTRO REGIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL - 3 de Novembro de 200, São João del-rei, MG; pg 258-26 258 Método de Eliminação de Fourier-Motzkin André Rodrigues Monticeli, Cristiano
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 5.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 04/05/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma
Algoritmos de Ordenação
Algoritmos de Ordenação! Problema: encontrar um número de telefone em uma lista telefônica! simplificado pelo fato dos nomes estarem em ordem alfabética! e se estivesse sem uma ordem?! Problema: busca
4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho
METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Ao longo do ano Números e Operações 3. Resolver problemas 3.1. Resolver problemas de vários passos envolvendo as quatro operações. setembro/
PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho
METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Número e Operações - Números naturais 1. Contar 1.1. Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de
PLANIFICAÇÃO ANUAL DE MATEMÁTICA
AGRUPAMENTO DE ESCOLAS MARQUÊS DE MARIALVA- Cantanhede DEPARTAMENTO CURRICULAR DO 1.º CICLO 4.º ANO DE ESCOLARIDADE PLANIFICAÇÃO ANUAL DE MATEMÁTICA Domínios Subdomínios / Conteúdos programáticos METAS
Agrupamento de Escolas Dr. Vieira de Carvalho P L A N I F I C A Ç Ã O A N U A L D E M A T E M Á T I C A
Agrupamento de Escolas Dr. Vieira de Carvalho P L A N I F I C A Ç Ã O A N U A L D E M A T E M Á T I C A ANO LETIVO 2016/2017 1º Período Domínios Subdomínios / Conteúdos Números e Operações Números naturais
Representação de poliedros
Representação de poliedros Marina Andretta ICMC-USP 8 de novembro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 -
Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:
Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5
P L A N I F I C A Ç Ã O A N U A L
P L A N I F I C A Ç Ã O A N U A L DEPARTAMENTO: 1.º Ciclo DISCIPLINA: Matemática ANO DE ESCOLARIDADE: 4.º ANO LETIVO: 2017/2018 MANUAL: Projeto Desafios / Matemática 4.º ano Revisões Números e Operações
Visualização por Computador: Teoria, Prática e Aplicações
Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,
Probleminhas pseudoalgébricos com soluções elegantemente carteadas
Probleminhas pseudoalgébricos com soluções elegantemente carteadas XXII Semana Olímpica Nível 3 George Lucas 1. Sejam a, b e c números reais positivos. Prove a desigualdade: Solução: a ab + b + b bc +
Geometria Computacional VII: Diagramas de Voronoi
Geometria Computacional VII: Diagramas de Voronoi Programa de Pós-Graduação em Engenharia Elétrica - UFMG Professor Renato Cardoso Mesquita http://www.ead.eee.ufmg.br/~renato/geocomp/ Diagramas de Voronoi
Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é
QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.
PLANIFICAÇÃO MENSAL/ANUAL Matemática 4.ºano
PLANIFICAÇÃO MENSAL/ANUAL Matemática 4.ºano MATEMÁTICA 4.º ANO DE ESCOLARIDADE Domínio/ Subdomínio Números Naturais Operações com números naturais Números racionais não negativos Metas a atingir Contar
Introdução ao Processamento e Síntese de imagens Recorte 2D
1 Introdução ao Processamento e Síntese de imagens Recorte 2D Fontes: Rogers, D. F. Procedural Elements for Computer Graphics Traina, A. J. M. & Oliveira, M. C. F. (2004) 2016 2 Recorte - (Clipping) Numa
Função de Proporcionalidade Direta
Função de Proporcionalidade Direta Recorda Dadas duas grandezas x e y, diz-se que y é diretamente proporcional a x: y se x 0 e y 0 e o quociente entre dois quaisquer valores correspondentes for constante.
AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 4.º ANO DE ESCOLARIDADE
Domínio/ NO4/ Números naturais NO4/ Números racionais não negativos AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 4.º ANO DE ESCOLARIDADE - 2016-2017 1. Contar 1. Reconhecer
Professor Mascena Cordeiro
www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/29 5 - RELAÇÕES 5.1) Relações e Dígrafos 5.2) Propriedades
Universidade Federal do Rio de Janeiro - IM/DCC & NCE
Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Segmentação Antonio G. Thomé [email protected] Sala AEP/133 Conceituação Segmentação é uma tarefa básica no processo de análise
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA
DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS
