Disciplina: Álgebra Linear e Geometria Analítica
|
|
|
- Márcia Guimarães Campos
- 9 Há anos
- Visualizações:
Transcrição
1 Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O Plano. Álgebra Linear: Espaços Vetoriais, Espaços Vetoriais Euclidianos, Transformações Lineares, Vetores Próprios e Valores Próprios. Conteúdos: UNIDADE I: O PONTO 1.1 Estudo do Ponto Segmento Orientado Eixo Segmento Nulo Módulo Direção 1.2 O ponto no IR Coordenadas Cartesianas Quadrantes Distância entre Dois Pontos Ponto Médio Coordenadas Polares 1.3 O ponto no IR Coordenadas Cartesianas Octantes Coordenadas Polares Distância entre dois Pontos Ponto Médio UNIDADE II: VETORES 2.1 Segmentos Eqüipolentes 2.2 Vetor definição 2.3 Operações Adição, propriedades Subtração, propriedades Multiplicação de um número real por um vetor 2.4 Vetores no IR Igualdade entre dois vetores Operações
2 2.4.3 Vetor definido por dois pontos 2.5 Vetores no IR Expressão Cartesiana de um Vetor Base Ortonormal Vetor Posição Expressão Cartesiana do Módulo de um Vetor Expressão Cartesiana do Versor de um Vetor Co-senos Diretores de um Vetor Condição de Paralelismo de dois vetores Condição para que três vetores sejam coplanares 2.6 Produto de Vetores Produto Escalar Definição Módulo de um vetor Propriedades do Produto Escalar Ângulo entre Dois Vetores Projeção de um Vetor sobre outro Produto Vetorial Definição Propriedades do Produto Vetorial Interpretação Geométrica Produto Misto Definição Propriedades do Produto Misto Interpretação Geométrica UNIDADE III: A RETA NO IR Equação Vetorial da Reta 3.2 Equações Paramétricas da Reta 3.3 Reta Definida por dois Pontos 3.4 Equações Simétricas da Reta 3.5 Condição para que três pontos sejam colineares 3.6 Retas paralelas aos Planos e aos Eixos 3.7 Angulo de duas Retas 3.8 Condição de paralelismo de duas retas 3.9 Condição de ortogonalidade de duas retas 3.10 Condição de coplanaridade de duas retas 3.11 Posições relativas de duas retas 3.12 Intersecção de duas retas 3.13 Reta ortogonal a duas retas
3 UNIDADE IV: O PLANO NO IR Equação Geral do Plano 4.2 Determinação de um Plano 4.3 Planos Paralelos aos Eixos e aos Planos 4.4 Equações Paramétricas do Plano 4.5 Ângulo entre reta e plano 4.6 Condição de Paralelismo e Ortogonalidade de dois Planos 4.7 Ângulo entre reta e plano 4.8 Condição de Paralelismo entre reta e plano 4.9 Condições para que uma reta esteja contida em um plano 4.10 Intersecção de reta e plano 4.11 Intersecção de dois Planos 4.12 Intersecção de Plano com Eixos Coordenados 4.13 Distâncias Distância de Ponto a Reta Distância de duas Retas Distância de Ponto a um Plano Distância de dois Planos UNIDADE V: ESPAÇOS VETORIAIS 5.1 Definição 5.2 Propriedades e Exemplos de Espaços Vetoriais 5.3 Subespaços Vetoriais Definição Propriedades e Exemplos de Subespaços Vetoriais 5.4 Combinação Linear de Vetores Definição Exemplos 5.5 Subespeçao Vetorial Gerado Definição Espaços Vetoriais Finitamente Gerados Dependência e Independência Linear Base e Dimensão Coordenadas ou componentes de um Vetor UNIDADE VI: ESPAÇOS VETORIAIS EUCLIDIANOS
4 6.1 Produto Interno em Espaços Vetoriais 6.2 Espaço Vetorial Euclidiano 6.3 Módulo de um Vetor 6.4 Ângulo de dois Vetores 6.5 Distância de dois Vetores 6.6 Vetores Ortogonais 6.7 Conjunto Ortogonal de Vetores 6.8 Base Ortogonal 6.9 Base Ortonormal UNIDADE VII: TRANSFORMAÇÕES LINEARES 7.1 Funções Vetoriais 7.2 Transformações Lineares 7.3 Interpretação Geométrica 7.4 Propriedades das Transformações Lineares 7.5 Núcleo de uma Transformação Linear 7.6 Imagem de uma Transformação Linear 7.7 Propriedades do Núcleo e da Imagem UNIDADE VIII: VETORES PRÓPRIOS E VALORES PRÓPRIOS 8.1 Vetor Próprio e Valor Próprio de um Operador Linear 8.2 Determinação dos Valores Próprios e Vetores Próprios 8.3 Diagonalização de Operadores 8.4 Matriz Diagonizável 8.5 Diagonalização de Matrizes Simétricas
5 Referências bibliográficas: BOULOS, Paulo. Geometria analítica: um tratamento vetorial. Makron. São Paulo: CAROLI, Alesio de. Matrizes, vetores, geometria analítica: teoria e exercícios. Nobel. São Paulo: STEINBRUCH, Alfredo. Álgebra linear. 2ª ed. Makron. São Paulo: STEINBRUCH, Alfredo. Geometria analítica. Makron. São Paulo: 1987.
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas
n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1
n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas
n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas
n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor
Geometria Analítica. Prof. M.Sc. Guilherme Schünemann
Geometria Analítica Prof. M.Sc. Guilherme Schünemann Ponto de partida Um ponto é a unidade básica de toda a geometria analítica. A partir dele, definem-se retas, segmentos, vetores, planos, etc. Reta definida
PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Medianeira PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 FUNDAMENTAÇÃO LEGAL Resolução 075/09 COEPP, de 21 de agosto de
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO Engenharia Elétrica MATRIZ 548 FUNDAMENTAÇÃO LEGAL Processo N 00/11, aprovado pela Resolução n.
2 - VETORES. Geométricamente, vetores são representados por segmentos orientados no plano ou no espaço. Figura 1: Vetor
2 - VETORES Geométricamente, vetores são representados por segmentos orientados no plano ou no espaço. Figura 1: Vetor Segmentos orientados com mesma direção, mesmo sentido e mesmo comprimento representam
(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente
Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto
MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO
DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:
14/03/2013. Cálculo Vetorial. Professor: Wildson Cruz
Estudamos os vetores do ponto de vista geométrico e, no caso, eles eram representados por um segmento de reta orientado. E agora vamos mostrar uma outra forma de representá-los: os segmentos orientados
Geometria Analítica. Prof Marcelo Maraschin de Souza
Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que
Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc..
Introdução a vetor Professor Fiore O que são grandezas? Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. O que são
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO DISCIPLINA/UNIDADE CURRICULAR CÓDIGO PERÍODO
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO CURSO Licenciatura em Química MATRIZ 1 FUNDAMENTAÇÃO LEGAL Resolução n. 180/10-COEPP de 09 de dezembro
MINISTÉRIO DA EDUCAÇÃO
IDENTIFICAÇÃO Unidade Curricular: Geometria Analitica MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS
Matéria. Tecnologia T13
Departamento Curso Formação Básica Tecnologia Disciplina Código Matemática I T13 Docentes Maria Aparecida de Oliveira (Prof. Responsável) Matéria Carga Horária (horas-aula) Qualificação Especialista Matemática
Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia.
1 2. Vetores Força 2.1- Escalares e Vetores Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. Vetor: Grandeza a qual se associa um
PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Resolução
Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA PLANO DE CURSO
C U R S O D E E N G E N H A R IA C IVIL Autorizado pela Portaria nº 276, de 30/05/15 DOU de 31/03/15 Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA Código: Pré-requisito: ----- Período Letivo:
PROGRAMA DE DISCIPLINA
PROGRAMA DE DISCIPLINA Disciplina: GEOMETRIA ANALÍTICA Código da Disciplina: NDC222 Curso: Engenharia Civil Semestre de oferta da disciplina: 1º Faculdade responsável: Núcleo de Disciplinas Comuns (NDC)
Lista de Exercícios de Cálculo 3 Primeira Semana
Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.
2. Dados de Identificação Período letivo: 2009 Disciplina: Álgebra Linear e Geometria Analítica - ALGA Professor: Milton Procópio de Borba
UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: ENGENHARIA MECÂNICA Missão do Curso: Formar engenheiros mecânicos com sólida formação técnica-científica, capazes
I Lista Introodução a Planos
Colegiado de Engenharia Elétrica Prof. Pedro Macário de Moura [email protected] Geometria Analítica 201.2 Discente CPF Turma I Lista Introodução a Planos 01. Determine a equação do plano que
2. Dados de Identificação Período letivo: 2009 Disciplina: Álgebra Linear e Geometria Analítica - ALGA Professor: Milton Procópio de Borba
UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: ENGENHARIA DE PRODUÇÃO MECÂNICA Missão do Curso: Propiciar, ao Engenheiro de Produção Mecânica, o conhecimento
Cálculo Vetorial. Estudo da Reta Prof. Vasco Ricardo Aquino da Silva
Cálculo Vetorial Estudo da Reta Prof. Vasco Ricardo Aquino da Silva 1. Equação Vetorial da Reta r Consideremos a reta r que passa pelo ponto vetor não nulo e tem a direção do Sendo um ponto qualquer (variável)
n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do
n. 20 EQUAÇÃO GERAL DO PLANO Seja A (x 1, y 1, z 1 ) um ponto que pertence ao plano π e n = a i + b j + c k, sendo n (0, 0, 0) um vetor ortogonal ao plano. O plano π pode ser definido como o conjunto de
ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS
ÁLGEBRA LINEAR AULA 9 ESPAÇOS VETORIAIS EUCLIDIANOS Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 11 1 Produto Interno 2 Módulo de um Vetor 3 Ângulo Entre Dois Vetores - Vetores
Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.
Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff
1 Coordenadas no plano 1 1.1 Introdução........................................ 2 1.2 Coordenada e distância na reta............................ 3 1.3 Coordenadas no plano.................................
Vetores e Geometria Analítica
Vetores e Geometria Analítica Prof. Wellington Lista 1 - E para final 4 ou 5 do RGA Instruções Assinale as alternativas corretas na folha de respostas que está no final da lista. É permitido deixar questões
Geometria Analítica e Álgebra Linear
NOTAS DE AULA Geometria Analítica e Álgebra Linear Vetores no Espaço Professor: Luiz Fernando Nunes, Dr. 019/Sem_01 Índice Vetores no Espaço Tridimensional... 1.1 Definição... 1. Operações com vetores...
Grandezas Escalares e Vetoriais
VETORES Grandezas Escalares e Vetoriais Uma grandeza física é um escalar quando pode ser caracterizada apenas por um número, sem necessidade de associar-lhe alguma orientação. Exemplos: Massa de uma bola:
MAT 112 Vetores e Geometria. Prova SUB C
MAT 112 Vetores e Geometria Prof. Paolo Piccione 02 de julho de 2019 Prova SUB C Turmas: 2019146 e 2019134 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos.
n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações
n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações Vetor normal (ortogonal) a uma reta - R plano: (x, y) Considere a reta r do plano cartesiano, de equação ax + by
LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51
1 LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA 01) Dados os vetores e, determine o valor da expressão vetorial. A=51 02) Decomponha o vetor em dois vetores tais que e, com. 03) Dados os vetores, determine
tenha tamanho igual a 5. Determinar o valor de k, se existir, para que os vetores u k,2,k
Vetores Questão 1 Determine o valor de k para que o vetor v (2k,k, 3k) tenha tamanho igual a 5. Questão 2 Ache w tal que w i k 2 i k 2 i j k e w 6. Questão 3 Determinar o valor de k, se existir, para que
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período(4 de janeiro a 18 de março)
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período(4 de janeiro a 18 de março) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas
III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1
Lista de Exercícios de SMA000 - Geometria Analítica 1) Indique qual das seguintes afirmações é falsa: a) Os vetores (m, 0, 0); (1, m, 0); (1, m, m 2 ) são L.I. se, somente se, m 0. b) Se u, v 0, então
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações π 1 : x 2y + 3z = 1 e π 2 : x + z = 2 no sistema de coordenadas
GEOMETRIA ANALÍTICA II
Conteúdo 1 O PLANO 3 1.1 Equação Geral do Plano............................ 3 1.2 Determinação de um Plano........................... 7 1.3 Equação Paramétrica do Plano........................ 11 1.4 Ângulo
Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)
GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido):
G3X1 - Geometria nalítica e Álgebra Linear 3 Vetores 3.1 Introdução efinição (Segmento orientado): Um segmento orientado é um par ordenado (,) de pontos do espaço. é a origem e é a etremidade do segmento
u = ± v. Daí, u v v u = v u e v têm sentidos contrários Por outro lado, suponhamos que podemos escrever u como combinação linear de v
0 u o e v o Como u // v o o u = ± v Daí, o v u u u = ± u, ou seja, u = ± v ssim, se u e v têm mesmo v v u sentido podemos escrever u = v u e v têm sentidos contrários v u temos u = v v Por outro lado,
Parte 3 - Produto Interno e Diagonalização
Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:
Vetores e Geometria Analítica
Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três
VETORES NO ² E NO ³. Álgebra Linear e Geometria Analítica Prof. Aline Paliga
VETORES NO ² E NO ³ Álgebra Linear e Geometria Analítica Prof. Aline Paliga 2.1 DECOMPOSIÇÃO DE UM VETOR NO PLANO Dados dois vetores v 1 e v 2, não colineares, qualquer vetor v (coplanar com v 1 e v 2
Expressão cartesiana de um vetor
Expressão cartesiana de um vetor Seja o vetor : Todo vetor em três dimensões pode ser escrito como uma combinação linear dos vetores de base Multiplicação de vetores Expressões analíticas para multiplicação
1 Segmentos orientados e vetores, adição e multiplicação
MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )
FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães
VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos
Lista de exercícios para entregar
Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para
Visualização por Computador: Teoria, Prática e Aplicações
Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,
Geometria Analítica e Álgebra Linear
Geometria Analítica e Álgebra Linear por PAULO XAVIER PAMPLONA UFCG-UATA 2011 Conteúdo 1 Vetores 4 1.1 Introdução..................................... 4 1.2 Vetores no Plano.................................
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso
MAT 112 Turma Vetores e Geometria. Prova 2 29 de junho de 2017
MAT 112 Turma 2017146 Vetores e Geometria Prof. Paolo Piccione Prova 2 29 de junho de 2017 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas
MAT 112 Turma Vetores e Geometria. Prova 2 29 de junho de 2017
MAT 112 Turma 2017146 Vetores e Geometria Prof. Paolo Piccione Prova 2 29 de junho de 2017 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas
UNIVERSIDADE PRESBITERIANA MACKENZIE
Unidade Universitária Escola de Engenharia Curso Engenharia Mecânica Disciplina Geometria Analítica e Vetores Professor(es) Solange dos Santos Nieto Eneida Pescadinha Carga horária Teoria: 04 Prática:
Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais
MA33 - Introdução à Álgebra Linear Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT -
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A
A Reta. Docente Pedro Macário de Moura
A Reta Docente Pedro Macário de Moura A Matemática é a única linguagem que temos em comum com a natureza. Hawking. A Matemática é a honra do espírito 2 Equação Vetorial da Reta Seja r uma reta que passa
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta
n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta Equação geral de uma reta Para determinar a equação geral de uma reta utilizamos os conceitos relacionados
Nas questões 1, 3, 4, 11, 12, 13, 15 e 17 considera-se fixado um sistema de coordenadas Σ = (O, E) em E 3, onde E é uma base ortonormal
Nas questões 1, 3, 4, 11, 12, 13, 15 e 17 considera-se fixado um sistema de coordenadas Σ = (O, E) em E 3, onde E é uma base ortonormal positiva de V 3. 1Q1. Seja m R não nulo e considere as retas: r :
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,
Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3
VETORES E R3 Ultra-Fast Prof.: Fábio Rodrigues [email protected] Obs.: A maioria das figuras deste texto foram copiadas do livro virtual álgebra vetorial e geometria analítica, 9ª edição,
PLANO DE ENSINO e APRENDIZAGEM Álgebra Linear
UNIVERSIDADE FEDERAL DO PARÁ PLANO NACIONAL DE FORMAÇÃO DE PROFESSORES DA EDUCAÇÃO BÁSICA PARFOR CURSO DE LICENCIATURA EM MATEMÁTICA PLANO DE ENSINO e APRENDIZAGEM Álgebra Linear I IDENTIFICAÇÃO 1.1. Disciplina:
Capítulo 4. Retas e Planos. 4.1 A reta
Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam
