UNIVERSIDADE PRESBITERIANA MACKENZIE
|
|
|
- Rita Casado Fernandes
- 9 Há anos
- Visualizações:
Transcrição
1 Unidade Universitária Escola de Engenharia Curso Engenharia Mecânica Disciplina Geometria Analítica e Vetores Professor(es) Solange dos Santos Nieto Eneida Pescadinha Carga horária Teoria: 04 Prática: 00 Total: 04 Código da Disciplina Etapa 01 Semestre Letivo 1 / 2012
2 Ementa Estudo das cônicas. Vetores e geometria no espaço. Operações com vetores: adição, subtração, produto por escalar e propriedades. Dependência e independência linear. Bases e coordenadas. Produto escalar e propriedades. Ortogonalidade e projeções. Produto vetorial e propriedades Produto misto e propriedades. Estudo da reta no espaço. Estudo do plano no espaço.
3 Objetivos Fatos e Conceitos Procedimentos e Habilidades Atitudes, Normas e Valores Conhecer os fundamentos elementares, na forma de conceitos e mecanismos, da álgebra vetorial aplicada à geometria analítica no espaço; fundamentar as bases necessárias às disciplinas de conteúdo básico, profissionalizante e específico; compreender os conceitos e técnicas da Geometria Analítica; familiarizar com a linguagem da Álgebra Linear. Utilizar a matemática como principal linguagem de comunicação e formação de modelos; utilizar análise crítica, raciocínio lógico, intuição e criatividade na resolução de problemas, integrando conhecimentos de outras disciplinas e viabilizando o estudo de modelos abstratos e suas extensões genéricas a novos padrões e técnicas de resolução; identificar e resolver problemas práticos de engenharia. Ponderar sobre a utilização da matemática como linguagem e principal ferramenta para a resolução de problemas de engenharia; agir com ética na tomada de decisões que envolvam aspectos financeiros, econômicos, sociais etc.; ter iniciativa, independência e responsabilidade no aprendizado; realizar, com consciência e de forma ética, trabalhos e listas de exercícios propostos, cumprindo os prazos determinados; conscientizar-se de um estudo contínuo.
4 Conteúdo Programático 1. Secções Cônicas: elipse, hipérbole e parábola: definição e construção gráfica. 2. Conceito de vetor. Operações com vetores; propriedades. Resolução vetorial de problemas geométricos. 3. Dependência linear. Bases; coordenadas de um vetor. Mudança de base. Bases ortonormais. 4. Produto escalar. Propriedades. Ortogonalidade e projeções ortogonais. 5. Produto vetorial. Propriedades. Construção de bases ortonormais. Cálculo de áreas. 6. Geometria Analítica no Espaço. Estudo da reta no espaço. Estudo do plano no espaço. Posições relativas; distâncias. Metodologia Aulas expositivas clássicas, seguidas de exercícios. Trabalhos escritos e orais, individuais ou em grupos. Critério de Avaliação De acordo com o Art. 126 do Regimento da UPM Serão realizadas duas avaliações intermediárias P1 e P2. Uma avaliação final denominada PAFE (prova de avaliação final e escrita). M F = (P1 + P2 + 2PAFE)/4 Aprovação: Média 6,0 com presença obrigatória de no mínimo 75% Bibliografia Básica MELLO, Dorival A. de; WATANABE, Renate G. Vetores e uma iniciação à Geometria Analítica. São Paulo: Liv. da Física, 2ª Edição, p. ANTON, Howard; RORRES, Chris. Álgebra linear com aplicações. 8. ed. reimp. Porto Alegre: Bookman, p. WINTERLE, Paulo. Vetores e geometria analítica. São Paulo: Pearson Makron Books, xiv, 232 p. Bibliografia Complementar WYLIE, C. R.; BARRET, L. C. Advanced engineering mathematics. 6. ed. New York: McGraw- Hill, p. KREYSZIG, Erwin. Advanced engineering mathematics. 8. ed. New York: John Wiley, 1999.
5 1156 p. LEITHOLD, Louis. O cálculo com geometria analítica. 3. ed. São Paulo: Harbra, v. SIMMONS, G. F.; HARIKI, S. Cálculo com geometria analítica. São Paulo: Makron Books, p. SKWOKOWSKI, Earl W. Cálculo com geometria analítica. 2. ed. São Paulo: Makron Books, v. LEITE, Olimpio Rudinin Vissoto. Geometria analítica espacial. 7. ed.são Paulo: Loyola, p. : il. ; 22 cm BERG, Mark de. Computational geometry: algorithms and applications. 2. ed. Berlin: Springer, p. BOULOS, P.; CAMARGO, I. Geometria Analítica : um tratamento vetorial. 2. ed. São Paulo: Pearson Education, p. LIPSCHUTZ, Seymour. Álgebra linear. 2.ed. São Paulo: Makron Books, p.
UNIVERSIDADE PRESBITERIANA MACKENZIE
Unidade Universitária ESCOLA DE ENGENHARIA Curso ENGENHARIA MECÂNICA Disciplina CÁLCULO DIFERENCIAL E INTEGRAL II Código da Disciplina 10012109 Professor(es) Ana Maria Porto Castanheira, Affonso Sergio
MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO
DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:
Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA PLANO DE CURSO
C U R S O D E E N G E N H A R IA C IVIL Autorizado pela Portaria nº 276, de 30/05/15 DOU de 31/03/15 Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA Código: Pré-requisito: ----- Período Letivo:
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas
MINISTÉRIO DA EDUCAÇÃO
IDENTIFICAÇÃO Unidade Curricular: Geometria Analitica MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO Engenharia Elétrica MATRIZ 548 FUNDAMENTAÇÃO LEGAL Processo N 00/11, aprovado pela Resolução n.
2. Dados de Identificação Período letivo: 2009 Disciplina: Álgebra Linear e Geometria Analítica - ALGA Professor: Milton Procópio de Borba
UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: ENGENHARIA DE PRODUÇÃO MECÂNICA Missão do Curso: Propiciar, ao Engenheiro de Produção Mecânica, o conhecimento
PROGRAMA DE DISCIPLINA
PROGRAMA DE DISCIPLINA Disciplina: GEOMETRIA ANALÍTICA Código da Disciplina: NDC222 Curso: Engenharia Civil Semestre de oferta da disciplina: 1º Faculdade responsável: Núcleo de Disciplinas Comuns (NDC)
PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Medianeira PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 FUNDAMENTAÇÃO LEGAL Resolução 075/09 COEPP, de 21 de agosto de
2. Dados de Identificação Período letivo: 2009 Disciplina: Álgebra Linear e Geometria Analítica - ALGA Professor: Milton Procópio de Borba
UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: ENGENHARIA MECÂNICA Missão do Curso: Formar engenheiros mecânicos com sólida formação técnica-científica, capazes
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas
PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Resolução
Matéria. Tecnologia T13
Departamento Curso Formação Básica Tecnologia Disciplina Código Matemática I T13 Docentes Maria Aparecida de Oliveira (Prof. Responsável) Matéria Carga Horária (horas-aula) Qualificação Especialista Matemática
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO DISCIPLINA/UNIDADE CURRICULAR CÓDIGO PERÍODO
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO CURSO Licenciatura em Química MATRIZ 1 FUNDAMENTAÇÃO LEGAL Resolução n. 180/10-COEPP de 09 de dezembro
UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática MATRIZ CURRICULAR 1ª. ETAPA
MATRIZ CURRICULAR 1ª. ETAPA Unidade Universitária: FCI Núcleo Temático: Matemática Disciplina: Cálculo Diferencial e Integral I ENEC00278 ( 6 ) Teóricas 6 h/a Estudo das funções reais de uma variável real,
CYNTHIA FEIJO SEGATTO 25/10/2017 (2017/2) 05/11/2018 (2019/1)
Instituto de Matemática e Estatística Departamento de Matemática Pura e Aplicada Dados de identificação Disciplina: ÁLGEBRA LINEAR I - A Período Letivo: 019/1 Período de Início de Validade : 017/ Professor
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO
019 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01019 Matemática para Agronomia Créditos/horas-aula Súmula
UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO
UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO Disciplina: Introdução ao Cálculo Ementa Conjuntos numéricos: números
Instituto de Economia UFRJ Prof: Ary Álgebra Linear 2017/1 PROGRAMA
Instituto de Economia UFRJ Prof: Ary Álgebra Linear 2017/1 PROGRAMA EMENTA: Vetores. Matrizes. Determinantes. Sistemas Lineares Transformações Lineares. Produto Vetorial. Produto Escalar. Espaços vetoriais.
Disciplina: Álgebra Linear e Geometria Analítica
Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O
Geometria Analítica e Álgebra Linear
AULA 1 - Matrizes Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Matrizes 2. Determinantes 3. Sistemas de
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:
UNIVERSIDADE PRESBITERIANA MACKENZIE Decanato Acadêmico
Unidade Universitária: FACULDADE DE COMPUTAÇÃO E INFORMÁTICA Curso: Núcleo Temático: Disciplina: Introdução à Análise Funcional Carga horária: (4) Teórica 4ha/semana ( ) Prática Ementa: Estudo introdutório
n. 30 TRANSFORMAÇÕES LINEARES Definição: Sejam V e W espaços vetoriais, uma transformação linear T: V W é uma função de V em W se:
n. 30 TRANSFORMAÇÕES LINEARES Uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO
167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula
PROGRAMA DE DISCIPLINA
PROGRAMA DE DISCIPLINA Disciplina: ÁLGEBRA LINEAR E CÁLCULO VETORIAL Código da Disciplina: NDC152 Curso: Engenharia Civil Semestre de oferta da disciplina: 2 Faculdade responsável: NÚCLEO DE DISCIPLINAS
n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do
n. 20 EQUAÇÃO GERAL DO PLANO Seja A (x 1, y 1, z 1 ) um ponto que pertence ao plano π e n = a i + b j + c k, sendo n (0, 0, 0) um vetor ortogonal ao plano. O plano π pode ser definido como o conjunto de
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO.
167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula
UNIVERSIDADE PRESBITERIANA MACKENZIE
3 a ETAPA 1 Componente Curricular: Exclusivo de Curso ( ) Eixo Comum (X) Eixo Universal ( ) ESCOLA E CURRÍCULO Carga horária: ( x ) Sala de aula 4 horas aula Estudo geral das teorias do currículo: desde
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO
167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula
n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1
n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO
167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula
DISCIPLINA/ATIVIDADE
FORMULÁRIO Nº 19 PROGRAMA DE DISCIPLINA/ATIVIDADE CONTEÚDO DE ESTUDOS MATEMÁTICA CÓDIGO NOME DA DISCIPLINA/ATIVIDADE CÓDIGO CHT: 68H TEÓRICA: 68H E CÁLCULO VETORIAL I GGM00160 PRÁTICA : ----- ESTÁGIO:
n. 32 Regras para achar a transformação linear correspondente
n. 3 Regras para achar a transformação linear correspondente Lembrete: matriz da transformação linear [T] B A F(u 1 ) = a v 1 + b v F(u ) = c v 1 + d v [T] A B = [ a c b d ] Dadas às bases e a matriz da
n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas
n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor
INTRODUÇÃO À ÁLGEBRA LINEAR. Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática
INTRODUÇÃO À ÁLGEBRA LINEAR Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática PLANO DE ENSINO: 1. EMENTA: Matrizes. Sistemas de Equações Lineares. Espaços Vetoriais 2. CARGA HORÁRIA: 60
Faculdade de Direito de Alta Floresta DISCIPLINA: Ementa: Bibliografia Básica: Desenho técnico básico Desenho arquitetônico
DISCIPLINA: Desenho Técnico Projetivo Ementa:. Instrumentos. Construções geométricas fundamentais. Noções de geometria descritiva. Introdução ao desenho técnico. Desenho projetivo e perspectivas. FERREIRA,
PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA
1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: Curso Superior de Tecnologia em Sistemas de Telecomunicações Nome da disciplina: Cálculo Diferencial e Integral I Código: TEL015 Carga horária: 83 horas
MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO
DISCIPLINA: CÁLCULO II CÓDIGO: 2DB014 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 6 aulas Créditos: 6 Modalidade: Teórica Integralização:
Programa Analítico de Disciplina MAT143 Cálculo Diferencial e Integral II
0 Programa Analítico de Disciplina Departamento de Matemática - Centro de Ciências Exatas e Tecnológicas Número de créditos: 6 Teóricas Práticas Total Duração em semanas: 15 Carga horária semanal 6 0 6
https://utfws.utfpr.edu.br/acad01/sistema/mpplanoensinoinformativo... MA70G Equações Diferenciais Ordinárias Nota/Conceito E Frequência
1 de 5 19/10/2017 09:40 Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Curitiba Informações da disciplina Código Ofertado Disciplina/Unidade Curricular Modo de Avaliação MA70G
