CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais.

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais."

Transcrição

1 CAPÍTULO CÁLCULO VECTORIAL.1. Grandeas escalares e vectoriais. Noção de Vector. As grandeas físicas podem ser escalares ou vectoriais. As grandeas massa, comprimento, tempo ficam completamente definidas pelo seu valor numérico e por uma unidade: kg, por eemplo. São grandeas escalares. As grandeas escalares combinamse de acordo com as regras de álgebra ordinária. Pelo contrário, a acção de um corpo sobre outro (uma força) só fica caracteriada pelas suas intensidade, direcção e pelo seu sentido. Trata-se de uma grandea vectorial. Os vectores são definidos como entes matemáticos que possuem intensidade, direcção e sentido, e que se combinam segundo certas regras específicas: a álgebra vectorial. Representação gráfica Considere-se o sistema ortonormado representado na figura. Os vectores representam-se graficamente por segmentos orientados. Nos diagramas, escolhida uma escala, o comprimento de um vector é proporcional ao seu módulo; a direcção e o sentido do vector representam a direcção e o sentido da grandea em causa. ˆk ĵ î r P(,, ) Estática 003/04 Pág. 10

2 Vector livre / vector aplicado Um vector utiliado para representar uma força que actua num determinado ponto material tem bem definido o seu ponto de aplicação, o ponto material. É um vector aplicado; não pode ser deslocado sem modificar as condições do problema. Outras grandeas físicas, e.g. os momentos, são representadas por vectores que se podem deslocar paralelamente a si mesmos, livremente no espaço. São vectores livres. inalmente, há ainda outras grandeas físicas, e.g. as forças actuantes em corpos rígidos, que são representadas por vectores que se podem deslocar ao longo da sua linha de acção. São vectores desliantes. Dois vectores P e P de mesma intensidade, direcção e sentido são ditos iguais quer tenham ou não o mesmo ponto de aplicação. O vector oposto ou simétrico de um determinado vector P é definido como sendo um vector com a mesma intensidade e direcção de P, e sentido oposto ao de P. Representa-se por P. Os vectores P e P são designados vectores directamente opostos. A soma de dois vectores directamente opostos é o vector nulo, 0. P + (- P ) 0 Estática 003/04 Pág. 11

3 .. Método gráfico de adição de vectores. A adição de vectores efectuase segundo a regra do paralelogramo. O vector soma é a diagonal do paralelogramo. Propriedades Como o paralelogramo construído com os vectores P e Q não depende da ordem segundo a qual são tomados, verifica-se que a adição de dois vectores é comutativa: P + Q Q + P Ou alternativamente pela regra do triângulo. O vector soma obtem-se unindo a origem de um vector com a etremidade do outro. (Propr. Comutativa) Subtrair um vector é somar ao primeiro vector o oposto do segundo vector. P - Q P + (-Q ) Adição de três ou mais vectores A adição de três ou mais vectores pode ser obtida pela aplicação repetida da regra do paralelogramo ou do triângulo aos sucessivos pares de vectores, até que todos os vectores tenham sido substituídos por um único vector. Se os vectores iniciais forem coplanares (i.e., contidos no mesmo plano), será facil obter a sua soma graficamente. Estática 003/04 Pág. 1

4 A adição de três vectores P, Q e S será, por definição, obtida pela adição inicial dos vectores P e Q e, adicionando posteriormente S ao vector P + Q Aplicação sucessiva da regra do triângulo: regra do polígono para a adição de vectores. O resultado permanece inalterado se os vectores Q e S forem substituídos pela sua soma Q + S, o que eprime o facto da adição vectorial ser uma operação associativa: P + Q + S ( P + Q ) + S P + ( Q + S ) A ordem pela qual os vários vectores são somados é irrelevante. Estática 003/04 Pág. 13

5 Produto de um escalar por um vector Define-se o produto kp, de um escalar k por um vector P, como um vector com: a mesma direcção e sentido de P (se k for positivo) ou direcção igual e sentido oposto ao de P (se k for negativo), e em qualquer caso, a intensidade igual ao produto de P pelo valor absoluto de k. As propriedades e os resultados apresentadas para vectores são válidos para qualquer sistema de vectores, em particular para os vectores que representam forças. Na sequência utiliaremos forças físicas em ve de vectores com o objectivo de tornar este curso mais intuitivo. Resultante de várias forças concorrentes Considere-se um ponto material A sujeito à acção de diversas forças. Como todas elas passam pelo ponto A, são chamadas forças concorrentes. Pela utiliação repetida da regra do paralelogramo (regra do polígono) obtém-se o vector R, que representa a força resultante das forças concorrentes, i.e. uma força única que produ o mesmo efeito que as forças originais sobre o ponto material A. regra do polígono ordem irrelevante Estática 003/04 Pág. 14

6 .3. Componentes cartesianas de vectores. Sistema de coordenadas cartesianas. Versores. Se duas ou mais forças actuantes sobre um ponto material podem ser substituídas por uma única força resultante, reciprocamente, uma única força que actua sobre um ponto material pode ser substituída por duas ou mais forças que, juntas, tenham o mesmo efeito sobre o ponto material. A estas forças chamamos componentes da força original, e este processo de substituição denomina-se decomposição da força em componentes. acilmente se verifica que para cada força eiste um número infinito de conjuntos possíveis de componentes. Contudo, na maioria dos problemas é conveniente decompor a força em componentes normais entre si, que são as mais utiliadas: as componentes rectangulares, onde um vector se eprime como a soma de dois vectores perpendiculares entre si. Estática 003/04 Pág. 15

7 orças no Plano ( dimensões): A força é decomposta nas componentes, segundo o eio O, e, segundo o eio O, no caso bidimensional. O paralelogramo desenhado para obtenção das duas componentes é um rectângulo, e e são denominadas componentes cartesianas. Nos casos que envolvem apenas duas dimensões (i.e., podem ser formulados e resolvidos num plano) os eios O e O são escolhidos segundo duas direcções perpendiculares quaisquer, escolhidas convenientemente para cada problema. Ao sistema ortogonal de eios chama-se Sistema de Coordenadas Cartesianas -D. Se definirmos agora dois vectores de intensidade ou módulo 1, orientados respectivamente segundo os eios O e O; são denominados vectores unitários ou versores, e representados por î e ĵ, respectivamente. Estática 003/04 Pág. 16

8 Relembrando a definição do produto de um escalar por um vector podemos então escrever iˆ e então temos + iˆ + onde os escalares e podem ser positivos ou negativos, dependendo do sentido dos vectores e coincidir ou não com o sentido do vector unitário (i.e., do eio) correspondente. Os valores absolutos de e são respectivamente iguais às intensidades das forças componentes Não esquecer: e e e. componentes escalares da força componentes vectoriais de Denominando a intensidade da força e θ o ângulo entre e o eio O, medido sempre a partir do semi-eio positivo e no sentido anti-horário, as componentes escalares de eprimimem-se como cos θ e sin θ e tem-se que + e tanq As relações obtidas são válidas para quaisquer ângulos θ entre 0º e 360º, que definem os sinais e os valores absolutos das componentes escalares e. Estática 003/04 Pág. 17

9 orças no Espaço (3 dimensões): Consideremos agora a força aplicada na origem O do Sistema de Coordenadas Cartesianas 3-D,, e. Para definir a direcção de, considera-se o plano OBAC que contém simultaneamente e um eio, neste caso, o eio vertical. O ângulo φ, que o plano OBAC forma com o plano O, define a orientação do plano OBAC, enquanto que a direcção de nesse plano é definida pelo ângulo θ, que forma com o eio O. A força é decomposta numa componente vertical, e numa componente horiontal h. Temos uma força no plano OBAC, e podemos escrever as componentes escalares cos θ h sen θ h encontra-se no plano O, pelo que pode ser decomposta Mas em duas componentes cartesianas e O e O, respectivamente. Tem-se então, segundo os eios h cos φ sen θ cos φ sen φ sen θ sen φ h Estática 003/04 Pág. 18

10 Aplicando o Teorema de Pitágoras aos triângulos OAB e OCD, pode escrever-se OA) ( OB) + ( BA) + donde se obtem h ( h OC OD + DC + ( ) ( ) ( ) + + Denominando θ e θ respectivamente os ângulos que forma com os eios O e O, podemos escrever cos θ cos θ cos θ Os três ângulos θ, θ e θ definem a direcção da força. Os cosenos de θ, θ e θ são conhecidos por cosenos directores da força, e obtém-se como cos θ cos θ cos θ Introduindo os vectores î, ĵ e, orientados segundo os eios O, O e O, respectivamente, a força escreve-se + + onde as componentes escalares e são definidas atrás. iˆ + +, triedro positivo de eios ortogonais Substituindo as componentes escalares, e obtemos ( cosθ iˆ cosθ cosθ ) ˆ + + λ com ˆ λ cosθ iˆ + cosθ + cosθ orça como produto de escalar por vector unitário da direcção de. Estática 003/04 Pág. 19

11 .4. Método analítico de adição de vectores Quando pretendemos adicionar três ou mais forças, torna-se complicado obter uma solução gráfica, pelo que convém utiliar uma solução analítica, através da decomposição de cada força nas suas componentes cartesianas. Se considerarmos, por eemplo, a acção de três forças complanares sobre um ponto material, A. Determinaremos a sua resultante, definida por R P+ Q+ S Â i i. R R + R pela soma das suas componentes cartesianas., Decompondo cada força nas suas componentes cartesianas, temos ou seja R R + R R iˆ+ R Piˆ+ P + Qiˆ+ Q + Siˆ+ S ( ) ˆ ( ) P + Q + S i + P + Q + S R P + Q + S R P + Q + S ou, de forma compacta, para o caso bidimensional, R Â R Â Estática 003/04 Pág. 0

12 Genericamente, no espaço tridimensional, as componentes escalares R, R e R da resultante R de várias forças que actuam sobre um ponto material obtém-se pela adição algébrica das correspondentes componentes escalares das forças iniciais. R ou seja R + R + R ( iˆ + + ) ( ) iˆ + ( ) ( ) + R R R O módulo da resultante R e os ângulos θ, θ e θ formados com os eios coordenados são obtidos analogamente: R R + R + e os cosenos directores da resultante R R cos θ R R cos θ R R cos θ R R.5. Produto escalar ou interno de dois vectores O produto escalar ou interno de dois vectores, P e Q, é definido como sendo o produto dos módulos de P e Q pelo coseno do ângulo θ formado por P e Q (θ 180º). P Q PQ cosθ Muito importante: o resultado não é um vector, mas um escalar. Estática 003/04 Pág. 1

13 Em termos das suas componentes cartesianas, o produto escalar de dois vectores, P e Q, escreve-se ( P iˆ + P ˆ j + P ) ( Qiˆ + Q ˆ j + Qk ) P Q + P Q P Q P Q ˆ + (prop. distrib) e.g. iˆ iˆ 1 iˆ iˆ 0 O produto escalar de dois vectores é comutativo, i.e., P Q Q P O produto escalar é também distributivo, i.e., P ( Q1 + Q ) P Q1 + P Q Determinação do ângulo formado por dois vectores Dados os mesmos vectores P e Q, escritos em termos das suas componentes: P P iˆ + P ˆ j + P Q Q iˆ + Q + Q igualando as epressões obtidas atrás para o seu produto escalar, tem-se P Q PQcosθ P Q + P Q + P Q que nos permite escrever cos θ P Q + P Q + P Q PQ Estática 003/04 Pág.

14 Projecção de um vector sobre um eio Consideremos um vector P que forma um ângulo θ com um eio ou recta orientada OL. A projecção de P sobre o eio OL é definida como sendo o escalar P cosθ P OL. Se considerarmos que o vector Q está orientado segundo o eio OL, o produto escalar entre P e Q escreve-se P Q PQcosθ P Q OL de onde se dedu ou ainda P OL P OL P Q P Q Q + P Q Q + P Q P ˆ λ P cosθ + P cosθ + P cosθ.6. Produto vectorial ou eterno de dois vectores O produto vectorial ou eterno de dois vectores, P e Q, representado pela epressão matemática V P Q é definido como sendo o vector V que satisfa as seguintes condições: Estática 003/04 Pág. 3

15 1. A linha de acção de V é perpendicular ao plano que contém os vectores, P e Q ;. O módulo de V é o produto dos módulos de P e Q pelo seno do ângulo θ formado por P e Q (θ 180º). V PQ senθ 3. O sentido de V é tal que uma pessoa colocada na etremidade de V observará como sendo anti-horária a rotação θ que tra o vector P sobre o vector Q. Os três vectores P, Q e V formam um triedro positivo ou directo. NOTA: Se P e Q não tiverem, inicialmente, o mesmo ponto de aplicação, deverão ser colocados com as origens no mesmo ponto. Determinemos os produtos vectoriais dos diversos pares possíveis de vectores unitários î, ĵ e. iˆ iˆ 0 iˆ iˆ iˆ 0 iˆ iˆ iˆ 0 Estática 003/04 Pág. 4

16 Determinação do sinal do produto vectorial ou eterno de dois vectores unitários: será positivo se se seguirem um ao outro no sentido antihorário e negativo em caso contrário. Em termos das suas componentes cartesianas, o produto vectorial de dois vectores, P e Q, escreve-se ( ˆ ˆ ˆ) ( ˆ ˆ ˆ ) V P Q Pi + P j + Pk Qi + Q j + Qk ( P ) ˆ ( ) ˆ ( ) ˆ Q PQ i PQ PQ j PQ PQ k (prop. distrib) As componentes cartesianas do produto vectorial V são então: V V V P Q P Q P Q P Q P Q P Q O produto vectorial V pode ser epresso através de um determinante. Da 3ª condição resulta que o produto vectorial não é comutativo: Q P ( P Q) A propriedade associativa também não se verifica no produto vectorial. Em geral, por eemplo: ( P Q) S P ( Q S ) ( iˆ ) iˆ ( ) Mas o produto vectorial é distributivo, i.e., verifica-se a seguinte relação, de etrema importância neste curso de Estática: P ( Q1 + Q ) P Q1 + P Q Estática 003/04 Pág. 5

17 .7. Produto misto de três vectores O produto misto de três vectores, S, P e Q, é definido como sendo o produto escalar de S pelo produto vectorial de P e Q ; é dado pela epressão ( P Q) PQ cosθ S Estática 003/04 Pág. 6

Departamento de Matemática e Ciências Experimentais FÍSICA 12.º Ano

Departamento de Matemática e Ciências Experimentais FÍSICA 12.º Ano Departamento de Matemática e Ciências Eperimentais FÍSICA 12.º Ano Teto de apoio n.º 1 Assunto: Calculo vectorial O vector é uma entidade matemática caracteriada por três elementos: módulo, (magnitude

Leia mais

duas forças que actuam numa partícula, estas podem ser substituídas por uma única força que produz o mesmo efeito sobre a partícula.

duas forças que actuam numa partícula, estas podem ser substituídas por uma única força que produz o mesmo efeito sobre a partícula. Ao longo desta secção será abordada a análise do efeito de forças actuando em partículas. Substituição de duas ou mais forças que actuam na partícula por uma equivalente. A relação entre as várias forças

Leia mais

Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise.

Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise. 1. Corpos Rígidos Nesta secção será feito o estudo de forças aplicadas a um corpo rígido. Estudar-se-á a substituição de um dado sistema de forças por um sistema de forças equivalente mais simples, cálculo

Leia mais

Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise.

Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise. Nesta secção será feito o estudo de forças aplicadas a um corpo rígido. Estudar-se-á a substituição de um dado sistema de forças por um sistema de forças equivalente mais simples, cálculo de produtos externos

Leia mais

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

Produto interno, externo e misto

Produto interno, externo e misto Produto interno, externo e misto Definição: Chama-se norma (ou comprimento) do vector u ao comprimento do segmento de recta [OP ] e representa-se por u. Definição: Sejam a = OA e b = OB dois vectores não

Leia mais

Capítulo O espaço R n

Capítulo O espaço R n Cálculo - Capítulo 1. - O espaço R n - versão 0/009 1 Capítulo 1. - O espaço R n 1..1 - Espaço R 3 1.. - Espaço R n Vamos, agora, generaliar o conceito de um espaço R primeiro para R 3 e depois para R

Leia mais

Mecânica Geral 17/02/2016. Resultante de Duas Forças

Mecânica Geral 17/02/2016. Resultante de Duas Forças Mecânica Geral Capítulo 2 Estática de Partículas Resultante de Duas Forças Força: ação de um corpo sobre outro; caracterizada por seu ponto de aplicação, sua intensidade, sua direção, e seu sentido. Evidênciaseperimentaismostramque

Leia mais

Conceitos de vetores. Decomposição de vetores

Conceitos de vetores. Decomposição de vetores Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas

Leia mais

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Nona E 2 Estática CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Teas Tech Universit das Partículas Conteúdo Introdução Resultante

Leia mais

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo ensores cartesianos Quantidades (grandeas) físicas: Classificação: Escalares Vectores ensores de segunda ordem... ensores de ordem ero ensores de primeira ordem ensores de segunda ordem... Relacionadas

Leia mais

RELAÇÕES TRIGONOMÈTRICAS

RELAÇÕES TRIGONOMÈTRICAS TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas

Leia mais

Vetores de força. Objetivos da aula. Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo.

Vetores de força. Objetivos da aula. Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo. Objetivos da aula Vetores de força Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo. Expressar a força e sua posição na forma de um vetor cartesiano e explicar como

Leia mais

MECÂNICA ESTRUTURAL. Prof. António Ressano Garcia Lamas

MECÂNICA ESTRUTURAL. Prof. António Ressano Garcia Lamas MECÂNICA ESTRUTURAL Prof. António Ressano Garcia Lamas 1. Estática das partículas e dos corpos rígidos 1.0 Noções gerais conceito de deformação de um corpo está associado à variação das posições relativas

Leia mais

4 Estática das estruturas espaciais 1

4 Estática das estruturas espaciais 1 35 4 Estática das estruturas espaciais 4. omponentes Retangulares de uma orça Espacial. Vamos discutir os problemas que envolvem as três dimensões do espaço. onsideremos uma força atuante na origem de

Leia mais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado

Leia mais

Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc..

Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. Introdução a vetor Professor Fiore O que são grandezas? Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. O que são

Leia mais

Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia.

Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. 1 2. Vetores Força 2.1- Escalares e Vetores Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. Vetor: Grandeza a qual se associa um

Leia mais

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores.

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. Capítulo 2 Plano Cartesiano / Vetores: Plano Cartesiano Foi criado pelo matemático René Descartes, associando a geometria à álgebra. Desse modo, ele pôde

Leia mais

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.

Leia mais

Mecânica e Ondas fascículo 4

Mecânica e Ondas fascículo 4 Mecânica e Ondas fascículo 4 March 6, 2008 Contents 5 Vectores 50 5.1 Deslocamento............................. 50 5.2 Adição de vectores.......................... 52 5.3 Negativo de um vector........................

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

1: Grandezas vetoriais e grandezas escalares

1: Grandezas vetoriais e grandezas escalares 1 1: Grandezas vetoriais e grandezas escalares A Física lida com um amplo conjunto de grandezas Dentro dessa gama enorme de grandezas existem algumas cuja caracterização completa requer tão somente um

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES DURANTE AS AULAS DE VETORES VOCÊ APRENDERÁ: Diferença entre grandezas escalares e vetoriais

Leia mais

Definição. Geometria plana

Definição. Geometria plana Geometria analítica Definição A palavra geometria vem do grego geometrien onde geo significa terra e metrien medida. Geometria foi, em sua origem, a ciência de medição de terras. O historiador grego Heródoto

Leia mais

Grandezas Escalares e Vetoriais

Grandezas Escalares e Vetoriais VETORES Grandezas Escalares e Vetoriais Uma grandeza física é um escalar quando pode ser caracterizada apenas por um número, sem necessidade de associar-lhe alguma orientação. Exemplos: Massa de uma bola:

Leia mais

Cap. 0. Cálculo tensorial

Cap. 0. Cálculo tensorial Cap. 0. Cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos em D simétricos

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/16 Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 3ª Aula Duração - 2 Horas Data - 29 de Setembro de 2003 Sumário: Equações de Equilíbrio de Forças. Equações de Equilíbrio

Leia mais

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Transformações 2D

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Transformações 2D Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Transformações 2D Computação Visual Beatriz Sousa Santos, Joaquim Madeira Transformações 2D Posicionar, orientar e escalar

Leia mais

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular Física I 2010/2011 Aula 16 Momento de uma Força e Momento Angular Sumário O Momento angular A 2.ª Lei de Newton na forma angular O Momento Angular de um Sistema de Partículas O Momento Angular de um Corpo

Leia mais

VETORES + O - vetor V 2 vetor posição do ponto P 2

VETORES + O - vetor V 2 vetor posição do ponto P 2 Objetivo VETORES Estudar propriedades de vetores e a obtenção de resultantes. Introdução Para localizar um ponto P em uma reta, três elementos são necessários: uma referência R, escolhida arbitrariamente,

Leia mais

MECÂNICA GERAL 1. Marcel Merlin dos Santos

MECÂNICA GERAL 1. Marcel Merlin dos Santos MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Princípio da transmissibilidade Produto Vetorial Componentes cartesianas Momento de uma força em relação a um ponto Projeção de um vetor sobre

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum.

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum. Vetores Uma partícula que se move em linha reta pode se deslocar em apenas uma direção, sendo o deslocamento positivo em uma e negativo na outra direção. Quando uma partícula se move em três dimensões,

Leia mais

Seja f um endomorfismo de um espaço vectorial E de dimensão finita.

Seja f um endomorfismo de um espaço vectorial E de dimensão finita. 6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio

Leia mais

Vetores. Laura Goulart. 21 de Julho de 2018 UESB. Laura Goulart (UESB) Vetores 21 de Julho de / 1

Vetores. Laura Goulart. 21 de Julho de 2018 UESB. Laura Goulart (UESB) Vetores 21 de Julho de / 1 Vetores Laura Goulart UESB 21 de Julho de 2018 Laura Goulart (UESB) Vetores 21 de Julho de 2018 1 / 1 Introdução Muitas grandezas físicas como força para serem completamente identicadas precisam de comprimento,

Leia mais

Capítulo Aplicações do produto interno

Capítulo Aplicações do produto interno Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal

Leia mais

1 Espaços Vectoriais

1 Espaços Vectoriais Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um

Leia mais

Álgebra Linear I - Aula 3. Roteiro

Álgebra Linear I - Aula 3. Roteiro Álgebra Linear I - Aula 3 1. Produto escalar. Ângulos. 2. Desigualdade triangular. Roteiro 1 Produto escalar Considere dois vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3. O produto escalar

Leia mais

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência Sumário: Betão armado armadura aplicações Equilíbrio estático de um ponto material Momento

Leia mais

JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017

JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017 9 de Outubro de 2017 Vetores Ferramenta matemática que é utilizada nas seguintes disciplinas dos cursos de Engenharia: Física; Mecânica Resistência dos materiais Fenômenos do transporte Consideremos um

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,

Leia mais

ficha 6 espaços lineares com produto interno

ficha 6 espaços lineares com produto interno Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

Vetores Forças Cap. 2

Vetores Forças Cap. 2 Eemplo.B MECÂNICA - ESTÁTICA Decomponha a força horizontal de 600 N da igura nas componentes que atuam ao londo dos eios u e v e determine as intensidades dessas componentes Vetores orças Cap. Prof Dr.

Leia mais

Aula 2 Vetores de força

Aula 2 Vetores de força Aula 2 Vetores de força slide 1 Escalares e vetores Um escalar é qualquer quantidade física positiva ou negativa que pode ser completamente especificada por sua intensidade. Exemplos de quantidades escalares:

Leia mais

Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro

Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Introdução A manipulação, visualiação e a construção de imagens gráficas tridimensionais

Leia mais

Marília Peres. Adaptado de Serway & Jewett. Fonte: The New Yorker Book of Teacher Cartoons (2012), by Robert Mankoff (Editor), Lee Lorenz

Marília Peres. Adaptado de Serway & Jewett. Fonte: The New Yorker Book of Teacher Cartoons (2012), by Robert Mankoff (Editor), Lee Lorenz INTRODUÇÃO À FÍSICA Adaptado de Serway & Jewett SOBRE A FÍSICA Fonte: The New Yorker Book of Teacher Cartoons (2012), by Robert Mankoff (Editor), Lee Lorenz 1 SOBRE A FÍSICA BBC - Vídeo: Learn The History

Leia mais

Aula 3 Escalares e Vetores

Aula 3 Escalares e Vetores Aula 3 Escalares e Vetores Física Geral I F - 128 2º semestre, 2012 QC1: Vetor vs Escalar Quais das quantidades abaixo não podem ser completamente descritas por um escalar? A. massa B. volume C. área D.

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3 VETORES E R3 Ultra-Fast Prof.: Fábio Rodrigues fabio.miranda@engenharia.ufjf.br Obs.: A maioria das figuras deste texto foram copiadas do livro virtual álgebra vetorial e geometria analítica, 9ª edição,

Leia mais

MÓDULO 5 aula 41 (vetores) FERA, o segmento de reta orientado utilizado para caracterizar uma grandeza vetorial é chamado de vetor:

MÓDULO 5 aula 41 (vetores) FERA, o segmento de reta orientado utilizado para caracterizar uma grandeza vetorial é chamado de vetor: MÓDULO 5 aula 41 (vetores) FERA, o segmento de reta orientado utilizado para caracterizar uma grandeza vetorial é chamado de vetor: Simbologia: B AB a vetor a AB a módulo do vetor a A O segmento orientado

Leia mais

Aula Orientação do espaço. Observação 1

Aula Orientação do espaço. Observação 1 Aula 14 Nesta aula vamos definir dois novos produtos entre vetores do espaço, o produto vetorial e o produto misto. Para isso, primeiro vamos apresentar o conceito de orientação. 1. Orientação do espaço

Leia mais

Aula do cap. 03 Vetores. Halliday

Aula do cap. 03 Vetores. Halliday ula do cap. 03 Vetores. Conteúdo: Grandezas Escalares e Vetoriais dição de Vetores Método do Paralelogramo Decomposição de Vetores Vetores Unitários e dição Vetorial. Produto Escalar Referência: Halliday,

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea:

SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea: Disciplina: Álgebra Linear e Geometria Analítica Curso: Engenharia Mecânica Professora: Valéria Lessa APOSTILA SISTEMAS LINEARES Muitos problemas em várias áreas da Ciência recaem na solução de sistemas

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Vetorial. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Vetorial. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Produto Vetorial Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta aula, estudaremos uma operação definida

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE

Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes FORÇS HDRÁULCS SOBRE SUPERFÍCES SUBMERSS Revisão, apêndice Streeter: SSTEMS DE FORÇS,

Leia mais

Vectores e Geometria Analítica

Vectores e Geometria Analítica Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário

Leia mais

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1 n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometria Analítica e Álgebra Linear Vetores no Espaço Professor: Luiz Fernando Nunes, Dr. 019/Sem_01 Índice Vetores no Espaço Tridimensional... 1.1 Definição... 1. Operações com vetores...

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

4. Tensores cartesianos em 3D simétricos

4. Tensores cartesianos em 3D simétricos 4. Tensores cartesianos em D simétricos 4.1 Valores e vectores próprios ou valores e direcções principais Em D não é possível deduzir as fórmulas que determinam os valores e as direcções principais na

Leia mais

Tensores Cartesianos

Tensores Cartesianos Tensores Cartesianos Mecânica II Notas de apoio à disciplina de Mecânica II Vitor Leitão Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Lisboa, 2011 vitor@civil.ist.utl.pt -

Leia mais

Aula 3 Vetores no espaço

Aula 3 Vetores no espaço MÓDULO 1 - AULA 3 Aula 3 Vetores no espaço Objetivos Ampliar a noção de vetor para o espaço. Rever as operações com vetores e sua representação em relação a um sistema ortogonal de coordenadas cartesianas.

Leia mais

Vectores. Figura Vector PQ

Vectores. Figura Vector PQ Vectores 1 Introdução Neste tutorial vou falar sobre vectores. Os vectores são muito importantes em muitas ciências quer para a matemática, quer para alguns tipos de programação (especialmente programação

Leia mais

Aula 07 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados.

Aula 07 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados. Aula 07 - Momento (formulação vetorial) slide 1 2011 Pearson Prentice Hall. Todos os direitos reservados. Lembrete: 24/08 Momento sobre um eixo específico. Momento de um binário 29/08 Revisão e esclarecimento

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia Cap. 1. ensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores.

Leia mais

Resultantes de um sistema de forças

Resultantes de um sistema de forças Resultantes de um sistema de forças Objetivos da aula Discutir o conceito do momento de uma força e mostrar como calculá-lo em duas e três dimensões. Fornecer um método para determinação do momento de

Leia mais

TEORIA DOS SISTEMAS DE VECTORES

TEORIA DOS SISTEMAS DE VECTORES DECivil Secção de ecânica Estrutural e Estruturas TEOI DOS SISTES DE ECTOES I. Cabrita Neves bril de 00 TEOI DOS SISTES DE ECTOES 1. Classes de vectores e parâmetros necessários à sua definição 3. dição

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Mateus Barros 3º Período Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Mateus Barros 3º Período Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2018.1 Vetores Mateus Barros 3º Período Engenharia Civil Definição O que é um vetor? Um vetor é um segmento de reta orientado, que representa uma grandeza

Leia mais

Grandezas Escalares e Vetoriais

Grandezas Escalares e Vetoriais Aula 0: Vetores o escalares e vetores o soma de vetores o componentes cartesianas e polares de um vetor o produto escalar entre vetores o produto vetorial entre vetores Grandezas Escalares e Vetoriais

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA Consideremos uma reta r e sejam A e B dois pontos de r Ao segmento de reta AB, podemos associar 2 sentidos : de A para B e de B para A Escrevemos AB para representar

Leia mais

VETORES. Física. primeiro à extremidade do último vetor traçado. magnético.

VETORES. Física. primeiro à extremidade do último vetor traçado. magnético. Prof. Paulino Mourão VETORES Física MARÇO/009 ursos C 1. GRANDEZAS FÍSICAS 3. SOMA DE VETORES º E.M. Master 11/03/09 1.1. Grandezas Escalares São totalmente definidas somente por um valor numérico associado

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

ROBÓTICA REPRESENTAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA REPRESENTAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial REPRESENTAÇÕES MATRICIAIS https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

Exercícios Resolvidos Variedades

Exercícios Resolvidos Variedades Instituto Superior Técnico Departamento de atemática Secção de Álgebra e Análise Eercícios Resolvidos Variedades Eercício 1 Considere o conjunto = {(,, ) R : + = 1 ; 0 < < 1}. ostre que é uma variedade,

Leia mais

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido):

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido): G3X1 - Geometria nalítica e Álgebra Linear 3 Vetores 3.1 Introdução efinição (Segmento orientado): Um segmento orientado é um par ordenado (,) de pontos do espaço. é a origem e é a etremidade do segmento

Leia mais

REVISÃO DE NÚMEROS COMPLEXOS

REVISÃO DE NÚMEROS COMPLEXOS REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é

Leia mais

Mecânica I. Apresentação. Vitor Leitão gabinete 2.34 horário de dúvidas: quarta, 14h30-16h

Mecânica I. Apresentação. Vitor Leitão gabinete 2.34 horário de dúvidas: quarta, 14h30-16h Apresentação Vitor Leitão vitor.leitao@tecnico.ulisboa.pt gabinete 2.34 horário de dúvidas: quarta, 14h30-16h Corpo Docente Manuel Ritto Correa (responsável) Carlos Tiago Carlos Sousa Oliveira Nota: segue-se,

Leia mais

Instituto de Física Universidade Federal do Rio de Janeiro. Cap. 1 - Vetores. Prof. Elvis Soares - Física I

Instituto de Física Universidade Federal do Rio de Janeiro. Cap. 1 - Vetores. Prof. Elvis Soares - Física I Instituto de Física Universidade Federal do Rio de Janeiro Cap. 1 - Vetores Prof. Elvis Soares - Física I 2014.1 Vetores são descrições matemáticas de quantidades que possuem intensidade, direção e sentido.

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

1.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO

1.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A 08.ª FASE PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica EXAME NACIONAL DE MATEMÁTICA

Leia mais

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções Física Geral I 1º semestre - 2004/05 2 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 9 de Dezembro 2004 Duração: 2 horas + 30 min tolerância Nas

Leia mais

Representação Gráfica

Representação Gráfica Vetores Vetores: uma ferramenta matemática para expressar grandezas Grandezas escalares e vetoriais; Anotação vetorial; Álgebra vetorial; Produtos escalar e vetorial. Grandezas Físicas Grandezas Escalares:

Leia mais

Análise Vetorial. Capítulo Sejam os dois segmentos de reta AB e CD, com AB = B A tal que:

Análise Vetorial. Capítulo Sejam os dois segmentos de reta AB e CD, com AB = B A tal que: Capítulo 1 Análise etorial 1.1 ejam os dois segmentos de reta AB e CD, com AB = B A e CD = D C, tal que: AB = î 2ĵ ˆk CD = 3î 6ĵ 3ˆk Para verificar que AB e CD são paralelos basta verificar que AB CD =

Leia mais

Ficha de Exercícios nº 1

Ficha de Exercícios nº 1 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 1 Espaços Vectoriais 1 Qual das seguintes afirmações é verdadeira? a) Um espaço vectorial pode ter um número ímpar de elementos.

Leia mais

MATEMÁTICA I. Ana Paula Figueiredo

MATEMÁTICA I. Ana Paula Figueiredo I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos

Leia mais

Variantes... O que isso significa? Qual a importância disso? Isso está relacionado a que?

Variantes... O que isso significa? Qual a importância disso? Isso está relacionado a que? Variantes... O que isso significa? Qual a importância disso? Isso está relacionado a que? GRANDEZA ESCALAR: São grandezas físicas em que apenas o seu valor numérico, com uma unidade correspondente, é

Leia mais

VETORES4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

VETORES4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques VETORES4 Gil da Costa Marques Dinâmica do Movimento Título da dos Disciplina Corpos 4.1 Introdução 4.2 Grandezas Vetoriais e Grandezas Escalares 4.3 Representação Gráfica de Vetores 4.4 Representação Analítica

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometria Analítica e Álgebra Linear por PAULO XAVIER PAMPLONA UFCG-UATA 2011 Conteúdo 1 Vetores 4 1.1 Introdução..................................... 4 1.2 Vetores no Plano.................................

Leia mais

Leis de Newton (Lei Fundamental da Dinâmica) e Forças de Atrito

Leis de Newton (Lei Fundamental da Dinâmica) e Forças de Atrito Leis de ewton (Lei undamental da Dinâmica) e orças de Atrito Movimentos sob a acção de uma força resultante constante Prof. Luís C. Perna LEI DA IÉRCIA OU 1ª LEI DE EWTO LEI DA IÉRCIA Para que um corpo

Leia mais

Representação de sinais

Representação de sinais Representação de sinais Espaços vectoriais Seja F o conjunto de todos os sinais definidos no intervalo Neste conjunto estão definidas as operações de adição de funções e multiplicação por escalares (reais

Leia mais