EM (Dempster, Laird, Rubin: 1977)

Tamanho: px
Começar a partir da página:

Download "EM (Dempster, Laird, Rubin: 1977)"

Transcrição

1

2 EM (Dempster, Lard, Rubn: 1977) Algortmo teratvo para localzação do(s) parâmetro(s) que maxmza(m) a função de verossmlhança p(x ) Dos passos por teração Passo E: cálculo do valor esperado de uma certa v.a. em função do parâmetro θ Passo M: maxmzação, em θ, da função encontrada no passo M

3 EM: Idéa

4 EM: Contas x = (x 1,..., x n ), vetor de amostras ndependentes da v.a. X z = (z 1,..., z m ), realzações da v.a. Z θ = (θ 1,..., θ p ), vetor de parâmetros p(x θ) = p(x θ), função objetvo a maxmzar θ k, valor aproxmado de ˆθ, obtdo na k-ésma teração do algortmo p(x ˆθ) = max θ p(x θ) log p(x ˆθ) = max log p(x θ) θ

5 EM: Contas L(θ) := log p(x θ) = log Y = log Y = log Y = X p(x θ) X p(x, z j θ) j X p(x z j, θ)p(z j, θ) j log X j p(x z j, θ)p(z j, θ) p(zj x, θ k ) p(z j x, θ k ) = X X log X j X j p(z j x, θ k )p(z j, θ) p(x z j, θ) p(z j x, θ k ) p(z j x, θ k ) log p(z j, θ) p(x z j, θ) p(z j x, θ k )

6 EM: Contas L(θ) X X j p(z j x, θ k ) log p(z j, θ) p(x z j, θ) p(z j x, θ k ) L(θ k ) = log p(x θ k ) = X = X L(θ) L(θ k ) X log p(x θ k ) X p(z j x, θ k ) log p(x θ k ) j X p(z j x, θ k ) log p(x z j, θ)p(z j, θ) p(z j x, θ k )p(x θ k ) j =: (θ θ k ) L(θ) L(θ k ) + (θ θ k ) =: l(θ θ k ) (θ k θ k ) = 0 L(θ k ) = l(θ k θ k )

7 EM: Contas l(ˆθ θ k ) = max l(θ θ k ) L(ˆθ) L(θ k )

8 EM: Contas arg max l(θ θ k ) = arg max θ θ {L(θk ) + (θ θ k )} = arg max (θ θ k ) θ X X = arg max θ j = arg max θ = arg max θ p(z j x, θ k ) log p(x z j, θ)p(z j θ) p(z j x, θ k )p(x θ k ) X X p(z j x, θ k ) log p(x z j, θ)p(z j θ) j X EY k Y k é uma v.a. que assume os valores y j = log p(x z j, θ)p(z j θ), para j = 1,..., m, com dstrbução p(y k = y j ) = p(z j x, θ k )

9 EM: Algortmo Passo E: calcular EY k, para = 1,..., n Passo M: maxmzar EY k, em θ

10 EM: Mstura de duas gaussanas undmensonas Z = z j a amostra provém da j-ésma gaussana (j = 1, 2) p(z 1 ) = 1 π p(z 2 ) = π p(x ) = (1 π)φ θ1 (x ) + πφ θ2 (x ) p(z j x, θ k ) = p(zj, x θ k ) p(x θ k ) = p(z 1 x, θ k ) = p(x z j, θ k )p(z j θ k ) P l p(x z l, θ k )p(z l θ k ) Φ θ k 1 (x )(1 π k ) Φ θ k 1 (x )(1 π k ) + Φ θ k 2 (x )π k =: (1 γ k ) p(z 2 x, θ k ) = γ k

11 EM: Mstura de duas gaussanas undmensonas X EY k = X = X X p(z j x, θ k ) log p(x z j, θ)p(z j θ) j {(1 γ k ) log p(z1 θ)p(x z 1, θ) + γ k log p(z2 θ)p(x z 2, θ)} = X {(1 γ k ) log (1 π)φ θ 1 (x ) + γ k log πφ θ 2 (x )} µ1 µ2 σ 2 1 σ 2 2 π X X X X X EY k EY k EY k EY k EY k!! = 0 µ 1 = = 0 µ 2 = P (1 γ k P )x (1 γ k ) P γ k P x γ k! P = 0 σ 21 = (1 γ k )(x µ 1 ) 2 P (1 γ k )! P = 0 σ 22 = γ k (x µ 2 ) 2 P γ k! = 0 π = 1 X γk n

12 EM: Mstura de duas gaussanas undmensonas

13 EM: Mstura de m gaussanas d-dmensonas x = (x 1,..., x n ), z = (z 1,..., z m ) Passo E: Responsabldades r j,k := p(z j x, θ k ) = p(x z j, θ k )p(z j θ k ) P m l=1 p(x z l, θ k )p(z l θ k ) Passo M: Atualzando θ j = (µ j, Σ j ) e p(z j θ), j = 1,..., m µ k+1 j = Σ k+1 j = P n =1 r j,kx P n =1 r j,k P n =1 r j,k(x µ k+1 j )(x µ k+1 j ) T P n =1 r j,k p(x z j, θ k ) = p(z j θ k+1 ) = 1 nx r j,k n =1 1 1 (2π) d/2 Σ j 1/2 e 2 (x µ j ) T Σ 1 (x µ j j )

14 EM: Exemplos n = θ 0 θ 10 ˆθ µ σ µ σ π

15 EM: Exemplos n = 100 θ 0 θ 100 ˆθ µ σ µ σ π

16 EM: Clusterng akaho/mxtureem.html

17 EM: Clusterng EM k-means

18 EM: Convergênca Mostramos que (L(θ k )) k N é não decrescente, mas sso não é sufcente para garantr a convergênca desta seqüênca, tampouco de (θ k ) k N. Em [G. McLachlan e T. Krshnan, The EM Algorthm and Extensons, 1996], mostra-se que θ k pode convergr para pontos de sela e até para mínmos locas da função de verossmlhança. Em [J. Jamshdan e R. Jennrch, Conjugate Gradent Acceleraton of the EM Algorthm, 1993], dscute-se a semelhança entre o algortmo EM e o Método de Descda Máxma. Mostra-se que, em mutos problemas, o Método do Gradente Conjugado é melhor que o EM.

19 GEM: EM Generalzado

20 Baggng (Breman, 1996) Baggng = Bootstrap aggregatng B = {x 1,..., x n }, n amostras da v.a. X A dstrbução de X é conhecda a menos de um parâmetro θ ˆθ, estmador de θ; ˆθ = φ(b) ˆθ A, valor esperado de ˆθ, no segunte sentdo: sendo ˆθ uma v.a. que depende de B, defne-se ˆθ A := E B ˆθ Pela L.G.N., E B ˆθ 1 m m j=1 φ(b j), para m grande Os B j podem ser conjuntos eqücardnas de amostras colhdas da v.a. X ou Bootstrap Samples

21 Baggng: Por quê funcona? E B = esperança com respeto às possíves coleções B E θ = esperança com respeto aos possíves valores de θ E B [E θ [(θ ˆθ A ) 2 ]] = E θ [(θ ˆθ A ) 2 ] = E θ [θ 2 2θˆθ A + ˆθ A 2 ] = E θ [θ 2 ] 2E θ [θ]ˆθ A + E θ [ˆθ A 2 ] = E θ [θ 2 ] 2E θ [θ]e B [ˆθ] + E θ [(E B [ˆθ]) 2 ] E θ [θ 2 ] 2E θ [θ]e B [ˆθ] + E θ [E B [ˆθ 2 ]] = E B [E θ [θ 2 ]] 2E B [E θ [θˆθ]] + E B [E θ [ˆθ 2 ]] = E B [E θ [(θ ˆθ) 2 ]] Em usamos (EZ) 2 E[Z 2 ]

22 Baggng: Exemplos 1000 amostras da N(0, 1) bootstrap samples µ σ ˆθ ˆθ A

23 Baggng: Exemplos σ = 0.3, 20 splnes Splnes aggregatng

24 Baggng: Exemplos σ = 0.5, 10 splnes Splnes aggregatng

25 Bumpng (Tbshran, Knght: 1997) Bumpng = Bootstrap Umbrella of Model Parameters Ingredentes z = (z 1,..., z N ), vetor de amostras ndependentes de uma dstrbução F Um modelo para os dados, dependente do parâmetro θ Target Crteron: R, ˆθ = arg mn θ R(z, θ) Workng Crteron: R0, mas fácl de mnmzar Procedmento Tomar B bootstrap samples, z 1, z 2,..., z B (por convenção, a amostra orgnal z é uma delas) Para b = 1,..., B, calcular ˆθ b = arg mn θ R 0 (z b, θ) Escolher ˆθ B = arg mn b R(z, ˆθ b ) como estmador para θ

26 Bumpng: Stuações em que se pode aplcar R suave mas com mutos mínmos locas. Escolhendo R 0 = R, espera-se que o procedmento encontre o melhor mínmo local. R não suave e/ou dfícl de mnmzar numercamente. Problemas de mnmzação restrta em que R é dfícl de mnmzar numercamente. R 0 sera a versão rrestrta de R.

27 Bumpng: Casos partculares Regressão e Classfcação z = (x, y ) η b (x), modelo para os dados baseado na b-ésma bootstrap sample erro b = (y η b (x )) 2 (regressão) ou erro b = χ(y η b (x )) (classfcação), (x, y ) do conjunto de trenamento orgnal ˆη(x) = η ˆb (x), onde ˆb = arg mn b erro b Vantagem: se alguns poucos pontos estão prejudcando o bom ajuste de um modelo, qualquer bootstrap sample que omtr tas pontos deve se destacar, e o modelo correspondente deve ter preferênca no procedmento acma Mstura de gaussanas R0 = R = L(x θ) = log p(x θ)

28 Bumpng: Exemplos Mstura de duas gaussanas undmensonas Bumpng com EM como R 0 e L como R 1000 amostras, 10 terações do EM, 100 bootstraps ˆθ θ 0 EM Bumpng µ σ µ σ π

29 Bumpng: Exemplos Mstura de duas gaussanas undmensonas Bumpng com EM como R 0 e L como R 1000 amostras, 20 terações do EM, 500 bootstraps ˆθ θ 0 EM Bumpng µ σ µ σ π

30 Bumpng: Exemplos LDA 100 pontos/grupo µ 1 = (0.3, 0.7), µ 2 = (0.7, 0.3), σ = bootstraps # erros: 29 vs 21

31 Bumpng: Exemplos LDA 100 pontos/grupo µ 1 = (0.2, 0.8), µ 2 = (0.8, 0.2), σ = bootstraps # erros: 0 vs 0

ALGORITMOS PARA DADOS AUMENTADOS

ALGORITMOS PARA DADOS AUMENTADOS ALGORITMOS PARA DADOS AUMNTADOS. INTRODUÇÃO Dos algortmos baseados na consderação de dados latentes. Temos os dados efetvamente observados e de uma manera convenente aumentamos esses dados ntroduzndo os

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

Adriana da Costa F. Chaves

Adriana da Costa F. Chaves Máquna de Vetor Suporte (SVM) para Regressão Adrana da Costa F. Chaves Conteúdo da apresentação Introdução Regressão Regressão Lnear Regressão não Lnear Conclusão 2 1 Introdução Sejam {(x,y )}, =1,...,,

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D.

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D. Unversdade Federal do Paraná Departamento de Informátca Reconhecmento de Padrões Classfcadores Lneares Luz Eduardo S. Olvera, Ph.D. http://lesolvera.net Objetvos Introduzr os o conceto de classfcação lnear.

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

DIAGNÓSTICO EM MODELOS LINEARES GENERALIZADOS

DIAGNÓSTICO EM MODELOS LINEARES GENERALIZADOS DIAGNÓSTICO EM MODELOS LINEARES GENERALIZADOS 1 A análse de dagnóstco (ou dagnóstco do ajuste) confgura uma etapa fundamental no ajuste de modelos de regressão. O objetvo prncpal da análse de dagnóstco

Leia mais

Domínio de atração de distribuições α-estáveis sob modelos de mistura finita

Domínio de atração de distribuições α-estáveis sob modelos de mistura finita nas do CNMC v.2 ISSN 1984-820X omíno de atração de dstrbuções α-estáves sob modelos de mstura fnta Cra E. Guevara Otnano, Cáta Regna Gonçalves, epto de Estatístca e Matemátca, UnB, 70910-900 Brasla-F E-mal:

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

REGRESSÃO NÃO LINEAR 27/06/2017

REGRESSÃO NÃO LINEAR 27/06/2017 7/06/07 REGRESSÃO NÃO LINEAR CUIABÁ, MT 07/ Os modelos de regressão não lnear dferencam-se dos modelos lneares, tanto smples como múltplos, pelo fato de suas varáves ndependentes não estarem separados

Leia mais

Implementação Bayesiana

Implementação Bayesiana Implementação Bayesana Defnção 1 O perfl de estratégas s.) = s 1.),..., s I.)) é um equlíbro Nash-Bayesano do mecansmo Γ = S 1,..., S I, g.)) se, para todo e todo θ Θ, u gs θ ), s θ )), θ ) θ Eθ u gŝ,

Leia mais

2 Aproximação por curvas impĺıcitas e partição da unidade

2 Aproximação por curvas impĺıcitas e partição da unidade Aproxmação por curvas mpĺıctas e partção da undade Este capítulo expõe alguns concetos báscos necessáros para o entendmento deste trabalho 1 Curvas Algébrcas Um subconjunto O R é chamado de uma curva mplícta

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Regressão Múltipla. Parte I: Modelo Geral e Estimação

Regressão Múltipla. Parte I: Modelo Geral e Estimação Regressão Múltpla Parte I: Modelo Geral e Estmação Regressão lnear múltpla Exemplos: Num estudo sobre a produtvdade de trabalhadores ( em aeronave, navos) o pesqusador deseja controlar o número desses

Leia mais

Robustecendo a distribuição normal

Robustecendo a distribuição normal Robustecendo a dstrbução normal Marcos Rafael Noguera Cavalcante Dssertação apresentada ao Insttuto de Matemátca e Estatístca da Unversdade de São Paulo para obtenção do título de Mestre em Cêncas Programa:

Leia mais

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min)

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min) PROVA Cálculo Numérco Q. (.0) (0 mn) Seja f a função dada pelo gráfco abaxo. Para claro entendmento da fgura, foram marcados todos os pontos que são: () raízes; () pontos crítcos; () pontos de nflexão.

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Introdução Aprendzagem de Máquna Alessandro L. Koerch Redes Bayesanas A suposção Naïve Bayes da ndependênca condconal (a 1,...a n são condconalmente ndependentes dado o valor alvo v): Reduz a complexdade

Leia mais

3 A técnica de computação intensiva Bootstrap

3 A técnica de computação intensiva Bootstrap A técnca de computação ntensva ootstrap O termo ootstrap tem orgem na expressão de língua nglesa lft oneself by pullng hs/her bootstrap, ou seja, alguém levantar-se puxando seu própro cadarço de bota.

Leia mais

JOCELY NASCIMENTO LOPES

JOCELY NASCIMENTO LOPES UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM INSTITUTO DE CIÊNCIAS EXATAS - ICE PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA Msturas de Dstrbuções t de Student Assmétrcas JOCELY NASCIMENTO LOPES MANAUS 008 UNIVERSIDADE

Leia mais

Inferência para CS Tópico 12 - Suficiência e Famílias Exponenciais

Inferência para CS Tópico 12 - Suficiência e Famílias Exponenciais Inferênca para CS Tópco 12 - Sufcênca e Famílas Exponencas Renato Martns Assunção DCC - UFMG 2013 Renato Martns Assunção (DCC - UFMG) Inferênca para CS Tópco 12 - Sufcênca e Famílas Exponencas 2013 1 /

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

MAE0229 Introdução à Probabilidade e Estatística II

MAE0229 Introdução à Probabilidade e Estatística II Exercíco Cosdere a dstrbução expoecal com fução de desdade de probabldade dada por f (y; λ) = λe λy, em que y, λ > 0 e E(Y) = /λ Supor que o parâmetro λ pode ser expresso proporcoalmete aos valores de

Leia mais

5 Análise Conjunta da Média e da Dispersão

5 Análise Conjunta da Média e da Dispersão 5 Análse Conjunta da Méda e da Dspersão Neste capítulo vamos apresentar métodos de dentfcação dos fatores que afetam a méda e a varânca da resposta, em expermentos fatoras não replcados. Na otmzação de

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. vall@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Em mutas stuações duas ou mas varáves estão relaconadas e surge então a necessdade de determnar a natureza deste relaconamento. A análse

Leia mais

EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória

EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas

Leia mais

Sumarização dos dados

Sumarização dos dados Inferênca e Decsão I Soluções da Colectânea de Exercícos 22/3 LMAC Capítulo 2 Sumarzação dos dados Nota: neste capítulo é apresentada a resolução apenas de alguns exercícos e a título ndcatvo. Exercíco

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

EXERCÍCIO: VIA EXPRESSA CONTROLADA

EXERCÍCIO: VIA EXPRESSA CONTROLADA EXERCÍCIO: VIA EXPRESSA CONTROLADA Engenhara de Tráfego Consdere o segmento de va expressa esquematzado abaxo, que apresenta problemas de congestonamento no pco, e os dados a segur apresentados: Trechos

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS

D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS O método das apromações sucessvas é um método teratvo que se basea na aplcação de uma fórmula de recorrênca que, sendo satsfetas determnadas condções de convergênca,

Leia mais

Gráficos de Controle para Processos Autocorrelacionados

Gráficos de Controle para Processos Autocorrelacionados Gráfcos de Controle para Processos Autocorrelaconados Gráfco de controle de Shewhart: observações ndependentes e normalmente dstrbuídas. Shewhart ao crar os gráfcos de controle não exgu que os dados fossem

Leia mais

Cap. 11 Correlação e Regressão

Cap. 11 Correlação e Regressão Estatístca para Cursos de Engenhara e Informátca Pedro Alberto Barbetta / Marcelo Menezes Res / Antono Cezar Borna São Paulo: Atlas, 2004 Cap. 11 Correlação e Regressão APOIO: Fundação de Apoo à Pesqusa

Leia mais

ANÁLISE DE SÉRIES TEMPORAIS

ANÁLISE DE SÉRIES TEMPORAIS ANÁLISE DE SÉRIES TEMPORAIS Ralph S. Silva http://www.im.ufrj.br/ralph/seriestemporais.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Estimação

Leia mais

Universidade Federal do Rio de Janeiro GRADUAÇÃO /2. Modelo MLP. MLP Multi Layers Perceptron

Universidade Federal do Rio de Janeiro GRADUAÇÃO /2. Modelo MLP. MLP Multi Layers Perceptron Unversdade Federal do Ro de Janero GRADUAÇÃO - 8/ Modelo MLP www.labc.nce.ufrj.br Antono G. Thomé thome@nce.ufrj.br Sala - 3 598-368 MLP Mult Laers Perceptron. Redes Neuras RN de múltplas camadas resolvem

Leia mais

Modelagem de Equilíbrio de Fases Fluidas usando EDE Cúbicas

Modelagem de Equilíbrio de Fases Fluidas usando EDE Cúbicas UNIERSIDADE FEDERA DO PARANÁ SETOR DE TECNOOGIA DEPARTAMENTO DE ENGENHARIA QUÍMICA PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA Modelagem de Equlíbro de Fases Fludas usando EDE Cúbcas Prof. Marcos. Corazza DEQ/UFPR

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais

Optimização com variáveis discretas

Optimização com variáveis discretas Engenhara de Processos e Sstemas Optmzação com varáves dscretas Fernando Bernardo Fev 2013 mn f ( x,, θ ) x, s. t. h( x,, θ ) = 0 g( x,, θ ) 0 x x x L U x real, {0,1} Por que necesstamos de varáves dscretas?

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

(1) A uma parede totalmente catalítica quanto para uma parede com equilíbrio catalítico. No caso de uma parede com equilíbrio catalítico, tem-se:

(1) A uma parede totalmente catalítica quanto para uma parede com equilíbrio catalítico. No caso de uma parede com equilíbrio catalítico, tem-se: 1 RELATÓRIO - MODIFICAÇÃO DA CONDIÇÃO DE CONTORNO DE ENTRADA: MODELOS PARCIALMENTE CATALÍTICO E NÃO CATALÍTICO PARA ESCOAMENTOS COM TAXA FINITA DE REAÇÃO 1. Condções de contorno Em escoamentos reatvos,

Leia mais

MODELOS DE REGRESSÃO PARAMÉTRICOS

MODELOS DE REGRESSÃO PARAMÉTRICOS MODELOS DE REGRESSÃO PARAMÉTRICOS Às vezes é de nteresse nclur na análse, característcas dos ndvíduos que podem estar relaconadas com o tempo de vda. Estudo de nsufcênca renal: verfcar qual o efeto da

Leia mais

Minera c ao de Dados Aula 6: Finaliza c ao de Regress ao e Classifica c ao Rafael Izbicki 1 / 33

Minera c ao de Dados Aula 6: Finaliza c ao de Regress ao e Classifica c ao Rafael Izbicki 1 / 33 Mineração de Dados Aula 6: Finalização de Regressão e Classificação Rafael Izbicki 1 / 33 Como fazer um IC para o risco estimado? Vamos assumir que ( X 1, Ỹ1),..., ( X s, Ỹs) são elementos de um conjunto

Leia mais

5 Implementação Procedimento de segmentação

5 Implementação Procedimento de segmentação 5 Implementação O capítulo segunte apresenta uma batera de expermentos prátcos realzados com o objetvo de valdar o método proposto neste trabalho. O método envolve, contudo, alguns passos que podem ser

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite 5 Relação entre Análse Lmte e Programação Lnear 5.. Modelo Matemátco para Análse Lmte Como fo explcado anterormente, a análse lmte oferece a facldade para o cálculo da carga de ruptura pelo fato de utlzar

Leia mais

Abordagens AGRUPAMENTO ( CLUSTERING ) K-means clustering. Exemplo

Abordagens AGRUPAMENTO ( CLUSTERING ) K-means clustering. Exemplo AGRUPAMENTO ( CLUSTERING ) Obectvo genérco: dado um conunto de nstâncas de treno, sem nformação fornecda sobre a classe ou categora a que pertencem, determnar um conunto de classes que permta organzar

Leia mais

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Duração: 90 mutos Grupo I Probabldades e Estatístca LEAN, LEGI, LEGM, LMAC, MEAer, MEAmb, MEC Justfque coveetemete todas as respostas 1 o semestre 2018/2019 10/01/2019 11:00 2 o teste B 10 valores 1. Cosdere-se

Leia mais

Métodos de Ordenação Parte 1

Métodos de Ordenação Parte 1 Métodos de Ordenação Parte 1 SCC-214 Proeto de Algortmos Prof. Thago A. S. Pardo Baseado no materal do Prof. Rudne Goularte O Problema da Ordenação Ordenação (ou classfcação) é largamente utlzada Lstas

Leia mais

5 Formulação para Problemas de Potencial

5 Formulação para Problemas de Potencial 48 Formulação para Problemas de Potencal O prncpal objetvo do presente capítulo é valdar a função de tensão do tpo Westergaard obtda para uma trnca com abertura polnomal (como mostrado na Fgura 9a) quando

Leia mais

Programação Linear 1

Programação Linear 1 Programação Lnear 1 Programação Lnear Mutos dos problemas algortmcos são problemas de otmzação: encontrar o menor camnho, o maor fluxo a árvore geradora de menor custo Programação lnear rovê um framework

Leia mais

Estatística Espacial: Dados de Área

Estatística Espacial: Dados de Área Estatístca Espacal: Dados de Área Dstrbução do número observado de eventos Padronzação e SMR Mapas de Probabldades Mapas com taxas empírcas bayesanas Padronzação Para permtr comparações entre dferentes

Leia mais

Algoritmos Genéticos com Parâmetros Contínuos

Algoritmos Genéticos com Parâmetros Contínuos com Parâmetros Contínuos Estéfane G. M. de Lacerda DCA/UFRN Mao/2008 Exemplo FUNÇÃO OBJETIVO : 1,0 f ( x, y) 0, 5 sen x y 0, 5 1, 0 0, 001 x 2 2 2 y 2 2 2 0,8 0,6 0,4 0,2 0,0-100 -75-50 -25 0 25 50 75

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 77 Intelgênca Artfcal Aula 8 Redes Neuras Edrle Soares de Lma Formas de Aprendzado Aprendzado Supervsonado Árvores de decsão. K-Nearest Neghbor (KNN). Support Vector Machnes (SVM).

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

3 Método Numérico. 3.1 Discretização da Equação Diferencial

3 Método Numérico. 3.1 Discretização da Equação Diferencial 3 Método Numérco O presente capítulo apresenta a dscretação da equação dferencal para o campo de pressão e a ntegração numérca da expressão obtda anterormente para a Vscosdade Newtonana Equvalente possbltando

Leia mais

XIX Seminário Nacional de Distribuição de Energia Elétrica. Previsão do Consumo Regional da Elektro em Horizonte Anual com Modelos de Rede Neurais

XIX Seminário Nacional de Distribuição de Energia Elétrica. Previsão do Consumo Regional da Elektro em Horizonte Anual com Modelos de Rede Neurais XIX Semnáro Naconal de Dstrbução de Energa Elétrca SENDI 2010 22 a 26 de novembro São Paulo - SP - Brasl Prevsão do Consumo Regonal da Eletro em Horzonte Anual com Modelos de Rede Neuras Ivette R. Luna

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

3 Elementos de modelagem para o problema de controle de potência

3 Elementos de modelagem para o problema de controle de potência 3 Elementos de modelagem para o problema de controle de potênca Neste trabalho assume-se que a rede de comuncações é composta por uma coleção de enlaces consttuídos por um par de undades-rádo ndvdualmente

Leia mais

1 de janeiro de UFRPE e UFPE. Curso de Teoria Assintótica. Gauss Cordeiro. Roteiro. Expansões de Laplace

1 de janeiro de UFRPE e UFPE. Curso de Teoria Assintótica. Gauss Cordeiro. Roteiro. Expansões de Laplace s UFRPE e UFPE 1 de janeiro de 2008 1 s 2 s 3 4 5 s A transformada é definida z grande por L(z) = 0 e zy f (y)dy. A função geratriz de momentos M(t) da distribuição com função densidade f (y) sobre os

Leia mais

Análise Numérica (4) Equações não lineares V1.0, Victor Lobo, 2004

Análise Numérica (4) Equações não lineares V1.0, Victor Lobo, 2004 Análse Numérca (4 V.0, Vctor Lobo, 004 Não Lneares Problema da determnação de zeros de funções f(=0 Aparece em mutas stuações! Determnar pontos de equlíbro térmco, químco, de forças... Soluções analítcas

Leia mais

Redes Neurais (Inteligência Artificial)

Redes Neurais (Inteligência Artificial) Redes Neuras (Intelgênca Artfcal) Aula 14 Redes Neuras Edrle Soares de Lma Formas de Aprendzado Aprendzado Supervsonado Árvores de Decsão. K-Nearest Neghbor (KNN). Support Vector Machnes

Leia mais

Rafael Izbicki 1 / 38

Rafael Izbicki 1 / 38 Mineração de Dados Aula 7: Classificação Rafael Izbicki 1 / 38 Revisão Um problema de classificação é um problema de predição em que Y é qualitativo. Em um problema de classificação, é comum se usar R(g)

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Métodos de Ordenação Parte 1

Métodos de Ordenação Parte 1 Métodos de Ordenação Parte 1 Introdução à Cênca da Computação II Prof. Dego Raphael Amanco Baseado no materal dos Profs. Rudne Goularte e Thago A. S. Pardo O Problema da Ordenação Ordenação (ou classfcação)

Leia mais

Créditos. SCC0173 Mineração de Dados Biológicos. Conteúdo. Métodos Particionais (Sem Sobreposição)

Créditos. SCC0173 Mineração de Dados Biológicos. Conteúdo. Métodos Particionais (Sem Sobreposição) SCC7 Mneração de Dados Bológcos Agrupamento de Dados Partes III & IV: Métodos Partconas e Valdação Crédtos O materal a segur consste de adaptações e etensões dos orgnas: gentlmente ceddos pelo Prof. Eduardo

Leia mais

Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 951) Método de Máxima Verossimilhança (M.M.V.

Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 951) Método de Máxima Verossimilhança (M.M.V. Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 95) Método de Máxima Verossimilhança (MMV) Definição: Qualquer ˆθ = ˆθ(X,, X n ) Θ tal que L(ˆθ; x,, x n ) = Sup{L(θ)

Leia mais

Modelo linear clássico com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear clássico com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear clássco com erros heterocedástcos O método de mínmos quadrados ponderados 1 Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

4 Critérios para Avaliação dos Cenários

4 Critérios para Avaliação dos Cenários Crtéros para Avalação dos Cenáros É desejável que um modelo de geração de séres sntétcas preserve as prncpas característcas da sére hstórca. Isto quer dzer que a utldade de um modelo pode ser verfcada

Leia mais

Coeficiente de Partição

Coeficiente de Partição Físco-Químca Expermental Coefcente de Partção 1. Introdução Suponha dos solventes A e B, parcalmente mscíves à temperatura T, formando as fases α (uma solução dluída de B na fase A) e β (uma solução dluída

Leia mais

Regressão de Poisson e parentes próximos

Regressão de Poisson e parentes próximos Janeiro 2012 Família Exponencial Seja Y uma variável aleatória. A distribuição de probabilidade de Y pertence à família exponencial se a sua função densidade de probabilidade é da forma ( ) yθ b(θ) f (y

Leia mais

ESPALHAMENTO ELETROMAGNÉTICO POR CORPOS DIELÉTRICOS USANDO FUNÇÕES DE BASE SOLENOIDAIS TRIDIMENSIONAIS. Sérgio A. Carvalho e Leonardo S.

ESPALHAMENTO ELETROMAGNÉTICO POR CORPOS DIELÉTRICOS USANDO FUNÇÕES DE BASE SOLENOIDAIS TRIDIMENSIONAIS. Sérgio A. Carvalho e Leonardo S. Journal of Mcrowaves and Optoelectroncs, Vol. 1, No. 1, May 1997. 3 SPLHMNTO LTROMGNÉTICO POR CORPOS DILÉTRICOS USNDO FUNÇÕS D BS SOLNOIDIS TRIDIMNSIONIS Sérgo. Carvalho e Leonardo S. Mendes DCOM/F/UNICMP

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

Prioridades com Teste de Escalonabilidade

Prioridades com Teste de Escalonabilidade rordades + Teste de Escalonabldade Sstemas de Tempo Real: rordades com Teste de Escalonabldade Rômulo Slva de Olvera Departamento de Automação e Sstemas DAS UFSC Cada tarefa recebe uma prordade Escalonamento

Leia mais

Máquinas de Vetores de Suporte Supprot Vector Machine. Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática

Máquinas de Vetores de Suporte Supprot Vector Machine. Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática Máqunas de Vetores de Suporte Supprot Vector Machne Aluzo Fausto Rbero Araújo Unversdade Federal de Pernambuco Centro de Informátca Conteúdo. Introdução 2. Classfcadores Bnáros 3. Aprendzagem Estatístca

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Introdução. Introdução. Introdução I - PERCEPTRON. Modelos de Neurônios LABIC. Neurônio:

Introdução. Introdução. Introdução I - PERCEPTRON. Modelos de Neurônios LABIC. Neurônio: Modelos de Neurônos Introdução Característcas Báscas Modelo de Neurôno Estrutura da Rede Neurôno: Cada neurôno é composto por: dendrtos: con de termnas de entrada corpo central Algortmo de Aprendzado axôno:

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Lnear (PL) Aula : Dualdade. Defnção do Problema Dual. Defnção do problema dual. O que é dualdade em Programação Lnear? Dualdade sgnfca a exstênca de um outro problema de PL, assocado a cada

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall Sstemas Intelgentes Aplcados Carlos Hall Programa do Curso Lmpeza/Integração de Dados Transformação de Dados Dscretzação de Varáves Contínuas Transformação de Varáves Dscretas em Contínuas Transformação

Leia mais

DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS

DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS 177 DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS Antôno Carlos da Slva Flho Un-FACEF Introdução Trend Strps (TS) são uma nova técnca de análse da dnâmca de um sstema,

Leia mais

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a de novembro de 00, Ro de Janero/RJ ERRO DE DIAGNÓSTICO EM AMOSTRAGEM ZERO-DEFEITOS COM RETIFICAÇÃO: DETERMINAÇÃO DO TAMANHO ÓTIMO DE INSPEÇÃO Roberto da

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Algoritmos Genéticos: a otimização aplicando a teoria da evolução

Algoritmos Genéticos: a otimização aplicando a teoria da evolução Algortmos Genétcos: a otmzação aplcando a teora da evolução Sezmára F. Perera Saramago Faculdade de Matemátca Unversdade Federal de Uberlânda saramago@ufu.br Resumo. Este artgo apresenta um texto ntrodutóro

Leia mais

TESTES DE HIPÓTESES Notas de aula. Prof.: Idemauro Antonio Rodrigues de Lara

TESTES DE HIPÓTESES Notas de aula. Prof.: Idemauro Antonio Rodrigues de Lara 1 TESTES DE HIPÓTESES Notas de aula Prof.: Idemauro Antonio Rodrigues de Lara 2 Conteúdo 1. Fundamentos e conceitos básicos; 2. Função poder; 3. Testes mais poderosos e Lema de Neyman-Pearson; 4. Teste

Leia mais

5 a Lista de PE Solução

5 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 5 a Lista de PE Solução. Sejam X A e X B o números de jogos que o time ganha contra times da classe A e da classe B respectivamente. Claramente X A

Leia mais

Testes não-paramétricos

Testes não-paramétricos Testes não-paramétrcos Prof. Lorí Val, Dr. http://www.mat.ufrgs.br/val/ val@mat.ufrgs.br Um teste não paramétrco testa outras stuações que não parâmetros populaconas. Estas stuações podem ser relaconamentos,

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíves resultados de um expermento. Evento é qualquer subconjunto do espaço amostral. Evento combnado: Possu duas ou

Leia mais

Estimadores com Plausibilidade Máxima e Otimização Global Estocástica

Estimadores com Plausibilidade Máxima e Otimização Global Estocástica Estmadores com Plausbldade Máxma e Otmzação Global Estocástca RESUMO Um dos métodos mas utlzados para a determnação de funções de dstrbução de probabldades (PDFs) assocadas a amostras aleatóras de uma

Leia mais

Cap. 5 Classificação Temática

Cap. 5 Classificação Temática Prncípos e Aplcações da Deteção Remota Cap. 5 Classfcação Temátca 5.1 O Processo de Classfcação 5. Classfcação de Máxma Verosmlhança (supervsonada paramétrca) 5..1 Classes multvaradas normas 5.. Lmtes

Leia mais

2. VARIÁVEIS ALEATÓRIAS

2. VARIÁVEIS ALEATÓRIAS VARIÁVEIS ALEATÓRIAS 0 Varável aleatóra Ω é o espaço amostral de um epermento aleatóro Uma varável aleatóra é uma função que atrbu um número real a cada resultado em Ω Eemplo Retra- ao acaso um tem produzdo

Leia mais