Influência Local Gilberto A. Paula

Tamanho: px
Começar a partir da página:

Download "Influência Local Gilberto A. Paula"

Transcrição

1 Influência Local p. 1/18 Influência Local Gilberto A. Paula Instituto de Matemática e Estatística Universidade de São Paulo giapaula@ime.usp.br

2 Influência Local p. 2/18 Preliminares O método de influência local proposto por Cook (1986) consiste em avaliar, através de uma medida apropriada de influência, a robustez das estimativas fornecidas pelo modelo mediante pequenas perturbações aplicadas no modelo ou nos dados. Diferentes gráficos de influência podem ser desenvolvidos. A metodolgia não exige deleção de observações e permite avaliar a influência conjunta de todos os pontos. Mais de 300 artigos foram publicados no assunto nos últimos 20 anos.

3 Influência Local p. 3/18 Seja L(θ) o logaritmo da função de verossimilhança definida conforme Cox e Hinkley (1974, Cap. 9), em que θ IR r é um vetor que contém os parâmetros do modelo. Seja L(θ ω) o logaritmo da função de verossimilhança perturbada, em que ω = (ω 1,...,ω s ) T é o vetor de perturbações, ω Ω IR s. Existe ω 0 (vetor de não perturbação) tal que L(θ ω 0 ) = L(θ).

4 Influência Local p. 4/18 Alguns Tipos de Perturbação As formas mais comuns de perburbação são: perturbação de casos: L(θ ω) = n i=1 ω il i (θ), 0 ω i 1; perturbação na resposta (alavancagem): y iω = y i + σ yi ω i, ω i IR; perturbação em x i (contínua): x iω = x i + σ xi ω i, ω i IR; perturbação na matriz de variância-covariância: Σ iω = ω 1 i Σ i, ω i IR {0}.

5 Influência Local p. 5/18 Medida de Influência A medida de influência mais utilizada para avaliar o efeito das perturbações nas estimativas fornecidas pelo modelo é o afastamento da verossimilhança definido por LD(ω) = 2{L(ˆθ) L(ˆθ ω )}, em que LD(ω) 0 e ˆθ e ˆθ ω são as estimativas de máxima verossimilhança dos modelos não perturbado L(θ) e perturbado L(θ ω), respectivamente. Note que LD(ω 0 ) = 0.

6 Influência Local p. 6/18 Definição A idéia de influência local é estudar o comportamento da função LD(ω) numa vizinhança de ω 0. Para tanto, considera-se a superfície geométrica (s + 1)-dimensional formada pelos valores do vetor α(ω) = [ ω LD(ω) ], quando ω varia em Ω. Essa superfície é denominada gráfico de influência.

7 Influência Local p. 7/18 O estudo de influência local consiste em analisar como a superfície α(ω) desvia-se de seu plano tangente em ω 0 (T 0 ). Essa análise pode ser feita estudando-se as curvaturas das seções normais da superfície α(ω) em ω 0 - que são intersecções de α(ω) com planos contendo o vetor normal com seu plano tangente em ω 0. As curvaturas dessas seções são denominadas curvaturas normais.

8 Figura 1. Curvatura normal a para uma superfície α(ω) e direção unitária h. Influência Local p. 8/18 a Figura extraída de Verbeke e Molenberghs (2000, p. 155)

9 Influência Local p. 9/18 Curvatura Normal A intersecção entre a seção normal e o plano tangente T 0 é denominada linha projetada. Essa linha pode ser obtida através do gráfico de LD(ω 0 + ah) contra a IR. A curvatura normal da linha projetada, denotada por C h, é definida como sendo a curvatura de (a, LD{ω(a)}) em a = 0, em que ω(a) = ω 0 + ah. Denomina-se C h curvatura normal da superfície α(ω) em ω 0 e na direção unitária h. Segue da Geometria Diferencial (vide, por exemplo Kreyszig, 1991, p.35) que C h = LD{ω(a)} a=0 = 2 LD{ω(a)}/ a 2 a=0.

10 Influência Local p. 10/18 Curvatura Normal Após manipulações algébricas Cook mostra que a curvatura normal na direção unitária h fica dada por C h (θ) = 2 h T T L 1 ˆθˆθ h, em que Lˆθˆθ é a matriz observada de Fisher e é uma matriz r s com elementos avaliada em ˆθ e ω 0. ji = 2 L(θ ω) θ j ω i,

11 Influência Local p. 11/18 Interesse particular está na direção (ou nas direções) que produz(em) maior influência local. Mostra-se que a direção de maior curvatura normal, denotada por h max, é o autovetor normalizado correspondente ao maior autovalor C hmax da matriz A = T L 1 ˆθˆθ. Por exemplo, examinando-se o vetor h max pode-se identificar as observações mais influentes sob o esquema de perturbação adotado.

12 Influência Local p. 12/18 Gráficos de Diagnóstico Gráficos mais usuais de diagnóstico de influência local: gráfico de índices de h maxi ; gráficos de índices de C i = C h i n j=1 C h j em que h i é um vetor unitário na direção da i-ésima observação que é formado por zeros com o valor 1 na i-ésima posição. Outras formas de padronização de C h (θ) são propostas por Poon e Poon (1999).

13 Influência Local p. 13/18 Vamos supor que o interesse está num subvetor θ 1 de θ = (θ T 1,θ T 2 ) T. Nesse caso a curvatura normal na direção h fica dada por C h (θ 1 ) = 2 h T T ( L 1 ˆθˆθ B 1) h, sendo B 1 = ( L 1 ˆθ 2ˆθ2 com Lˆθ2ˆθ2 denotando a informação de Fisher observada para θ 2. O gráfico do maior autovetor de T ( L 1 ˆθˆθ B 1) contra a ordem das observações pode revelar os pontos com maior influência local em ˆθ 1. ),

14 Influência Local p. 14/18 Modelos Lineares Generalizados Vamos supor um modelo linear generalizado com ligação canônica, φ conhecido e ponderação de casos, em que L(β ω) = n i=1 ω i L i (β), em que 0 ω i 1. Então obtemos o seguinte: Lˆβ ˆβ = φ(x T ˆVX) e = φx T diag{ˆr P1,..., ˆr Pn }.

15 Influência Local p. 15/18 A curvatura normal na direção unitária h fica então dada por C h (θ) = 2 h T Ah, em que A = diag{ˆr P1,..., ˆr Pn }Ĥdiag{ˆr P 1,..., ˆr Pn }, com H = V 1/2 X(X T VX) 1 X T V 1/2 e r Pi = φ(y i µ i )/ V i. Uma possibilidade é encontrar o autovetor correspondente ao maior autovalor da matrix A, denotado por h max e contruir o gráfico de h max contra as observações.

16 Influência Local p. 16/18 Outra possibilidade é construir o gráfico da curvatura normal na direção unitária da i-ésima observação, ou seja, h i = (0,...,0, 1, 0,..., 0), em que h i é um vetor de zeros com um na iésima posição. Assim teremos C i = 2 h T i Ah i = 2ˆr 2 P i ĥ ii.

17 Influência Local p. 17/18 Referências Cook, R. D. (1986). Assessment of local influence (with discussion). Journal of the Royal Statistical Society B 48, Cox, D.R. e Hinkley, D.V. (1974). Theoretical Statistics. Chapman and Hall: London. Kreyszig, E. (1991). Differential Geometry. Dover: New York.

18 Influência Local p. 18/18 Poon, W. e Poon, Y.S. (1999). Conformal normal curvature and assessment of local influence. Journal of the Royal Statistical Society B 61, Verbeke, G. e Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer: New York.

COMBINAÇÃO DE TÉCNICAS PARA CONSTRUÇÃO DE UM MODELO DE CREDIT SCORING, USANDO ANÁLISE DISCRIMINANTE

COMBINAÇÃO DE TÉCNICAS PARA CONSTRUÇÃO DE UM MODELO DE CREDIT SCORING, USANDO ANÁLISE DISCRIMINANTE COMBINAÇÃO DE TÉCNICAS PARA CONSTRUÇÃO DE UM MODELO DE CREDIT SCORING, USANDO ANÁLISE DISCRIMINANTE 23 Marcos dos Santos Dutra Elenice Biazi 24 Traços, Belém, v. 10, n. 21, p. 23-34, jun. 2008 COMBINAÇÃO

Leia mais

Modelo Linear Generalizado Exponencial Potência

Modelo Linear Generalizado Exponencial Potência Modelo Linear Generalizado Exponencial Potência Cristian Villegas 1 2 1 Introdução Os modelos lineares normais são amplamente aplicados em diversas áreas do conhecimento para modelar a média de dados contínuos

Leia mais

Modelo de regressão log-weibull-exponenciada para dados com censura intervalar

Modelo de regressão log-weibull-exponenciada para dados com censura intervalar XIII SEMANA da ESTATÍSTICA Universidade Estadual de Maringá Modelo de regressão log-weibull-exponenciada para dados com censura intervalar Elizabeth Mie Hashimoto Departamento Acadêmico de Matemática -

Leia mais

Modelos de regressão beta inflacionados

Modelos de regressão beta inflacionados Modelos de regressão beta inflacionados Raydonal Ospina Martínez Orientadora: Silvia Lopes de Paula Ferrari Recife/PE: 3 de Março de 2009 XI Escola de Modelos de Regressão 1 / 22 APOIO FINANCIERO CAPES,

Leia mais

Exemplos Modelos Binomiais de Dose-Resposta

Exemplos Modelos Binomiais de Dose-Resposta Exemplos Modelos Binomiais de Dose-Resposta p. 1/14 Exemplos Modelos Binomiais de Dose-Resposta Gilberto A. Paula Departamento de Estatística IME-USP MAE5763 - Modelos Lineares Generalizados 2 o semestre

Leia mais

Modelos de regressão para dados correlacionados. Cibele Russo

Modelos de regressão para dados correlacionados. Cibele Russo Modelos de regressão para dados correlacionados Cibele Russo cibele@icmc.usp.br ICMC USP Mini-curso oferecido no Workshop on Probabilistic and Statistical Methods 28 a 30 de janeiro de 2013 Cibele Russo

Leia mais

Tratamento Estatístico de Dados em Física Experimental

Tratamento Estatístico de Dados em Física Experimental Tratamento Estatístico de Dados em Física Experimental Prof. Zwinglio Guimarães o semestre de 06 Tópico 7 - Ajuste de parâmetros de funções (Máxima Verossimilhança e Mínimos Quadrados) Método da máxima

Leia mais

Exemplo Ausências Escolares

Exemplo Ausências Escolares Exemplo Ausências Escolares Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2015 G. A. Paula (IME-USP) Ausências Escolares 2 o Semestre 2015 1 / 24 Ausências

Leia mais

Comparação entre intervalos de confiança calculados com métodos bootstrap e intervalos assintóticos

Comparação entre intervalos de confiança calculados com métodos bootstrap e intervalos assintóticos Comparação entre intervalos de confiança calculados com métodos strap e intervalos assintóticos Selene Loibel Depto. de Estatística, Matemática Aplicada e Computação, IGCE, UNESP, Rio Claro, SP E-mail:sloibel@rc.unesp.br,

Leia mais

Exemplos Modelos de Quase-Verossimilhança

Exemplos Modelos de Quase-Verossimilhança Exemplos Modelos de Quase-Verossimilhança p. 1/40 Exemplos Modelos de Quase-Verossimilhança Gilberto A. Paula Departamento de Estatística IME-USP MAE5763 - Modelos Lineares Generalizados 2 o semestre de

Leia mais

Métodos de Diagnóstico para Modelos Lineares Mistos p.1/58

Métodos de Diagnóstico para Modelos Lineares Mistos p.1/58 Métodos de Diagnóstico para Modelos Lineares Mistos Aluno: Juvêncio Santos Nobre juvencio@ime.usp.br Orientador: Prof. PhD Júlio da Motta Singer jmsinger@ime.usp.br IME-USP Métodos de Diagnóstico para

Leia mais

Modelos Lineares Generalizados

Modelos Lineares Generalizados Modelos Lineares Generalizados Emilly Malveira de Lima Análise de Dados Categóricos Universidade Federal de Minas Gerais - UFMG 10 de Maio de 2018 Emilly Malveira (PGEST-UFMG) 10 de Maio de 2018 1 / 20

Leia mais

Inuência Local em Modelos de Regressão

Inuência Local em Modelos de Regressão Resumo Neste trabalho, estudamos a inuência local em modelos de regressão Este método foi proposto inicialmente por Cook (1986) e tem se mostrado como um poderoso instrumento da análise de diagnóstico

Leia mais

Técnicas computacionais em probabilidade e estatística II

Técnicas computacionais em probabilidade e estatística II Técnicas computacionais em probabilidade e estatística II Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco AULA 1: Problemas Computacionais em Inferência Estatística.

Leia mais

Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados

Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Erica Castilho Rodrigues 23 de Maio de 207 Introdução 2 3 Vimos como encontrar o EMV usando algoritmos numéricos. Duas possibilidades:

Leia mais

Exemplo Regressão Binomial Dados Emparelhados

Exemplo Regressão Binomial Dados Emparelhados Exemplo Regressão Binomial Dados Emparelhados Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2013 G. A. Paula (IME-USP) Desenvolvimento de Diabetes 2 o Semestre

Leia mais

Aula 2 Uma breve revisão sobre modelos lineares

Aula 2 Uma breve revisão sobre modelos lineares Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Considere o problema de encontrar o valor que

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares

Leia mais

Exemplo Multicolinearidade

Exemplo Multicolinearidade Exemplo Multicolinearidade Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 1 o Semestre 2013 G. A. Paula (IME-USP) Calor do Cimento 1 o Semestre 2013 1 / 28 Calor de Cimento

Leia mais

Ralph S. Silva

Ralph S. Silva ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S. Silva http://www.im.ufrj.br/ralph/multivariada.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário

Leia mais

Introdução ao modelo de Regressão Linear

Introdução ao modelo de Regressão Linear Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Local: Sala dos professores (junto ao administrativo)

Leia mais

Matriz de Variância e Covariância e o Teorema de Gauss-Markov

Matriz de Variância e Covariância e o Teorema de Gauss-Markov 1 Matriz de Variância e Covariância e o Teorema de Gauss-Markov Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 26 de setembro de 2001

Leia mais

Tratamento de dados em Física

Tratamento de dados em Física Tratamento de dados em Física Métodos e testes estatísticos V. Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Programa de Pós-graduação em Física (PPGF) Instituto de Física Armando Dias

Leia mais

Exemplos Equações de Estimação Generalizadas

Exemplos Equações de Estimação Generalizadas Exemplos Equações de Estimação Generalizadas Bruno R. dos Santos e Gilberto A. Paula Departamento de Estatística Universidade de São Paulo, Brasil giapaula@ime.usp.br Modelos Lineares Generalizados dos

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Matriz de Variância e Covariância e o Teorema de Gauss-Markov

Matriz de Variância e Covariância e o Teorema de Gauss-Markov Matriz de Variância e Covariância e o Teorema de Gauss-Markov Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi regi@matufmgbr 26 de setembro

Leia mais

Inferência e diagnóstico em modelos assimétricos. Clécio da Silva Ferreira

Inferência e diagnóstico em modelos assimétricos. Clécio da Silva Ferreira Inferência e diagnóstico em modelos assimétricos Clécio da Silva Ferreira Tese apresentada ao Instituto de Matemática e Estatística da Universidade de São Paulo para obtenção do título de Doutor em Ciências

Leia mais

1 de janeiro de UFRPE e UFPE. Curso de Teoria Assintótica. Gauss Cordeiro. Roteiro. Expansões de Laplace

1 de janeiro de UFRPE e UFPE. Curso de Teoria Assintótica. Gauss Cordeiro. Roteiro. Expansões de Laplace s UFRPE e UFPE 1 de janeiro de 2008 1 s 2 s 3 4 5 s A transformada é definida z grande por L(z) = 0 e zy f (y)dy. A função geratriz de momentos M(t) da distribuição com função densidade f (y) sobre os

Leia mais

Teoria Local das Curvas

Teoria Local das Curvas Teoria Local das Curvas Márcio Nascimento da Silva Departamento de Matemática Universidade Estadual Vale do Acaraú de setembro de 007 mharcius@gmail.com pré-prints do Curso de Matemática de Sobral no.

Leia mais

Exemplo Falhas em Tecidos

Exemplo Falhas em Tecidos Exemplo Falhas em Tecidos Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2016 G. A. Paula (IME-USP) Falhas em Tecidos 2 o Semestre 2016 1 / 27 Rolos de Tecido

Leia mais

Técnicas Multivariadas em Saúde. Vetores Aleatórios. Métodos Multivariados em Saúde Roteiro. Definições Principais. Vetores aleatórios:

Técnicas Multivariadas em Saúde. Vetores Aleatórios. Métodos Multivariados em Saúde Roteiro. Definições Principais. Vetores aleatórios: Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário (bootstrap) Este método foi proposto por Efron

Leia mais

TESTES DE HIPÓTESES Notas de aula. Prof.: Idemauro Antonio Rodrigues de Lara

TESTES DE HIPÓTESES Notas de aula. Prof.: Idemauro Antonio Rodrigues de Lara 1 TESTES DE HIPÓTESES Notas de aula Prof.: Idemauro Antonio Rodrigues de Lara 2 Conteúdo 1. Fundamentos e conceitos básicos; 2. Função poder; 3. Testes mais poderosos e Lema de Neyman-Pearson; 4. Teste

Leia mais

MAE Modelos Lineares Generalizados 2 o semestre 2017

MAE Modelos Lineares Generalizados 2 o semestre 2017 MAE5763 - Modelos Lineares Generalizados 2 o semestre 2017 Prof. Gilberto A. Paula 3 a Lista de Exercícios 1. Supor y i ind FE(µ, φ i ) com φ i = α + γz i, para i = 1,..., n. Como ca a matriz modelo Z?

Leia mais

Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 951) Método de Máxima Verossimilhança (M.M.V.

Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 951) Método de Máxima Verossimilhança (M.M.V. Universidade Federal de Pernambuco Departamento de Estatística Inferência Estatística (PGE 95) Método de Máxima Verossimilhança (MMV) Definição: Qualquer ˆθ = ˆθ(X,, X n ) Θ tal que L(ˆθ; x,, x n ) = Sup{L(θ)

Leia mais

Modelo de regressão estável aplicado a econometria

Modelo de regressão estável aplicado a econometria Modelo de regressão estável aplicado a econometria financeira Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, 81531 990, Brasil email: lucambio@ufpr.br 1 Objetivos

Leia mais

Técnicas Multivariadas em Saúde

Técnicas Multivariadas em Saúde Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de

Leia mais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro

Leia mais

2. No instante t = 0, o estado físico de uma partícula livre em uma dimensão é descrito pela seguinte função de onda:

2. No instante t = 0, o estado físico de uma partícula livre em uma dimensão é descrito pela seguinte função de onda: Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Física Exame de Seleção - Data: 03/08/2011 Nome do Candidato: Nível: Mestrado Doutorado 1. No cálculo da

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

Multicolinariedade e Autocorrelação

Multicolinariedade e Autocorrelação Multicolinariedade e Autocorrelação Introdução Em regressão múltipla, se não existe relação linear entre as variáveis preditoras, as variáveis são ortogonais. Na maioria das aplicações os regressores não

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo 1 Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 9 de Abril de 2015 2 3 Função Deviance Podemos ver o ajuste de um modelo a um conjunto de dados como: uma forma

Leia mais

Estudo dirigido de Análise Multivariada

Estudo dirigido de Análise Multivariada Estudo dirigido de Análise Multivariada Conceitos Iniciais De um modo geral, os métodos estatísticos de análise multivariada são aplicados para analisar múltiplas medidas sobre cada indivíduo ou objeto

Leia mais

Markov Switching Models. Profa. Airlane Alencar. Depto de Estatística - IME-USP. lane. Ref: Kim e Nelson (1999) e Hamilton (1990)

Markov Switching Models. Profa. Airlane Alencar. Depto de Estatística - IME-USP.   lane. Ref: Kim e Nelson (1999) e Hamilton (1990) Markov Switching Models Profa. Airlane Alencar Depto de Estatística - IME-USP www.ime.usp.br/ lane Ref: Kim e Nelson (1999) e Hamilton (1990) 1 Objetivo Mudança nos parâmetros de um modelo de regressão

Leia mais

Exemplo 1: Variáveis padronizadas Z t = ( Z 1 (1), Z 2 (1), Z 1 (2), Z 2 Z 1 (1) Z (1) = Z (2) = Z 2. Matriz de correlações:

Exemplo 1: Variáveis padronizadas Z t = ( Z 1 (1), Z 2 (1), Z 1 (2), Z 2 Z 1 (1) Z (1) = Z (2) = Z 2. Matriz de correlações: Exemplo : Variáveis padronizadas t = (,,, ) = = Matriz de correlações: Ρ Ρ Ρ Ρ Ρ.0 0.4 0.5 0.6 0.4.0 0.3 0.4 0.5 0.3.0 0. 0.6 0.4 0..0 De onde se obtém: /.068 0.9.047 0.083 Ρ Ρ 0.9.068 0.083.047 Ρ / /

Leia mais

Ralph S. Silva

Ralph S. Silva ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S Silva http://wwwimufrjbr/ralph/multivariadahtml Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Revisão:

Leia mais

Análise de Regressão Linear Simples e

Análise de Regressão Linear Simples e Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável

Leia mais

Planos e hiperplanos reais e complexos. Contents. 4 Um problema sobre comportamento das retas complexas. 6

Planos e hiperplanos reais e complexos. Contents. 4 Um problema sobre comportamento das retas complexas. 6 Bol. Soc. Paran. Mat. (3s.) v. 2 /2 (2003): 8. c SPM Planos e hiperplanos reais e complexos Ludmila Bourchtein abstract: The study of the structure of n-dimensional complex space C n and the different

Leia mais

Modelos de Regressão Múltipla - Parte VIII

Modelos de Regressão Múltipla - Parte VIII 1 Modelos de Regressão Múltipla - Parte VIII Erica Castilho Rodrigues 15 de Fevereiro de 2017 2 3 Observações não usuais 4 As observações não usuais podem ser: Outliers: não se ajustam bem ao modelo (resíduo

Leia mais

Ralph S. Silva

Ralph S. Silva ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S. Silva http://www.im.ufrj.br/ralph/multivariada.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Agradecimentos

Leia mais

Exemplo Chamadas Telefônicas

Exemplo Chamadas Telefônicas Exemplo Chamadas Telefônicas Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2016 G. A. Paula (IME-USP) Chamadas Telefônicas 2 o Semestre 2016 1 / 25 Chamadas

Leia mais

Modelos Lineares Mistos

Modelos Lineares Mistos Modelos Lineares Mistos Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, 131 99, Brasil email: lucambio@ufpr.br Setembro de 1 Introdução O modelo de regressão linear

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

ANÁLISE DE SÉRIES TEMPORAIS

ANÁLISE DE SÉRIES TEMPORAIS ANÁLISE DE SÉRIES TEMPORAIS Ralph S. Silva http://www.im.ufrj.br/ralph/seriestemporais.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Estimação

Leia mais

Computação, Universidade de São Paulo - USP, Caixa Postal 668, CEP: , São Carlos, SP, Brasil.

Computação, Universidade de São Paulo - USP, Caixa Postal 668, CEP: , São Carlos, SP, Brasil. APLICAÇÃO DA ANÁLISE DE INFLUÊNCIA LOCAL EM MODELOS DE REGRESSÃO LOGÍSTICA Édila Cristina de SOUZA 1 Edwin Moises Marcos ORTEGA 1 Vicente Garibay CANCHO 2 RESUMO: Uma etapa importante após a formulação

Leia mais

Hiperplano e n-esfera: Posições Relativas

Hiperplano e n-esfera: Posições Relativas Hiperplano e n-esfera: Posições Relativas Joselito de Oliveira, Wender Ferreira Lamounie Departamento de Matemática Universidade Federal de Roraima (UFRR) Boa Vista RR Brazil Escola de Aplicação Universidade

Leia mais

Esse material foi extraído de Barbetta (2007 cap 13)

Esse material foi extraído de Barbetta (2007 cap 13) Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos

Leia mais

Resistência dos Materiais

Resistência dos Materiais - Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão

Leia mais

Diagnóstico de influência local no modelo de calibração ultraestrutural com réplicas. Bruno Pinheiro de Andrade

Diagnóstico de influência local no modelo de calibração ultraestrutural com réplicas. Bruno Pinheiro de Andrade Diagnóstico de influência local no modelo de calibração ultraestrutural com réplicas Bruno Pinheiro de Andrade UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA PROGRAMA INTERINSTITUCIONAL

Leia mais

Modelos de regressão para dados correlacionados. Cibele Russo

Modelos de regressão para dados correlacionados. Cibele Russo Modelos de regressão para dados correlacionados Cibele Russo cibele@icmc.usp.br ICMC USP Mini-curso oferecido no Workshop on Probabilistic and Statistical Methods 28 a 30 de janeiro de 2013 Cibele Russo

Leia mais

Exemplos Regressão Dados de Contagem

Exemplos Regressão Dados de Contagem Exemplos Regressão Dados de Contagem p. 1/26 Exemplos Regressão Dados de Contagem Gilberto A. Paula Departamento de Estatística IME-USP MAE5763 - Modelos Lineares Generalizados 2 o semestre de 2011 Exemplos

Leia mais

Regressão de Poisson e parentes próximos

Regressão de Poisson e parentes próximos Janeiro 2012 Família Exponencial Seja Y uma variável aleatória. A distribuição de probabilidade de Y pertence à família exponencial se a sua função densidade de probabilidade é da forma ( ) yθ b(θ) f (y

Leia mais

Transformações e Ponderação para corrigir violações do modelo

Transformações e Ponderação para corrigir violações do modelo Transformações e Ponderação para corrigir violações do modelo Diagnóstico na análise de regressão Relembrando suposições Os erros do modelo tem média zero e variância constante. Os erros do modelo tem

Leia mais

Exemplo Ataques Epilépticos

Exemplo Ataques Epilépticos Exemplo Ataques Epilépticos Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2015 G. A. Paula (IME-USP) Ataques Epilépticos 2 o Semestre 2015 1 / 20 Ataques

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME Objetivo Dada M classes ω 1, ω 2,..., ω M e um

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Inferência para CS Tópico 10 - Princípios de Estimação Pontual

Inferência para CS Tópico 10 - Princípios de Estimação Pontual Inferência para CS Tópico 10 - Princípios de Estimação Pontual Renato Martins Assunção DCC - UFMG 2013 Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 10 - Princípios de Estimação Pontual

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros ESQUEMA DO CAPÍTULO 7.1 INTRODUÇÃO 7.2 DISTRIBUIÇÕES AMOSTRAIS E TEOREMA DO LIMITE CENTRAL 7.3 CONCEITOS GERAIS DE ESTIMAÇÃO PONTUAL 7.3.1 Estimadores

Leia mais

Uma breve história da Geometria Diferencial (até meados do s

Uma breve história da Geometria Diferencial (até meados do s Uma breve história da Geometria Diferencial (até meados do século XIX) 29 de novembro de 2006 Os postulados de Euclides ( 300 a.c.) Os postulados de Euclides ( 300 a.c.) 1- Dois pontos distintos determinam

Leia mais

Avaliação Monte Carlo do teste para comparação de duas matrizes de covariâncias normais na presença de correlação

Avaliação Monte Carlo do teste para comparação de duas matrizes de covariâncias normais na presença de correlação Avaliação Monte Carlo do teste para comparação de duas matrizes de covariâncias normais na presença de correlação Vanessa Siqueira Peres da Silva 1 2 Daniel Furtado Ferreira 1 1 Introdução É comum em determinadas

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

2 Propriedades geométricas de curvas parametrizadas no R 4

2 Propriedades geométricas de curvas parametrizadas no R 4 2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas

Leia mais

4. Experimentos em Blocos aleatorizados, quadrados latinos e experimentos relacionados

4. Experimentos em Blocos aleatorizados, quadrados latinos e experimentos relacionados 4. Experimentos em Blocos aleatorizados, quadrados latinos e experimentos relacionados 4.2 Quadrados Latinos (QL) Suponha que um experimentador esteja estudando o efeito de 5 formulações diferentes de

Leia mais

Exemplo Placas Dentárias

Exemplo Placas Dentárias Exemplo Placas Dentárias Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2016 G. A. Paula (IME-USP) Placas Dentárias 2 o Semestre 2016 1 / 20 Placas Dentárias

Leia mais

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares 1 / 0 AGA 0505- Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares Laerte Sodré Jr. 1o. semestre, 018 modelos modelagem dos dados dado um conjunto de dados,

Leia mais

NORMAS COMPLEMENTARES AO EDITAL Nº 33/2017. Concurso para Professor Efetivo da área de Estatística

NORMAS COMPLEMENTARES AO EDITAL Nº 33/2017. Concurso para Professor Efetivo da área de Estatística NORMAS COMPLEMENTARES AO EDITAL Nº 33/2017 Concurso para Professor Efetivo da área de Estatística 1. ETAPAS DO CONCURSO Prova escrita: valendo 100 pontos, de caráter eliminatório e classificatório; Prova

Leia mais

Inferência Bayesiana Exata para Processos de Cox Level-Set

Inferência Bayesiana Exata para Processos de Cox Level-Set Inferência Bayesiana Exata para Processos de Cox Level-Set Bárbara da Costa Campos Dias 1 Flávio Bambirra Gonçalves 2 Resumo Este trabalho propõe uma metodologia de inferência exata para processos de Cox

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais 1 Introdução Identificação via Mínimos Quadrados Prof. Walter Fetter

Leia mais

Modelagem Computacional. Parte 7 2

Modelagem Computacional. Parte 7 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 7 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística CE085 - Estatística Inferencial Função de Verossimilhança e suas derivadas Prof. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação - LEG Curso de Bacharelado em Estatatística Universidade Federal

Leia mais

Programa da Disciplina

Programa da Disciplina INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

Modelo de Regressão Log Weibull com fração de cura para dados grupados

Modelo de Regressão Log Weibull com fração de cura para dados grupados Universidade de Brasília Instituto de Ciências Exatas Departamento de Estatística Elisângela Candeias Biazatti Modelo de Regressão Log Weibull com fração de cura para dados grupados Brasília 2017 2 Elisângela

Leia mais

MODELOS DE REGRESSÃO PARA DADOS CONTÍNUOS ASSIMÉTRICOS

MODELOS DE REGRESSÃO PARA DADOS CONTÍNUOS ASSIMÉTRICOS MODELOS DE REGRESSÃO PARA DADOS CONTÍNUOS ASSIMÉTRICOS 1 Diversas distribuições podem ser consideradas para a modelagem de dados positivos com distribuição contínua e assimétrica, como, por exemplo, as

Leia mais

Campos hamiltonianos e primeiro grupo de cohomologia de De Rham.

Campos hamiltonianos e primeiro grupo de cohomologia de De Rham. Campos hamiltonianos e primeiro grupo de cohomologia de De Rham. Ronaldo J. S. Ferreira e Fabiano B. da Silva 18 de novembro de 2015 Resumo Neste trabalho vamos explorar quando um campo vetorial simplético

Leia mais

Amostra Aleatória. Tiago Viana Flor de Santana

Amostra Aleatória. Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA Amostra Aleatória Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual de Londrina UEL Departamento de

Leia mais

3 a. Lista de Exercícios

3 a. Lista de Exercícios Última atualização 07/05/008 FACULDADE Engenharia Disciplina: Álgebra Linear Professor(: Data / / Aluno(: urma a Lista de Exercícios Dentre as aplicações, as mais importantes são as aplicações lineares

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

GABRIEL BUJOKAS

GABRIEL BUJOKAS APLICAÇÕES DE ÁLGEBRA LINEAR À COMBINATÓRIA GABRIEL BUJOKAS (GBUJOKAS@MIT.EDU) A gente vai discutir algumas das aplicações clássicas de álgebra linear à combinatória. Vamos começar relembrando alguns conceitos

Leia mais

Revisão III: Dinâmica Estrutural Linear: Superposição Modal

Revisão III: Dinâmica Estrutural Linear: Superposição Modal Revisão III: Dinâmica Estrutural Linear: Superposição Modal Como calcular a parcela elástica da posição do elemento de massa: p d Hipótese: flexibilidade moderada pequenos deslocamentos elásticos comportamento

Leia mais

Modelos de regressão para dados correlacionados. Cibele Russo

Modelos de regressão para dados correlacionados. Cibele Russo Modelos de regressão para dados correlacionados Cibele Russo cibele@icmc.usp.br ICMC USP Mini-curso oferecido no Workshop on Probabilistic and Statistical Methods 28 a 30 de janeiro de 2013 Cibele Russo

Leia mais

Exemplo Espinhel de Fundo

Exemplo Espinhel de Fundo Exemplo Espinhel de Fundo Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2016 G. A. Paula (IME-USP) Espinhel de Fundo 2 o Semestre 2016 1 / 35 Espinhel de

Leia mais