MODELOS DE REGRESSÃO PARA DADOS CONTÍNUOS ASSIMÉTRICOS

Tamanho: px
Começar a partir da página:

Download "MODELOS DE REGRESSÃO PARA DADOS CONTÍNUOS ASSIMÉTRICOS"

Transcrição

1 MODELOS DE REGRESSÃO PARA DADOS CONTÍNUOS ASSIMÉTRICOS 1

2 Diversas distribuições podem ser consideradas para a modelagem de dados positivos com distribuição contínua e assimétrica, como, por exemplo, as distribuições gama, normal inversa, Weibul, Pareto e log-normal; Aplicações frequentes em estudos de confiabilidade, na Engenharia; análise de sobrevida, na Medicina; estudos ambientais e financeiros, dentre outros. Alternativa ao uso de transformação de dados como artifício para induzir simetria na distribuição da resposta ou estabilizar sua variância.

3 Distribuição Gama Uma das parametrizações da distribuição gama é a seguinte: Uma variável aleatória Y tem distribuição de Gama se sua função densidade de probabilidades for dada por: f y ν 1 β Y ( y; ν, β ) = y e, y > 0 ; ν > 0, β > 0, ν 1 β Γ ( ν ) de tal forma que: E ( ) νβ ; ( Y ) =νβ µ = Y = Var. 3

4 Uma parametrização alternativa, em que um dos parâmetros fica definido pela média da distribuição, é dada por: f ν ν y ( ;, ) µ ν 1 µ Y y µ ν = y e, y > 0 ; µ > 0, ν > 0, Γ ν ( ν ) sendo Γ( ) x 0 ν 1 ν = x e dx a função gama. As seguintes propriedades são facilmente verificadas: µ E ( Y ) = µ ; Var ( Y ) = ; ( µ ) = µ ν V ; 1 φ =ν, onde V ( ) e φ representam, respectivamente, a função de variância e o parâmetro de dispersão. 4

5 Repare que a variância da distribuição está relacionada à média de forma quadrática. Como consequência, o coeficiente de variação da distribuição gama: ( Y ) µ ν 1 = = ( Y ) µ ν Var CV ( Y ) =, E é constante com relação à média da distribuição. Outra propriedade importante da distribuição gama é o fato de que à medida que φ aumenta, essa distribuição se aproxima de uma Normal com média µ e variância φµ = µ ν. Essa propriedade viabiliza o uso da distribuição gama para a modelagem de dados simétricos em que a variância está relacionada de forma quadrática com a média. 5

6 ν=0.5 ν=1 ν= f(x) f(x) f(x) x x x ν=4 ν=8 ν= f(x) f(x) f(x) x x x Figura 1 Gráficos das funções densidade de probabilidades gama para valores crescentes de ν (mantendo fixo µ = 1). 6

7 Modelo linear generalizado com resposta Gama Um modelo linear generalizado para uma variável com distribuição Gama fica especificado da seguinte forma: Y i x i ~ Gama i ( ) µ,ν g ( µ i ) = ηi = iβ = β0 + β1xi1 + βxi β pxip x, sendo g uma função de ligação. As funções de ligação mais usadas para a distribuição Gama são a identidade ( µ = η ), a logarítmica ( ( µ ) = η log ) e a inversa ( 1 µ = η ), sendo esta última a ligação canônica. 7

8 Cuidado! As funções de ligação identidade e inversa podem produzir valores negativos para µ. O Desvio para o modelo de regressão Gama fica dado por: D n ˆ µ y ; + ˆ µ i, i= 1 yi 1 i ( µ ˆ ) = φ D( y ; µ ˆ ) = ν log ( yi ˆ µ i ) i = g η i e ˆ η = x i βˆ i. 1 sendo ˆ µ ( ˆ ) Repare que, diferentemente das distribuições binomial e de Poisson, para a distribuição Gama φ é desconhecido, devendo, portanto, ser estimado por algum dos métodos discutidos anteriormente. 8

9 Inferência para os parâmetros do modelo Caso φ seja conhecido: Z j ˆ β j β j = ~ N(0,1), se( ˆ β ) j assintoticamente, e as inferências (intervalos de confiança e testes de hipóteses podem ser obtidos conforme descrito anteriormente. Caso φ seja desconhecido, deve ser estimado e as inferências baseadas na distribuição t Student com n p graus de liberdade. 9

10 Para testar a nulidade conjunta de q parâmetros do modelos (ou alguma outra restrição imposta a q parâmetros), baseado na comparação dos desvios de modelos encaixados, podemos utilizar o teste F, com base na estatística: F = ( D D ) p q D p p ( n p) q, sendo D p e D os desvios dos modelo não restrito e restrito, respectivamente, p o número de p q parâmetros livres no modelo não restrito e restrito. p q o número de parâmetros livres no modelo Sob a hipótese nula de que as restrições aplicadas são corretas (variáveis removidas são conjuntamente não significativas), temos que, assintoticamente ( distribuição F Snedecor, com q e n p graus de liberdade. n ), F segue uma 10

11 Nota No denominador da estatística F, pode-se substituir ( n p) D p por φˆ, alguma estimativa consistente do parâmetro de dispersão extraída, por exemplo, de um modelo com maior número de parâmetros. Nota Paula (013) apresenta a extensão do teste da razão de verossimilhanças (dentre outros) para o caso em que φ é desconhecido (com códigos disponíveis na página do autor). Para avaliar a qualidade do ajuste, usamos a deviance escalonada: ( ; ˆ µ ) * D D ( y; ˆ µ ) = y, ˆ φ que, para um modelo corretamente especificado, segue, aproximadamente, distribuição χ com n p graus de liberdade quando φ 0 (dispersão pequena). 11

12 Distribuição Normal Inversa Uma variável aleatória Y tem distribuição Normal Inversa de média µ e parâmetro de forma λ, denotada por Y ~ NI ( µ, λ ), se sua função densidade de probabilidade for dada por: f Y ( y, φ) ( y µ ) 1 µ = exp, y > 0, µ > 0. 3 πλy λµ y ; de tal forma que: µ 3 3 E ( Y ) = µ ; Var ( Y ) = ; ( µ ) = µ λ V ; φ = λ. Assim como a distribuição gama, a distribuição normal inversa pode ser considerada como alternativa na modelagem de variáveis aleatórias positivas com distribuição assimétrica; 1

13 Repare que, diferentemente da distribuição gama, em que a variância se relaciona de forma quadrática com a média ( ( ) 3 forma cúbica ( V ( µ ) = µ ). V µ = µ ), para a distribuição normal inversa esta relação se dá de 13

14 Modelo linear generalizado com resposta Normal Inversa Um modelo linear generalizado ficaria especificado da seguinte forma: y i x i ~ Normal Inversa i ( ) µ,λ g ( µ i ) = ηi = iβ = β0 + β1xi1 + βxi β pxip x, sendo g uma função de ligação. As funções de ligação mais usadas para a distribuição Normal Inversa são a identidade ( µ = η, efeitos aditivos) e logarítmica ( log ( µ ) = η inversa quadrática ( 1 µ = η )., efeitos multiplicativos). A função de ligação canônica é a 14

15 O desvio para o modelo de regressão Normal Inversa fica dado por: D n { y i i yi ˆi } 1 ( µ ˆ ) = φ D( y ; µ ˆ ) = φ ( ˆ µ ) y ; µ, i= 1 i = g η i e ˆ η = x i βˆ i. 1 sendo ˆ µ ( ˆ ) As inferências para o modelo com resposta normal inversa devem ser realizadas de forma semelhante às apresentadas para a distribuição gama, uma vez que, também neste caso, o parâmetro de dispersão (φ ) é desconhecido e deve ser estimado. 15

TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA EM MODELOS LINEARES GENERALIZADOS

TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA EM MODELOS LINEARES GENERALIZADOS TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA EM MODELOS LINEARES GENERALIZADOS Antes de apresentar alguns dos testes de hipóteses e intervalos de confiança mais usuais em MLG, segue a definição de modelos

Leia mais

INFERÊNCIA EM MODELOS LINEARES GENERALIZADOS ANÁLISE DE DEVIANCE

INFERÊNCIA EM MODELOS LINEARES GENERALIZADOS ANÁLISE DE DEVIANCE INFERÊNCIA EM MODELOS LINEARES GENERALIZADOS ANÁLISE DE DEVIANCE A análise de deviance é uma generalização, para modelos lineares generalizados, da análise de variância. No caso de modelos lineares, utiliza-se

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados

Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Erica Castilho Rodrigues 23 de Maio de 207 Introdução 2 3 Vimos como encontrar o EMV usando algoritmos numéricos. Duas possibilidades:

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo 1 Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 9 de Abril de 2015 2 3 Função Deviance Podemos ver o ajuste de um modelo a um conjunto de dados como: uma forma

Leia mais

A Importância da Estatística na Pesquisa Científica e na Tomada de Decisão

A Importância da Estatística na Pesquisa Científica e na Tomada de Decisão A Importância da Estatística na Pesquisa Científica e na Tomada de Decisão Ricardo Alves de Olinda Universidade Estadual da Paraíba - UEPB Centro de Ciências e Tecnologia - CCT Departamento de Estatística

Leia mais

Modelos Lineares Generalizados

Modelos Lineares Generalizados Modelos Lineares Generalizados Emilly Malveira de Lima Análise de Dados Categóricos Universidade Federal de Minas Gerais - UFMG 10 de Maio de 2018 Emilly Malveira (PGEST-UFMG) 10 de Maio de 2018 1 / 20

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 02/14 1 / 1 A distribuição F de Snedecor também conhecida como distribuição de Fisher é frequêntemente

Leia mais

Aula 2 Uma breve revisão sobre modelos lineares

Aula 2 Uma breve revisão sobre modelos lineares Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar

Leia mais

4 Modelos Lineares Generalizados

4 Modelos Lineares Generalizados 4 Modelos Lineares Generalizados Neste capítulo, serão apresentados arcabouços teóricos dos modelos lineares generalizados (MLGs) e como casos particulares desses modelos são aplicáveis ao problema da

Leia mais

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva  pessoal.utfpr.edu. Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2. Veremos

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto Introdução 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2.

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas Teoria da Estimação Fabricio Goecking Avelar Universidade Federal de Alfenas - Instituto de Ciências Exatas junho - 2018 Algumas distribuições importantes Sumário 1 Algumas distribuições importantes 2

Leia mais

Tratamento Estatístico de dados em Física Experimental

Tratamento Estatístico de dados em Física Experimental Tratamento Estatístico de dados em Física Experimental Prof. Zwinglio Guimarães 2 o semestre de 2017 Tópico 6 - Testes estatísticos (Chi-quadrado, z e t ) O método dos mínimos quadrados (revisão) O método

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 3 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 2 3 4 5 6 7 8 9 0 2 3 4 5 e 6 Introdução à probabilidade (eventos, espaço

Leia mais

1 z 1 1 z 2. Z =. 1 z n

1 z 1 1 z 2. Z =. 1 z n Gabarito Lista 3. Tópicos de Regressão. 2016-2. 1. Temos que y i ind N (µ, φi ), com log φ i = α + γz i, para i = 1,..., n, portanto (i) para o γ = (α, γ) a matriz modelo ca Z = 1 z 1 1 z 2.. 1 z n (ii)

Leia mais

Técnicas computacionais em probabilidade e estatística II

Técnicas computacionais em probabilidade e estatística II Técnicas computacionais em probabilidade e estatística II Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco AULA 1: Problemas Computacionais em Inferência Estatística.

Leia mais

Modelo de Regressão Múltipla

Modelo de Regressão Múltipla Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão

Leia mais

Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra

Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades

Leia mais

Eng a. Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM

Eng a. Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM Eng a. Morgana Pizzolato, Dr a. Aula 02 Revisão de Estatística DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM TÓPICOS DESTA AULA Revisão de Estatística Coleta de dados Análise de dados

Leia mais

Quantis residuais. Luziane Franciscon Acadêmica de Estatística Universidade Federal do Paraná

Quantis residuais. Luziane Franciscon Acadêmica de Estatística Universidade Federal do Paraná Quantis residuais Luziane Franciscon Acadêmica de Estatística Universidade Federal do Paraná Orientador: Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Resumo Uma etapa importante

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

CE062c - GAMLSS. Silva, J.P; Taconeli, C.A. 09 de outubro, Silva, J.P; Taconeli, C.A. CE062c - GAMLSS 09 de outubro, / 42

CE062c - GAMLSS. Silva, J.P; Taconeli, C.A. 09 de outubro, Silva, J.P; Taconeli, C.A. CE062c - GAMLSS 09 de outubro, / 42 CE062c - GAMLSS Silva, J.P; Taconeli, C.A. 09 de outubro, 2018 Silva, J.P; Taconeli, C.A. CE062c - GAMLSS 09 de outubro, 2018 1 / 42 Por que GAMLSS? Silva, J.P; Taconeli, C.A. CE062c - GAMLSS 09 de outubro,

Leia mais

Modelos Lineares Generalizados - Análise de Resíduos

Modelos Lineares Generalizados - Análise de Resíduos Modelos Lineares Generalizados - Análise de Resíduos Erica Castilho Rodrigues 15 de Maio de 2014 Tipos de Resíduos 3 Assim como em Regressão Linear, também precisamos fazer Análise de Resíduos para os

Leia mais

Mais sobre Modelos Continuos

Mais sobre Modelos Continuos Mais sobre Modelos Continuos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Transformação Linear da Uniforme Seja X uma variável aleatória

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Estimação de Parâmetros O objetivo da Estatística Indutiva é tirar conclusões probabilísticas sobre aspectos da população,

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS As variáveis aleatórias X e Y seguem uma distribuição de Bernoulli com probabilidade de sucesso igual a 0,4. Considerando S = X + Y e que os eventos aleatórios A = [X = 1] e B

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de

Leia mais

TÓPICOS DE RESOLUÇÃO - Exame de Época de Recurso (Diurno) 2009/2010. Primeira Parte. F (b) F (a) =P (a <X<b) P (a <X<b)=

TÓPICOS DE RESOLUÇÃO - Exame de Época de Recurso (Diurno) 2009/2010. Primeira Parte. F (b) F (a) =P (a <X<b) P (a <X<b)= TÓPICOS DE RESOLUÇÃO - Exame de Época de Recurso (Diurno) 009/010 [,0] 1. Considere as seguintes afirmações: Primeira Parte I. Sendo F a função de distribuição da variável aleatória (v.a.) discreta X,

Leia mais

Distribuições de probabilidade de variáveis aleatórias contínuas

Distribuições de probabilidade de variáveis aleatórias contínuas Distribuições de probabilidade de variáveis aleatórias contínuas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Distribuição Exponencial Introdução É utilizada frequentemente como modelo para

Leia mais

Estatística 1. Resumo Teórico

Estatística 1. Resumo Teórico Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas

Leia mais

CE219 - Controle Estatístico de Qualidade

CE219 - Controle Estatístico de Qualidade CE219 - Controle Estatístico de Qualidade Cesar Augusto Taconeli 30 de maio, 2017 Cesar Augusto Taconeli CE219 - Controle Estatístico de Qualidade 30 de maio, 2017 1 / 96 Aula 2 - Métodos estáticos para

Leia mais

Função de Verossimilhança

Função de Verossimilhança Função de Verossimilhança João Batista e Paulo Inácio Prado 2018 BIE5781 Modelagem Estatística em Ecologia e Recursos Naturais 1/38 Sumário Sumário 1. Motivação 2. Estimação por Máxima Verossimilhança

Leia mais

Análise de Regressão EST036

Análise de Regressão EST036 Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Distribuição beta não central; Coef. de determinação; Quando X for aleatório. Distribuição

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Transformações e Ponderação para corrigir violações do modelo

Transformações e Ponderação para corrigir violações do modelo Transformações e Ponderação para corrigir violações do modelo Diagnóstico na análise de regressão Relembrando suposições Os erros do modelo tem média zero e variância constante. Os erros do modelo tem

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Modelos Lineares Generalizados - Análise de Resíduos

Modelos Lineares Generalizados - Análise de Resíduos Modelos Lineares Generalizados - Análise de Resíduos Erica Castilho Rodrigues 28 de Junho de 2013 3 Assim como em Regressão Linear, também precisamos fazer Análise de Resíduos para os MLG s. São semelhantes

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f(x) 1.e 1 2. x µ σ 2, x R 2π. σ com - < µ < e σ >

Leia mais

Exemplos Regressão Dados de Contagem

Exemplos Regressão Dados de Contagem Exemplos Regressão Dados de Contagem p. 1/26 Exemplos Regressão Dados de Contagem Gilberto A. Paula Departamento de Estatística IME-USP MAE5763 - Modelos Lineares Generalizados 2 o semestre de 2011 Exemplos

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA DENNIS LEÃO GRR LUAN FIORENTIN GRR

UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA DENNIS LEÃO GRR LUAN FIORENTIN GRR UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA DENNIS LEÃO GRR - 20160239 LUAN FIORENTIN GRR - 20160219 MODELAGEM DE DADOS DE ÓBITOS POR AGRESSÕES NO ESTADO DE SÃO PAULO NO ANO DE 2016 CURITIBA Novembro

Leia mais

Modelos Lineares Generalizados - Componentes do Modelo

Modelos Lineares Generalizados - Componentes do Modelo Modelos Lineares Generalizados - Componentes do Modelo Erica Castilho Rodrigues 01 de Abril de 2014 3 Vejamos agora quais as componentes de um Modelo Linear Generalizado. Temos um conjunto de variáveis

Leia mais

Aplicação do Modelo GAMLSS a Dados Imobiliários: Um estudo de caso de lotes urbanos na cidade de São Carlos, SP

Aplicação do Modelo GAMLSS a Dados Imobiliários: Um estudo de caso de lotes urbanos na cidade de São Carlos, SP Aplicação do Modelo GAMLSS a Dados Imobiliários: Um estudo de caso de lotes urbanos na cidade de São Carlos, SP Amanda Cristina Estevam 1 Guilherme Moraes Ferraudo 1 Vera Tomazella 1 Francisco Louzada

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

EXPLORANDO OS MODELOS LINEARES GENERALIZADOS APLICAÇÃO A DADOS DE UM PEQUENO SUPERMERCADO

EXPLORANDO OS MODELOS LINEARES GENERALIZADOS APLICAÇÃO A DADOS DE UM PEQUENO SUPERMERCADO Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Estatística EXPLORANDO OS MODELOS LINEARES GENERALIZADOS APLICAÇÃO A DADOS DE UM PEQUENO SUPERMERCADO CE225 - Modelos Lineares Generalizados

Leia mais

Regressão de Poisson e parentes próximos

Regressão de Poisson e parentes próximos Janeiro 2012 Família Exponencial Seja Y uma variável aleatória. A distribuição de probabilidade de Y pertence à família exponencial se a sua função densidade de probabilidade é da forma ( ) yθ b(θ) f (y

Leia mais

Distribuição Amostral e Estimação Pontual de Parâmetros

Distribuição Amostral e Estimação Pontual de Parâmetros Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências Estatística Aplicada

Leia mais

MAE Modelos Lineares Generalizados 2 o semestre 2017

MAE Modelos Lineares Generalizados 2 o semestre 2017 MAE5763 - Modelos Lineares Generalizados 2 o semestre 2017 Prof. Gilberto A. Paula 3 a Lista de Exercícios 1. Supor y i ind FE(µ, φ i ) com φ i = α + γz i, para i = 1,..., n. Como ca a matriz modelo Z?

Leia mais

Comparação entre intervalos de confiança calculados com métodos bootstrap e intervalos assintóticos

Comparação entre intervalos de confiança calculados com métodos bootstrap e intervalos assintóticos Comparação entre intervalos de confiança calculados com métodos strap e intervalos assintóticos Selene Loibel Depto. de Estatística, Matemática Aplicada e Computação, IGCE, UNESP, Rio Claro, SP E-mail:sloibel@rc.unesp.br,

Leia mais

Distribuições por Amostragem

Distribuições por Amostragem Distribuições por Amostragem Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições por Amostragem 2007/2008 1 / 27 Introdução: População, amostra e inferência estatística

Leia mais

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

4 Metodologia. Wt = W 0 exp{(l/k)(1-e-kt)} (8)

4 Metodologia. Wt = W 0 exp{(l/k)(1-e-kt)} (8) 4 Metodologia Serão apresentadas duas formas de se estimar a persistência. A primeira é de forma mais agregada e se utiliza de dados em forma de triângulos de run-off e é conhecida como Chain Ladder, uma

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS Julgue os itens que se seguem, acerca da estatística descritiva. 51 Na distribuição da quantidade de horas trabalhadas por empregados de certa empresa, é sempre possível determinar

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS Julgue os itens a seguir, considerando dois eventos A e B, de um mesmo espaço amostral S, tais que P(A) > 0 e P(B) > 0. 51 Se P(A) 0,60 e P(B) 0,80, então P(AB) $ 0,40. ( AB) ( AB) P 1 P 52. 53 Se A e

Leia mais

Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07

Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07 -027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA

Leia mais

Modelos de Distribuições

Modelos de Distribuições 7/5/017 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 05/07/017 19: ESTATÍSTICA APLICADA

Leia mais

Inferência para duas populações

Inferência para duas populações Inferência para duas populações Capítulo 13, Estatística Básica (Bussab&Morettin, 8a Edição) 7a AULA 27/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 7a aula (27/04/2015) MAE229 1 / 27 1.

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais

Cap. 8 - Intervalos Estatísticos para uma Única Amostra

Cap. 8 - Intervalos Estatísticos para uma Única Amostra Intervalos Estatísticos para ESQUEMA DO CAPÍTULO 8.1 INTRODUÇÃO 8.2 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 8.3 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO

Leia mais

Capítulo 2. Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha. Flávio Fogliatto

Capítulo 2. Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha. Flávio Fogliatto Capítulo 2 Distribuições de Probabilidade Estimativas de parâmetros e tempos-atéfalha Flávio Fogliatto 1 Ajustes de distribuições Em estudos de confiabilidade, dados são amostrados a partir de uma população

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

6- Probabilidade e amostras: A distribuição das médias amostrais

6- Probabilidade e amostras: A distribuição das médias amostrais 6- Probabilidade e amostras: A distribuição das médias amostrais Anteriormente estudamos como atribuir probabilidades a uma observação de alguma variável de interesse (ex: Probabilidade de um escore de

Leia mais

3 Especificação Estatística da Dispersão dos Modos de Polarização em Cabos de Fibra Óptica

3 Especificação Estatística da Dispersão dos Modos de Polarização em Cabos de Fibra Óptica em Enlaces Ópticos 0 3 Especificação Estatística da Dispersão dos Modos de Polarização em Cabos de Fibra Óptica Teoria básica da especificação estatística da dispersão dos modos de polarização em cabos

Leia mais

Modelo de regressão estável aplicado a econometria

Modelo de regressão estável aplicado a econometria Modelo de regressão estável aplicado a econometria financeira Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, 81531 990, Brasil email: lucambio@ufpr.br 1 Objetivos

Leia mais

Especialização em Engenharia de Processos e de Sistemas de Produção

Especialização em Engenharia de Processos e de Sistemas de Produção Especialização em Engenharia de Processos e de Sistemas de Produção Projetos de Experimento e Confiabilidade de Sistemas da Produção Prof. Claudio Luis C. Frankenberg 3ª parte Conforme foi apresentado

Leia mais

Modelos de Regressão para Dados de Contagem

Modelos de Regressão para Dados de Contagem UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Estatística Modelos de Regressão para Dados de Contagem CE225 - Modelos Lineares Generalizados Professor Cesar Taconelli Andrea A Alves, GRR: 20096668 NathanM

Leia mais

3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25

3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25 3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

MLG. 16 de outubro de Curso de Modelos Lineares Generalizado - DEST/UFMG Marcos Oliveira Prates. Marcos Oliveira Prates

MLG. 16 de outubro de Curso de Modelos Lineares Generalizado - DEST/UFMG Marcos Oliveira Prates. Marcos Oliveira Prates MLG Curso de Modelos Lineares Generalizado - DEST/UFMG 16 de outubro de 2017 Modelo Linear Generalizado Família Exponencial Seja Y a variável de resposta. A distribuição de Y é membro da família exponencial

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação

Leia mais

1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27

1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27 Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2

SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2 SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística

Leia mais

3 Dados e metodologia

3 Dados e metodologia 3 Dados e metodologia 3.1 Apresentação de Dados Para a realização dessa pesquisa foram utilizados os dados da série histórica dos preços da soja (em grão) do Estado do Paraná, obtidos da base de dados

Leia mais

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ). Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,

Leia mais

3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o

3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o Modelo Matemático 57 3 Modelo Matemático Este trabalho analisa o efeito da imprecisão na estimativa do desvio-padrão do processo sobre o desempenho do gráfico de S e sobre os índices de capacidade do processo.

Leia mais

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística CE085 - Estatística Inferencial Função de Verossimilhança e suas derivadas Prof. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação - LEG Curso de Bacharelado em Estatatística Universidade Federal

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

Outras distribuições contínuas. Gama Qui-quadrado t-student F-Snedecor Pareto Weibull Beta Log-Normal Meia-normal Cauchy etc...

Outras distribuições contínuas. Gama Qui-quadrado t-student F-Snedecor Pareto Weibull Beta Log-Normal Meia-normal Cauchy etc... Outras distribuições contínuas Gama Qui-quadrado t-student F-Snedecor Pareto Weibull Beta Log-Normal Meia-normal Cauchy etc... 1 c) Algumas distribuições de probabilidade contínuas importantes d) Distribuição

Leia mais

Noções sobre Regressão

Noções sobre Regressão Noções sobre Regressão Nos interessa estudar como uma variável varia em função de outra. Por exemplo, considere a questão de demanda e preço de bens. Quando se estuda a variação de uma variável Y em função

Leia mais

Planejamento e Otimização de Experimentos

Planejamento e Otimização de Experimentos Planejamento e Otimização de Experimentos Um Pouco de Estatística Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br anselmo.disciplinas@gmail.com Populações, Amostras e Distribuições População Amostra

Leia mais

5 Avaliação dos estimadores propostos

5 Avaliação dos estimadores propostos 5 valiação dos estimadores propostos Este capítulo apresenta as medidas estatísticas usuais para avaliar a qualidade de estimadores e as expressões utilizadas para a estimação destas medidas, a partir

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Qui-quadrado 02/14 1 / 1 Definição 14.1: Uma variável aleatória contínua X tem

Leia mais

Final exam June 25, 2007 Statistics II

Final exam June 25, 2007 Statistics II Final exam June 25, 2007 Statistics II 1. 7 points o Hospital Medecis, o número de doentes que recorrem ao serviço de urgências pediátricas e o número de doentes que recorrem ao serviço de urgências para

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

MAE0212 Introdução à Probabilidade e Estatística II

MAE0212 Introdução à Probabilidade e Estatística II MAE01 Introdução à Probabilidade e Estatística II Gabarito-Lista 3 Exercicio 1 (a) Cada X i N(µ, σ ). Tamanho da amostra n = 9, desvio padrão σ =. A amostra é: 4.9, 7.0, 8.1, 4.5, 5.6, 6.8, 7., 5.7, 6..

Leia mais