A Teoria Matemática que serviu como Base para Turing.

Tamanho: px
Começar a partir da página:

Download "A Teoria Matemática que serviu como Base para Turing."

Transcrição

1 A Teoria Matemática que serviu como Base para Turing. Os Teoremas de Incompletude de Godel, de 1931, representam o fim da idade romântica da Matemática. Antes de Godel, fazia parte de um amplo projeto de trabalho liderado par David Hilbert, conhecido como Programa de Hilbert, acreditar que todo problema matemático fosse solúvel. Nas próprias palavras de Hilbert, num congresso em Munster, em 1925: "Se existe um problema, ache a solução você pode encontrá-la apenas pensando, pois não há ignorabimus em matemática". Sobre Kurt Godel Godel nasceu em 1906, em Brno, Republica Checa. Estudou matemática em Viena e fez parte do Circulo de Viena, um grupo de matemáticos e filósofos iniciadores do positivismo lógico.

2 Consistência e Incompletude. Consistência: Uma teoria axiomática é dita consistente quando nela não é derivada uma contradição, ou seja, não são derivados uma proposição e a sua negação. Por exemplo, a teoria das álgebras de Boole pode ser considerada consistente, pois possui um modelo finito. Quando as regras utilizadas correspondem a lógica clássica, se a teoria for inconsistente, a partir de uma contradição pode ser derivado qualquer enunciado, trivializando o sistema. Completude: Uma teoria axiomática é dita completa se para cada proposição P da teoria (fórmula sem variáveis livres), ou bem pode ser deduzida P ou bem pode ser deduzida a negação de P. Como exemplos de teorias matemáticas completas podemos citar a teoria dos corpos algebricamente fechados de característica fixa e a teoria das álgebras de Boole sem átomos. Proposta de Hilbert Axiomatizar todo o corpo de conhecimento matemático (inclusive com objetivo de provar que todo problema matemático fosse solúvel). Provar, por meios estritamente finitários, que a axiomática pretendida fosse consistente.

3 Godel entra em cena Em 1931 Kurt Godel timidamente anunciou: "Pode-se, de fato, exibir sentenças verdadeiras mas que são indemonstráveis no sistema formal da matemática". O único dos presentes que imediatamente compreendeu a revolução que se iniciava foi John von Neumann. Os matemáticos acabavam de ser expulsos do paraíso... Jon Von Neumann John von Neumann, nascido Margittai Neumann János Lajos (Budapeste, 28 de dezembro de 1903 Washington, D.C., 8 de fevereiro de 1957) foi um matemático húngaro de etnia judaica, naturalizado estadunidense. Contribuições Matemáticas: Análise Funcional Teoria Ergódica Estatística Teoria dos Números Formalização Computação da

4 Teoremas da Incompletude 1o Teorema de Incompletude: Em todo sistema formal consistente S, com um mínimo de Aritmética, é possível formalizar uma sentença U tal que U possa ser interpretada intuitivamente como a afirmação de que ela própria é indemonstrável em S. 2o Teorema da Incompletude: A prova da consistência para sistemas formais (envolvendo um pouco de Aritmética, nas condições que Hilbert queria) não pode ser formalizada dentro do próprio sistema. Descobertas paralelas Paralelamente, na Física, estava em pleno andamento o desenvolvimento da teoria quântica e quatro anos antes (1927) Heisenberg já divulgara seu "principio da incerteza", colocando um limite físico na experimentação microscópica direta. Foi mais um golpe nas hipóteses determinísticas da ciência. Problema da parada Problema da Parada. Trata-se em outras palavras decidir se um programa é um algoritmo, ou seja, um programa que acaba. Se o número de dados é finito, o problema consiste em verificar para todos os dados. Caso contrário, é impossível

5 provar que ele para, para qualquer dado do conjunto de dados possíveis. O problema da parada é um belo exemplo do que um computador não pode realizar, pois de certo modo ele deve decidir sobre o seu próprio funcionamento. É claro que a mente humana pode realizar tal tarefa sem se autodestruir. O problema da parada consiste inicialmente em colocar em uma fila infinita M1, M2, M3,... Todos os computadores que já foram ou que serão inventados. Estamos supondo que todos estes computadores são máquinas de Turing (isto é usando o que se conhece como a tese de Church). Quando alimentado com dados, cada um destes computadores pode parar depois de processá-lo ou então entrar em um loop infinito, não parando nunca. Gostaríamos de inventar um novo computador que respondesse a seguinte pergunta: Dada uma máquina Mi e um número n, a máquina Mi pára quando alimentada com o número n? Mais precisamente, existe um computador P que, analisando a máquina Mi e o dado n consegue responder: P ( Mi, n ) = 11 (dois uns seguidos) se a máquina Mi parar quando alimentada inicialmente com o dado n P ( Mi, n ) = 1 (um único 1) se a máquina Mi não parar quando alimentada inicialmente com o dado n. Vamos mostrar que tal computador P não pode existir. A demonstração deste fato será dada na forma intuitiva explorando-se a auto-referência. Suponhamos, por absurdo, que o computador P existisse. Todo número n pode ser escrito como uma seqüência consecutiva de n 1 s. É fácil construir uma máquina M que dobra o número de 1 s: o primeiro destes n 1 s será usado para localizarmos a máquina pelo seu número na lista de

6 todas as máquinas que fizemos acima e o segundo para servir de dado de entrada para essa mesma máquina. Vamos acoplar três máquinas: M, P e uma terceira máquina que pára quando alimentado por um único 1 e nunca pára quando alimentada por dois números 1 s consecutivos. Esta nova máquina com os três acoplamentos tem o seguinte aspecto: Vamos chamar esta nova máquina, formada pelo acoplamento das três máquinas acima de Mk. Esta é uma nova máquina com uma propriedade muito estranha: ela pára se e somente se a máquina Mn não pára quando alimentada com o dado n (isto é, com n 1 s consecutivos). Mas, como n é um número natural qualquer, podemos fazer o vampiro se alimentar do próprio sangue, tomando-se n = k. O que acontece então? Se Mk pára então ela mesma não para e se ela não pára, então ela pára. Uma tremenda contradição. Assim, a máquina P não pode existir o problema da parada é insolúvel. Conseqüências Uma conseqüência da indecidibilidade do problema da parada é que não pode existir um algoritmo genérico que decida se um dado enunciado sobre os números naturais é verdadeiro ou falso. A razão para isso é que a proposição que afirma que certo algoritmo vai parar dado certa entrada pode ser convertido em um enunciado equivalente sobre os números naturais. Se nós tivéssemos um algoritmo que pudesse resolver todo enunciado sobre os números naturais, ele certamente poderia resolver tal enunciado, mas isso determinaria se o problema original para o que é impossível, já que o problema da parada é indecidível.

7 1. Walter Carnielli Os Teoremas de Gödel e o problema da Parada de Turing CLE e IFCH UNICAMP. Disponível em acesso em novembro de Kurt Gödel Wikipédia, a enciclopédia livre. Disponível em pt.wikipedia.org/wiki/kurt_gödel acesso em novembro de John von Neumann Wikipédia, a enciclopédia livre. Disponível em pt.wikipedia.org/wiki/john_von_neumann acesso em novembro de Máquina de Turing. Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente ESIN/UCPel Linguagens Formais e Autômatos Prof. Luiz A M Palazzo, Maio de 2007

Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação

Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação Universidade Federal de Santa Maria Disciplina de Teoria da Computação Quais são as capacidades e limitações fundamentais dos computadores? Funções Computáveis Algoritmo: descrição finitade uma computação

Leia mais

Universidade Federal de Uberlândia Mestrado em Ciência da Computação

Universidade Federal de Uberlândia Mestrado em Ciência da Computação Universidade Federal de Uberlândia Mestrado em Ciência da Computação Solução da 1 a Prova de Teoria da Computação - 05/05/2010 Questão 1 (Valor = 7 pontos) Um número real é dito algébrico se é raiz de

Leia mais

OS TEOREMAS DE GÖDEL, E O QUE ELES NÃO SIGNIFICAM

OS TEOREMAS DE GÖDEL, E O QUE ELES NÃO SIGNIFICAM 1 de 7 03-04-2008 13:25 OS TEOREMAS DE GÖDEL, E O QUE ELES NÃO SIGNIFICAM I. Quem foi Kurt Gödel? Walter Alexandre Carnielli DF- IFCH e CLE UNICAMP Gödel nasceu em 1906, em Brno, na República Checa. Estudou

Leia mais

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação

Leia mais

Walter Carnielli Grupo!de Lógica Teórica e Aplicada. CLE e IFCH- UNICAMP

Walter Carnielli Grupo!de Lógica Teórica e Aplicada. CLE e IFCH- UNICAMP Computação Quântica e Lógicas Não-Clássicas Walter Carnielli Grupo!de Lógica Teórica e Aplicada CLE e IFCH- UNICAMP. O que é a lógica quântica?!raciocinar com proposições que levam em conta as leis da

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 16 Decidibilidade humberto@bcc.unifal-mg.edu.br Últimas Aulas Uma Máquina de Turing (MT) possui: uma fita infinita para representar a

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas

Leia mais

Capítulo 2: Procedimentos e algoritmos

Capítulo 2: Procedimentos e algoritmos Capítulo 2: Procedimentos e algoritmos Para estudar o processo de computação de um ponto de vista teórico, com a finalidade de caracterizar o que é ou não é computável, é necessário introduzir um modelo

Leia mais

2 A Teoria de Conjuntos - Preliminares

2 A Teoria de Conjuntos - Preliminares 2 A Teoria de Conjuntos - Preliminares Esse capítulo se propõe a apresentar de maneira breve os resultados da teoria de conjuntos que serão utilizados nos capítulos subseqüentes. Começamos definindo as

Leia mais

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução Geometria Euclidiana Plana - Um pouco de história Prof a. Introdução Daremos início ao estudo axiomático da geometria estudada no ensino fundamental e médio, a Geometria Euclidiana Plana. Faremos uso do

Leia mais

Linguagens Formais e Autômatos. Apresentação do Plano de Ensino

Linguagens Formais e Autômatos. Apresentação do Plano de Ensino Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma A01 Engenharia da Computação e Ciência da Computação Horário: Segunda, Terça e Quinta.

Leia mais

Terceira Lista de Exercícios 2004/2...

Terceira Lista de Exercícios 2004/2... UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Terceira Lista de Exercícios 2004/2

Leia mais

Lógica e Raciocínio. Introdução. Universidade da Madeira.

Lógica e Raciocínio. Introdução. Universidade da Madeira. Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Introdução 1 Lógica... é a ciência que estuda os princípios e aproximações para estabelecer a validez da inferência e demonstração:

Leia mais

LIMITES COMPUTACIONAIS E O FUTURO. Prof. André Vignatti DINF - UFPR

LIMITES COMPUTACIONAIS E O FUTURO. Prof. André Vignatti DINF - UFPR LIMITES COMPUTACIONAIS E O FUTURO Prof. André Vignatti DINF - UFPR CONTEXTUALIZANDO Ciências Exatas base de tudo, gera conhecimento Engenharias usa conhecimento, gera tecnologias Tecnologias usa tecnologias,

Leia mais

Projeto e Análise de Algoritmos NP Completude Parte 2. Prof. Humberto Brandão

Projeto e Análise de Algoritmos NP Completude Parte 2. Prof. Humberto Brandão Projeto e Análise de Algoritmos NP Completude Parte 2 Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas Departamento de Ciências Exatas versão da aula: 0.2 Última aula

Leia mais

Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens:

Primeira Lista de Exercícios 2005/1... Exercício 1 Desenhe Diagrama de Estados para Máquinas que Decidem as Linguagens: UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM167 Teoria da Computação Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exercícios 2005/1 Exercício

Leia mais

Introdução aos Métodos de Prova

Introdução aos Métodos de Prova Introdução aos Métodos de Prova Renata de Freitas e Petrucio Viana IME-UFF, Niterói/RJ II Colóquio de Matemática da Região Sul UEL, Londrina/PR 24 a 28 de abril 2012 Sumário Provas servem, principalmente,

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Solução da Lista de Exercícios n o 8 - Indecidibilidade Exercicio 1-5.5 do Livro

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Universidade Federal de Alfenas Linguagens Formais e Autômatos Aula 14 Máquinas de Turing humberto@bcc.unifal-mg.edu.br Última aula Autômatos com Pilha Controle de estado a b a a b X Y Y X O que já vimos...

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

IME, UFF 7 de novembro de 2013

IME, UFF 7 de novembro de 2013 em Lógica IME, UFF 7 de novembro de 2013 em Sumário Intermezzo sobre problemas. Intermezzo sobre algoritmos.. em : Val, Sat, Conseq, Equiv, Consist. Redução de problemas. em Um problema computacional é

Leia mais

Lyneker Amorim (T1) Philipe Farias Rafael Mota Yure Bonifacio

Lyneker Amorim (T1) Philipe Farias Rafael Mota Yure Bonifacio Lyneker Amorim (T1) Philipe Farias Rafael Mota Yure Bonifacio A teoria de Herbrand foi criada por Jacques Herbrand (1908-1931), um matemático francês. Ela constata que um conjunto de -sentenças Φ é insatisfazível

Leia mais

5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas.

5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas. 1 LIVRO Teorias Axiomáticas 5 AULA META: Apresentar teorias axiomáticas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Criar teorias axiomáticas; Provar a independência dos axiomas de uma

Leia mais

MA12 - Unidade 2 Indução Matemática Semana de 04/04 a 10/04

MA12 - Unidade 2 Indução Matemática Semana de 04/04 a 10/04 MA - Unidade Indução Matemática Semana de 04/04 a 0/04 Nesta unidade mostraremos como o Axioma da Indução, que foi apresentado na Unidade como um dos axiomas pilares dos números naturais, nos fornece um

Leia mais

SCC Capítulo 4 Máquinas de Turing e a Teoria da Computabilidade

SCC Capítulo 4 Máquinas de Turing e a Teoria da Computabilidade SCC-505 - Capítulo 4 Máquinas de Turing e a Teoria da Computabilidade João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de

Leia mais

n. 18 ALGUNS TERMOS...

n. 18 ALGUNS TERMOS... n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.

Leia mais

ENTREVISTA COM O PROF. DR. WALTER CARNIELLI Computabilidade, Lógica, Filosofia e Fundamentos da Matemática

ENTREVISTA COM O PROF. DR. WALTER CARNIELLI Computabilidade, Lógica, Filosofia e Fundamentos da Matemática ENTREVISTA COM O PROF. DR. WALTER CARNIELLI Computabilidade, Lógica, Filosofia e Fundamentos da Matemática Entrevistador: Rafael dos Reis Ferreira 1 Uma das intenções da Revista Kínesis ao publicar as

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

CT-200 Fundamentos de Linguagens Formais e Automata - Aula 01 - In...

CT-200 Fundamentos de Linguagens Formais e Automata - Aula 01 - In... 1 de 14 14/3/2010 09:28 CT-200 Fundamentos de Linguagens Formais e Automata Aula 01 - Introdução Primeira aula (updated just now by YourName) Orientações Gerais: Horários e Avaliação Horários: 3 tempos

Leia mais

Draft-v0.1. Máquinas de Turing Máquinas de Turing

Draft-v0.1. Máquinas de Turing Máquinas de Turing 13 Máquinas de Turing A necessidade de formalizar os processos algorítmicos levou, nas décadas 20 e 30 do século XX, a diversos estudos, entre os quais os de Post, Church e Turing, com vista a estudo formal

Leia mais

Teoria dos Grafos Aula 16

Teoria dos Grafos Aula 16 Teoria dos Grafos Aula 16 Aula passada Primeira prova Aula de hoje Pontes de Königsberg Ciclo Euleriano Ciclo Hamiltoniano Quem foi Turing? As 7 Pontes de Königsberg Königsberg, cidade na Prússia (atual

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

LINGUAGENS FORMAIS E AUTÔMATOS

LINGUAGENS FORMAIS E AUTÔMATOS LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.

Leia mais

PCS3616. Programação de Sistemas (Sistemas de Programação) Visão Geral

PCS3616. Programação de Sistemas (Sistemas de Programação) Visão Geral PCS3616 Programação de Sistemas (Sistemas de Programação) Visão Geral Escola Politécnica da Universidade de São Paulo Objetivos Familiarização com o funcionamento global de software de sistema computacional

Leia mais

Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG. Primos

Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG. Primos 1 Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG Primos Definição: Livro VII dos Elementos de Euclides de Alexandria (360 a.c - 295 a.c). Dado qualquer número inteiro n,

Leia mais

n. 25 DIAGRAMAS DE VENN

n. 25 DIAGRAMAS DE VENN n. 25 DIAGRAMAS DE VENN Foi o matemático inglês John Venn (1834-1923) que criou os diagramas, com o intuito de facilitar a compreensão na relação de união e intersecção entre conjuntos. John Venn desenvolveu

Leia mais

Demonstrações. Terminologia Métodos

Demonstrações. Terminologia Métodos Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:

Leia mais

Limites da Computação Algorítmica: Problemas Indecidíveis

Limites da Computação Algorítmica: Problemas Indecidíveis Capítulo 10 Limites da Computação Algorítmica: Problemas Indecidíveis Tendo estudado o que as máquinas de Turing podem fazer, estudaremos, agora, o que elas não podem fazer. Embora a tese de Turing nos

Leia mais

2. DISCIPLINA REQUISITO (RECOMENDAÇÃO) 3. INDICAÇÃO DE CONJUNTO (BCC) Obrigatória TEORIA: 60 LABORATÓRIO: 30

2. DISCIPLINA REQUISITO (RECOMENDAÇÃO) 3. INDICAÇÃO DE CONJUNTO (BCC) Obrigatória TEORIA: 60 LABORATÓRIO: 30 Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC3106 - LINGUAGENS FORMAIS E

Leia mais

Aula 9: Máquinas de Turing

Aula 9: Máquinas de Turing Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

Lógica Matemática. Conceitos Gerais. Prof. Guilherme Tomaschewski Netto

Lógica Matemática. Conceitos Gerais. Prof. Guilherme Tomaschewski Netto Lógica Matemática Conceitos Gerais Prof. Guilherme Tomaschewski Netto guilherme.netto@gmail.com Roteiro! Apresentação dos Objetivos! Definições! Aspectos Históricos! Principais tendências Legendas! Nesta

Leia mais

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização 1 Provas, lemas, teoremas e corolários Uma prova é um argumento lógico de que uma afirmação é verdadeira Um teorema

Leia mais

Prof.Letícia Garcia Polac. 6 de abril de 2017

Prof.Letícia Garcia Polac. 6 de abril de 2017 Fundamentos de Lógica e Conjuntos Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 6 de abril de 2017 Sumário 1 EMENTA 2 BIBLIOGRAFIA 3 AVALIAÇÕES 4 INTRODUÇÃO EMENTA Ementa 1. Lógica

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

6. Decidibilidade, indecidibilidade e decidibilidade parcial

6. Decidibilidade, indecidibilidade e decidibilidade parcial 6. Decidibilidade, indecidibilidade e decidibilidade parcial Nos capítulos anteriores, já foram referidos diversos problemas decidíveis. Apenas foi analisado um único problema indecidível ( φ é total )

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 6 29 de março de 2010 Aula 6 Pré-Cálculo 1 Implicações e teoria dos conjuntos f (x) =g(x) u(x)

Leia mais

1. Métodos de prova: Construção; Contradição.

1. Métodos de prova: Construção; Contradição. Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Bacharelado em Ciência da Computação Fundamentos Matemáticos para Computação 1. Métodos de prova: Construção; Contradição.

Leia mais

Instituto de Matemática e Estatística, UFF Março de 2011

Instituto de Matemática e Estatística, UFF Março de 2011 Instituto de Matemática e Estatística, UFF Março de 2011 Sumário.... Venn Matemático inglês. Levou os diagramas a sério. John Venn (1834 1923) Dados: Letras maiúsculas: A, B, C,..., A 1, B 1, C 1,...,

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação - P. Blauth Menezes

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

sumário 1 introdução e conceitos básicos 1 2 noções de lógica e técnicas de demonstração introdução à matemática discreta...

sumário 1 introdução e conceitos básicos 1 2 noções de lógica e técnicas de demonstração introdução à matemática discreta... sumário 1 introdução e conceitos básicos 1 1.1 introdução à matemática discreta... 2 1.2 conceitos básicos de teoria dos conjuntos... 3 1.2.1 conjuntos...3 1.2.2 pertinência...5 1.2.3 alguns conjuntos

Leia mais

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento

Leia mais

Mecanismos de Interrupção e de Exceção, Barramento, Redes e Sistemas Distribuídos. Sistemas Operacionais, Sistemas

Mecanismos de Interrupção e de Exceção, Barramento, Redes e Sistemas Distribuídos. Sistemas Operacionais, Sistemas Arquitetura de Computadores, Arquitetura de Computadores Organização de Computadores, Conjunto de Instruções, Sistemas Operacionais, Sistemas Operacionais, Sistemas Mecanismos de Interrupção e de Exceção,

Leia mais

Teoria da Complexidade Computacional

Teoria da Complexidade Computacional Teoria da Complexidade Computacional 25 de novembro de 2011 Enquanto a teoria de análise de algoritmos estuda a análise de complexidade de algoritmos, a teoria da complexidade estuda a classificação de

Leia mais

Uma forma de classificação

Uma forma de classificação Uma forma de classificação L. Não-RE ou f. nãocomputáveis LRE ou MT ou f. comput. L. Indecidíveis ou Procedimentos L. Recursivas ou Decidíveis ou Algoritmos Outra forma de classificação Problemas Indecidíveis

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 18: Euclides e Os Elementos 11/05/2015 2 Euclides século III a.c. Pouco se sabe sobre a personalidade de Euclides. Viveu provavelmente

Leia mais

Aula 10: Tratabilidade

Aula 10: Tratabilidade Teoria da Computação DAINF-UTFPR Aula 10: Tratabilidade Prof. Ricardo Dutra da Silva Na aula anterior discutimos problemas que podem e que não podem ser computados. Nesta aula vamos considerar apenas problemas

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

A matemática e a lógica formal no capitalismo

A matemática e a lógica formal no capitalismo A matemática e a lógica formal no capitalismo Jéssica Milaré Para se desenvolver, o sistema capitalista precisou criar transformações cada vez mais profundas sobre a matéria. A criação de máquinas cada

Leia mais

O que é um Algoritmo?

O que é um Algoritmo? Introdução a Ciências da Computação Capítulo 2 O que é um Algoritmo? Página Tópicos Histórico Estruturas de Controle Comandos em seqüência Estruturas Condicionais Álgebra Booleana Estruturas de Repetição

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28

Leia mais

O Teorema da Amizade

O Teorema da Amizade O Teorema da Amizade Seminário Diagonal David Mesquita Faculdade de Ciências da Universidade do Porto 13 de Maio de 2009 Teorema da Amizade,TA Formulação Original Suponha-se que numa sociedade, cada par

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

Tarefa 06 Todos Subconjuntos

Tarefa 06 Todos Subconjuntos Tarefa 06 Todos Subconjuntos Disciplina: Estatística Básica para Bioinformática Discentes: Diego M Salvanha, Madeleine Ernst Enunciado da tarefa: Dado que o número de subconjuntos que podem ser feitos

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Proposta por Alan Turing em 1936; É universalmente conhecida e aceita como formalização de algoritmo; Teoria

Leia mais

Complexidade computacional

Complexidade computacional Complexidade computacional CLRS sec 34.1 e 34.2 Algoritmos p. 1 Algumas questões Por que alguns problemas parecem ser (computacionalmente) mais difíceis do que outros? Algoritmos p. 2 Algumas questões

Leia mais

Dízimas e intervalos encaixados.

Dízimas e intervalos encaixados. Dízimas e intervalos encaixados. Recorde que uma dízima com n casas decimais é um número racional da forma a 0.a a 2...a n = a 0 + a 0 + a 2 0 2 + + a n n 0 n = a j 0 j em que a 0,a,...,a n são inteiros

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Lógica para Computação Segundo Semestre, Aula 10: SAT. Prof. Ricardo Dutra da Silva. ( p (q ( q r))) ( p r) ( p q) ( p q r) p r.

Lógica para Computação Segundo Semestre, Aula 10: SAT. Prof. Ricardo Dutra da Silva. ( p (q ( q r))) ( p r) ( p q) ( p q r) p r. Lógica para Computação Segundo Semestre, 2014 Aula 10: SAT DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. SAT é o problema de decidir se existe uma valoração que satisfaça uma fórmula proposicional.

Leia mais

Construção de Compiladores Aula 16 - Análise Sintática

Construção de Compiladores Aula 16 - Análise Sintática Construção de Compiladores Aula 16 - Análise Sintática Bruno Müller Junior Departamento de Informática UFPR 25 de Setembro de 2014 1 Introdução Hierarquia de Chomsky Reconhecedores Linguagens Livres de

Leia mais

Máquina de Turing. Controle finito

Máquina de Turing. Controle finito Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos

Leia mais

1 Conjuntos enumeráveis

1 Conjuntos enumeráveis Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales de maio de 007. Conjuntos enumeráveis Denotamos por Q os numeros racionais, logo [0, ] Q, são os números racionais

Leia mais

Introdução aos Números Pseudo-aleatórios. Profa. Dra. Soraia Raupp Musse

Introdução aos Números Pseudo-aleatórios. Profa. Dra. Soraia Raupp Musse Introdução aos Números Pseudo-aleatórios Profa. Dra. Soraia Raupp Musse Conceito: Um gerador de número pseudo-aleatório é um algoritmo que gera uma seqüência de números, os quais são aproximadamente independentes

Leia mais

Capítulo O objeto deste livro

Capítulo O objeto deste livro Capítulo 1 Introdução 1.1 O objeto deste livro Podemos dizer que a Geometria, como ciência abstrata, surgiu na Antiguidade a partir das intuições acerca do espaço, principalmente do estudo da Astronomia.

Leia mais

José Paulo Carneiro (0; 0) (0; 1) (0; 2) (0; 3) (1; 0) (1; 1) (1; 2) (1; 3) (2; 0) (2; 1) (2; 2) (2; 3) (3; 0) (3; 1) (3; 2) (3; 3)

José Paulo Carneiro (0; 0) (0; 1) (0; 2) (0; 3) (1; 0) (1; 1) (1; 2) (1; 3) (2; 0) (2; 1) (2; 2) (2; 3) (3; 0) (3; 1) (3; 2) (3; 3) A ENUMERABILIDADE DE E O CHÃO TRIANGULAR José Paulo Carneiro Nível Intermediário < < é < < e

Leia mais

TRANSFORMAÇÃO DE GRAMÁTICAS LIVRES DO CONTEXTO PARA EXPRESSÕES REGULARES ESTENDIDAS

TRANSFORMAÇÃO DE GRAMÁTICAS LIVRES DO CONTEXTO PARA EXPRESSÕES REGULARES ESTENDIDAS TRANSFORMAÇÃO DE GRAMÁTICAS LIVRES DO CONTEXTO PARA EXPRESSÕES REGULARES ESTENDIDAS Acadêmico: Cleison Vander Ambrosi Orientador: José Roque Voltolini da Silva Roteiro da Apresentação Introdução Motivação

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS.

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. SANDRO MARCOS GUZZO RESUMO. A construção dos conjuntos numéricos é um assunto clássico na matemática, bem como o estudo das propriedades das operações

Leia mais

PLANO DE ENSINO. CURSO: Bacharelado em Sistemas de Informação MODALIDADE: PRESENCIAL ( X ) OBRIGATÓRIA ( ) OPTATIVA DEPARTAMENTO: DEINFO

PLANO DE ENSINO. CURSO: Bacharelado em Sistemas de Informação MODALIDADE: PRESENCIAL ( X ) OBRIGATÓRIA ( ) OPTATIVA DEPARTAMENTO: DEINFO UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO Pró-Reitoria de Ensino de Graduação Coordenação do Curso de Bacharelado em Sistemas de Informação Site: http://www.bsi.ufrpe.br E-mail: coordenacao@bsi.ufrpe.br

Leia mais

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Lógica para Ciência da Computação I Lógica Matemática Texto 15 Enunciados Quantificados Equivalentes Sumário 1 Equivalência de enunciados quantificados 2 1.1 Observações................................

Leia mais

O ALEATÓRIO EM COMPUTAÇÃO. Por Diogo Anderson Integrante do Grupo PET Computação

O ALEATÓRIO EM COMPUTAÇÃO. Por Diogo Anderson Integrante do Grupo PET Computação O ALEATÓRIO EM COMPUTAÇÃO Por Diogo Anderson (diogo@dsc.ufcg.edu.br) Integrante do Grupo PET Computação AGENDA Introdução Definição Aplicações Números aleatórios Números aleatórios vs pseudo-aleatórios

Leia mais

Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação

Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Não são aceitas respostas sem justificativa. Explique tudo o que você fizer. Linguagens Formais o semestre de 999 Primeira Prova

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO Álgebra de Boole Disciplina: Lógica Professora Dr.ª: Donizete

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Pontifícia Universidade Católica do Rio Grande do Sul

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Matemática - Departamento de Matemática Estruturas Algébricas Prof. M.Sc. Guilherme Luís Roëhe Vaccaro e-mail: vaccaro@mat.pucrs.br Prof.

Leia mais

Conceitos Básicos. Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem

Conceitos Básicos. Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem Conceitos Básicos Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto.

Leia mais

Lógicas Construtivas: Intuicionismo, uma

Lógicas Construtivas: Intuicionismo, uma Lógicas Construtivas: Intuicionismo, uma Introdução Ricardo Bianconi 1 Introdução Vamos tratar agora de Lógicas Construtivas, ou seja, aquelas em que se admitem apenas argumentos construtivos. O que seriam

Leia mais

Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO

Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Dados em Algoritmos Quando escrevemos nossos programas, trabalhamos com: Dados que nós fornecemos ao programa Dados

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000) Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

Matemática Discreta - 04

Matemática Discreta - 04 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP

Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP Ementa Gramáticas. Linguagens Regulares, Livres-de-Contexto e Sensíveis-ao- Contexto. Tipos de Reconhecedores. Operações

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Universidade Federal de Alfenas Projeto e Análise de Algoritmos Aula 02 Um pouco da história da computação humberto@bcc.unifal-mg.edu.br Última aula... Fundamentos de Matemática; Medida do Tempo de Execução

Leia mais