Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 20 reais mais caro.

Tamanho: px
Começar a partir da página:

Download "Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 20 reais mais caro."

Transcrição

1 SISTEMA DE EQUAÇÕES CONTEÚDO Sistemas de equações do 1º grau com duas incógnitas AMPLIANDO SEUS CONHECIMENTOS Leia as frases: Havia no evento 00 pessoas, somando homens e mulheres. A diferença entre o número de homens e mulheres era de 8 pessoas. Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 0 reais mais caro. Se você fosse desafiado a dizer quantos homens e quantas mulheres havia no evento, com certeza você seria capaz de calcular. Porém, quanto tempo você levaria para determinar essas quantidades? Em relação a segunda frase, ocorre situação semelhante. Ou seja, se o desafio for determinar o preço de cada produto, é possível que após algumas tentativas o valor seja determinado. Mas, cabe novamente a pergunta: Quanto tempo você levaria para determinar esses valores? Essas situações podem facilmente ser solucionadas se forem equacionadas. Nestes casos, diferente das equações do primeiro grau, que já falamos em capítulos anteriores, haverá o envolvimento de duas incógnitas. Vamos discutir o primeiro problema colocado: Havia no evento 00 pessoas, somando homens e mulheres. A diferença entre o número de homens e mulheres era de 8 pessoas. No problema é informado o total de pessoas presentes, considerando homens e mulheres. Além disso, é informado a diferença da quantidade entre esses dois grupos. Porém, não há informações sobre a quantidade de homens e mulheres, separadamente. 1

2 Para começar a equacionar o problema proposto, faremos o seguinte: A quantidade de homens será identificada como H. A quantidade de mulheres será identificada como M. Assim, temos: H + M = 00 H M = 8 Observe que o problema está agora equacionado. E, para saber a quantidade de homens e mulheres basta resolver a equação. Mas, antes de passar para o processo resolutivo, vamos equacionar o segundo problema apresentado. Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 0 reais mais caro. Semelhante a situação anterior, aqui não são identificados os valores de cada produto. Apenas é informado o valor total pago pela compra e a diferença de preço entre os dois. Para equacionar o problema, vamos identificar esses valores desconhecidos por meio de incógnitas. O produto de maior valor será identificado pela incógnita x. O produto de menor valor será identificado pela incógnita y. Assim, temos: x + y = 64 x y = 0 Observe que em cada um dos casos, os problemas foram equacionados por meio duas equações que referem-se a mesma situação. Assim, dizemos que, em cada caso, essas equações formam um sistema de equações do 1º grau com duas incógnitas. No caso da quantidade de pessoas no evento, as incógnitas envolvidas foram H e M. Já no caso da compra dos produtos, as incógnitas envolvidas foram x e y. Dica: Em um sistema de duas ou mais equações é comum indicá-lo utilizando o seguinte símbolo: {

3 Resolução de um sistema de equações Faremos agora a resolução dos sistemas discutidos. Iniciaremos pelo sistema referente a quantidade de pessoas no evento. H + M = 00 H M = 8 1º - Vamos determinar o valor da incógnita H. Para tanto, trabalharemos com equação H + M = 00. H + M = 00 H = 00 M º - Na equação H M = 8, vamos substituir H por seu valor (00 M). (00 M) M = 8 00 M M = 8 00 M = 8 - M = M = - 19 M = 19 M = Vamos agora, substituir o valor de M na equação H = 00 M. (temos uma equação do 1º grau na incógnita M) H = H = 104 Portanto, havia no evento 104 homens e 96 mulheres. Esses valores são identificados como solução do sistema. Esse método utilizado para resolver o sistema de equações do 1º grau com duas incógnitas, é identificado como método da substituição. O segundo sistema de equações, o qual se refere ao preço dos produtos, será resolvido por meio de um processo diferente do apresentado anteriormente. Acompanhe: 1 - O primeiro passo será somar as duas equações. x + y = 64 x y = 0 x + 0 = 84 (temos uma equação do 1º grau na incógnita x) 3

4 º - Vamos resolver a equação do 1º grau na incógnita x. x + 0 = 84 x = 84 x = x = 4 3º - Em uma das equações do sistema, vamos substituir o valor da incógnita x (4). Neste caso, utilizaremos a equação x + y = 64. x + y = y = 64 y = 64 4 y = Portanto, como solução do sistema de equações temos os valores 4 e. Esse método utilizado para resolver os sistemas de equações do 1º grau com duas incógnitas, é identificado como método da adição. 84 Dica: Na resolução de uma equação você poderá escolher qualquer um dos métodos. O importante é que antes de iniciar, você observe qual método tornará o processo resolutivo mais fácil, para um determinado sistema. Dado um sistema de equações do 1º grau com incógnitas, x e y, sua solução será o ordenado (x,y). Esse par ordenado é a solução das duas equações do sistema. O gráfico de um sistema Quando um sistema de equações do 1º grau com duas incógnitas é representado graficamente, por meio do plano cartesiano, cada uma das equações desse sistema, representam no gráfico uma reta. Quando essas retas se interceptam, o ponto de intersecção representa a solução da equação. Mas, antes de visualizarmos a representação gráfica de um sistema de equações do 1º grau com duas incógnitas, vejamos como representar graficamente cada uma das equações do sistema. Por exemplo, dada a equação x + y =, para representá-la por meio de um gráfico, vamos organizar uma tabela e nela atribuir valores para as variáveis x e y. 4

5 x y x + y = Par ordenado = ( 0,) = (,0) Atribuindo apenas dois valores para as variáveis, já é suficiente para traçar a equação no gráfico. Agora, é hora de utilizar o plano cartesiano. Dado o plano, vamos localizar os pontos (0,) e (,0). Por esses dois pontos, vamos traçar a reta que representa a equação x + y =. 5

6 Esse mesmo processo será realizado com a equação x y = 0 Vamos novamente organizar uma tabela e atribuir valores para as variáveis x e y. x y x - y = 0 Par ordenado = 0 ( 0,0) - = 0 (,) Atribuindo apenas dois valores para as variáveis, já é suficiente para traçar a equação no gráfico. Agora, é hora de utilizar o plano cartesiano. Dado o plano, vamos localizar os pontos (0,0) e (,). Por esses dois pontos, vamos traçar a reta que representa a equação x - y = 0. Vejamos agora como ficará o gráfico quando nele representamos o sistema x + y = x y = 0 6

7 Acompanhe a resolução e a representação gráfica de um sistema de equações do 1º grau com duas incógnitas. Sistema Representação gráfica x + y = x y = 0 Resolvendo o sistema por um dos métodos discutidos, obteremos como solução o par ordenado (1,1), graficamente esse par ordenado representa a interseção entre as duas retas. Acompanhe a resolução do sistema x + y = x y = 0 x + 0 = x = x = Substituindo o valor de x na equação x + y =, temos: x + y = 1 + y = y = 1 y = 1 x = 1 Ao resolver o sistema pelo método da adição, comprovamos o que graficamente foi visualizado, ou seja, a solução do sistema é o par ordenado (1,1). Saiba mais: Segundo alguns matemáticos a identificação de par ordenado recebe essa nomenclatura porque a ordem dos números é importante. Ou seja, (x,y) (y,x). 7

8 Veja agora a representação gráfica de um outro sistema. Sistema Representação gráfica x + y = 3 x + y = 6 Para discutir a representação gráfica desse sistema, vamos resolvê-lo pelo método da substituição. x + y = 3 x + y = 6 1º - Na equação x + y = 3, vamos determinar o valor da incógnita y. x + y = 3 y = 3 x º - Na equação x + y = 6, vamos substituir o valor de y. x + y = 6 x + 3 x = 6 x x = = 3 Veja que o resultado encontrado é falso, pois 0 3. Logo, não há solução para o sistema, ele é identificado como impossível. E, em casos como esse, o sistema é representado graficamente por duas retas que não se interceptam. 8

9 ATIVIDADES 1. Na caixa havia dois tipos de desinfetante, totalizando 5 produtos. Um deles seria vendido pelo valor de R$ 1,0 e o outro por R$ 0,0 mais barato. Com a venda de todos os produtos, a arrecadação foi de R$ 7,00. Quantos produtos de maior valor havia na caixa?. (ENEM -015 ª aplicação) Uma barraca de tiro ao alvo de um parque de diversões dará um prêmio de R$ 0,00 ao participante, cada vez que ele acertar o alvo. Por outro lado, cada vez que ele errar o alvo, pagará R$ 10,00. Não há cobrança inicial para participar do jogo. Um participante deu 80 tiros e, ao final, recebeu R$ 100,00. Qual foi o número de vezes que esse participante acertou o alvo? a) 30 b) 36 c) 50 d) 60 e) Para cercar todo o seu terreno, o Sr. Paulino comprou 130 m de arrame. Sabendo que a diferença entre as medidas de comprimento e largura é igual a 5 m, tendo o terreno o formato retangular, quais são as dimensões do terreno do Sr. Paulino? 4. Identifique qual dos sistemas está representado no gráfico. Sistemas Representação gráfica a) x + y = 1 x + y = b) x + y = 5 x y = c) x + y = 1 x y = 0 9

10 5. Resolva o sistema apresentado e faça a sua representação gráfica. x + y = 10 x y = 6 LEITURA COMPLEMENTAR Sistema de equações Resolução Método da igualdade Esse método consiste em isolar uma incógnita numa equação e a mesma incógnita na outra e, em seguida, igualar as duas equações para obter uma equação com uma única incógnita. Exemplo: Resolva o sistema.x + 3y = 5 x 4.y = 8 Passo 1: Isole x na primeira e na segunda equação para podermos igualá-las..x + 3.y = 5 x = 5 3y x 4.y = 8 x = y Nota: Aqui você poderia ter escolhido isolar o y, mas o processo de resolução seria mais complicado. Passo : Iguale as duas equações para encontrar o valor de y. 5 3y 8 4y 5 3y = (8 + 4y) 5 3y = y - 3y 8y = y = 11 y =

11 Passo 3: Substitua o valor de y = - 1 encontrado, em x = 8 + 4y, para encontrar o valor de x. x = 8 + 4y x = 8 + 4( -1) x = 8 4 x = 4 Nota: Aqui você poderia ter escolhido substituir o valor de y na equação x = Passo 4: Escrever a solução do sistema: S = {( 4, - 1)} 5 3y. Disponível em:< Acesso em: 13 jun h35min. INDICAÇÕES Consulte os links indicados a seguir e estude um pouco mais sobre sistemas de equações do 1º grau com duas incógnitas Sistemas de equações Disponível em: Sistema de equações Disponível em: < https://geekiegames.geekie.com.br/aulas/matematica/sistemas-deequacoes-do-1o-grau-54d8b4bec4a4e REFERÊNCIAS GIOVANNI, José Ruy. GIOVANNI, José Ruy Júnior. BENEDICTO, Castrucci. A conquista da Matemática - 8º ano. São Paulo: FTD, 015. p

12 INEP. ENEM 015. Caderno Amarelo. ª Aplicação. Disponível em:< APLICACAO_DIA_0_05_AMARELO.pdf.>. Acesso em: 10 jun h35min. SECRETARIA DE DESENVOLVIMENTO ECONÔMICO, CIÊNCIA, TECNOLOGIA E INOVAÇÃO. Educação de Jovens e Adultos (EJA) Mundo do Trabalho: Ciências e Matemática: 9º ano/4 termo do Ensino. Governo do Estado de São Paulo, 013. GABARITO 1. As quantidades de cada desinfetante não são conhecidas, assim, podemos identificar o desinfetante mais caro como x e o mais barato como y. Equacionando o problema, temos: x + y = 5 1,0.x + 1,00.y = 7 x = 5 - y 1,0. ( 5 - y) + 1,00y = 7-1,0.y ,00.y = 7-0,y = ,.y = - 3 0,y = 3 y = 3 0, y = 15 Substituindo o valor de y na equação x = 5 y, temos: x = 5 15 x = 10 Portanto havia na caixa 10 produtos que custavam R$ 1,0.. A alternativa correta é a letra A. Para saber quantas vezes o participante acertou o alvo, vamos equacionar o problema dado. Segundo dados do exercício, o participante deu 80 tiros, chamando os acertos de x e os erros de y, temos a equação: x + y = 80 1

13 Além disso, também é mencionado que a cada acerto o participante ganha R$ 0,00 e a cada erro ele perde R$ 10,00. Sabendo que ao final do jogo ele recebeu R$ 100,00, temos: 0.x 10.y = 100 Dada as duas equações, temos o seguinte sistema: x + y = 80 0.x 10.y = 100 Resolvendo pelo método substitutivo, temos: x + y = 80 0.x 10.y = 100 x = 80 y 0.(80 y) 10y = y 10y = y = y = y = y = 30 y = 50 Sendo y = 50, temos: x = 80 y x = x = Como as medidas do terreno não são conhecidas, podemos identificar a largura como L e o comprimento como C. Sendo o terreno retangular, temos:.l +.C = 130 C L = 5 Resolvendo pelo método substitutivo, temos: C = 5 + L.L +.( 5 + L) = 130.L L = L + 10 = L =

14 4.L = 10 L = 10 4 L = 30 Portanto a largura é igual a 30 m. C = 5 + L C = C = 35 O comprimento é igual a 35 m. 4. Para identificar qual dos sistemas está representado no gráfico, vamos resolver cada um deles. a) x + y = 1 x + y = y = 1 x x + ( 1 x ) = x + 1 x = x x = 1 0 = 1 Ao resolver o primeiro sistema, chegamos em uma igualdade que não é verdadeira. Portanto, esse sistema é impossível e o gráfico não representa-o. b) x + y = 5 x y = x + 0 = 7.x = 7 x = 7 x = 3,5 x + y = 5 3,5 + y = 5 y = 5 3,5 y = 1,5 14

15 O segundo sistema tem o par ordenado 3,5 e 1,5. Confrontando esses dados com o gráfico, identificamos que ele está representando esse sistema. c) x + y = 1 x y = 0.x + 0 = 1.x = 1 x = 1 x + y = 1 0,5 + y = 1 y = 1 0,5 y = 0,5 ou x = 0,5 O terceiro sistema tem o par ordenado 0,5 e 0,5. Confrontando esses dados com o gráfico identificamos que ele não está representando esse sistema. 5. Resolvendo pelo método da adição, temos: x + y = 10 x y = 6 x + 0 = 16 x = 16 x = 16 x = 8 Substituindo x na equação x + y = 10, temos: x + y = y = 10 y = 10 8 y = 15

16 Portanto, a solução da equação é o par ordenado (8,) Graficamente temos: 16

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol. FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória

Leia mais

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau. Caro aluno, Oficina Álgebra 2 Nesta atividade, você será convidado a trabalhar com problemas que podem ser representados por meio de equações do 2º grau. Nos problemas 1 e 2, é proposto que, primeiramente,

Leia mais

Método da substituição

Método da substituição Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir

Leia mais

Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios

Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Introdução Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas incógnitas.

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Módulo 1 Unidade 10 Sistemas de equações lineares Para Início de conversa... Já falamos anteriormente em funções. Dissemos que são relações entre variáveis independentes e dependentes. Às vezes, precisamos

Leia mais

As equações que pensam

As equações que pensam As equações que pensam Aula 15 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar resoluções de problemas envolvendo sistemas de duas equações e duas variáveis. Objetivos Após

Leia mais

Oficina de Álgebra. Oficina CNI EF / Álgebra 1 Material do aluno. Setor de Educação de Jovens e Adultos. Caro aluno,

Oficina de Álgebra. Oficina CNI EF / Álgebra 1 Material do aluno. Setor de Educação de Jovens e Adultos. Caro aluno, _ Caro aluno, Oficina de Álgebra Objetiva-se, com essa atividade, que o uso da linguagem algébrica seja interpretado como um recurso que permite modelar uma situação-problema apresentada. As situações

Leia mais

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis ENSINO FUNDAMENTAL II ALUNO (A): Nº PROFESSOR(A):Rosylanne Gomes/ Marcelo Vale e Marcelo Bentes DISCIPLINA: matemática SÉRIE: 7 ano TURMA: TURNO: DATA: / / 2016 Sistemas de equações do 1 grau a duas variáveis

Leia mais

SISTEMAS DE EQUAÇÕES 2x2

SISTEMAS DE EQUAÇÕES 2x2 SISTEMAS DE EQUAÇÕES x 1 Introdução Em um estacionamento, entre carros e motos, há 14 veículos Qual é o número exato de carros e motos? Se representarmos o número de carros por x e o número de motos por

Leia mais

12 A interseção de retas e a solução de sistemas

12 A interseção de retas e a solução de sistemas A UA UL LA A interseção de retas e a solução de sistemas Introdução Aqui está um problema que serve de eemplo para as questões que serão tratadas nesta aula. Pense, e veja se consegue resolvê-lo com as

Leia mais

equações do 1 grau a duas variáveis 7 3.(3) = 2

equações do 1 grau a duas variáveis 7 3.(3) = 2 Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemáticaa são resolvidos a partir de soluções

Leia mais

CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS. Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS

CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS. Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS Círculo ou circunferência? Talvez essa pergunta já tenha

Leia mais

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver A UA UL LA Resolvendo sistemas Introdução Nas aulas anteriores aprendemos a resolver equações de 1º grau. Cada equação tinha uma incógnita, em geral representada pela letra x. Vimos também que qualquer

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Geométrica Ciências da Natureza I Matemática Ensino médio 5min34seg Habilidades:

Leia mais

COLÉGIO SÃO JOÃO GUALBERTO

COLÉGIO SÃO JOÃO GUALBERTO RESOLUÇÃO COMENTADA Prof.: Pedro Bittencourt Série: 1ª Turma: A Disciplina: Física Nota: Atividade: Avaliação mensal 1º bimestre Valor da Atividade: 10 Instruções Esta avaliação é individual e sem consulta.

Leia mais

Campos dos Goytacazes/RJ Maio 2015

Campos dos Goytacazes/RJ Maio 2015 Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES SISTEMAS LINEARES Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

01. O par (0, 3) também é solução da equação 2x + y = 3 e o par (1, 2) não é solução. Verifique.

01. O par (0, 3) também é solução da equação 2x + y = 3 e o par (1, 2) não é solução. Verifique. ALUNO(A): PROFESSOR(A): WELLINGTON DATA: / / ANO: 7 o E.F. II TURMA: N o MATEMÁTICA LISTA DE REVISÃO - º TRIMESTRE Equações do 1º grau com duas incógnitas: As equações do tipo ax + by = c, em que a, b

Leia mais

Aula 1: Revisando o Conjunto dos Números Reais

Aula 1: Revisando o Conjunto dos Números Reais Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos

Leia mais

Problemas do 2º grau

Problemas do 2º grau A UUL AL A 6 6 Problemas do º grau Nas Aulas 4 e 5, tratamos de resoluções de equações do º grau. Nesta aula, vamos resolver problemas que dependem dessas equações. Observe que o significado das incógnitas

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

CADERNO DE EXERCÍCIOS 2D

CADERNO DE EXERCÍCIOS 2D CADERNO DE EXERCÍCIOS 2D Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Teorema de Pitágoras H31 2 Equações do 1º grau H38 H39 3 Triângulos H24 4 Média aritmética

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y. SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 e 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2015 Sumário Equação Exponencial 1 Equação Exponencial 1 Exemplo 1 1 Método da redução à base comum

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

CADERNO DE EXERCÍCIOS 2C

CADERNO DE EXERCÍCIOS 2C CADERNO DE EXERCÍCIOS 2C Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Polígonos inscritos em uma circunferência. 2 Média aritmética. H24 H50 3 Semelhança

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Aritmética Matemática Ensino médio 5min03seg Habilidades: H15. Relacionar padrões e regularidades

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Inequações do 1º grau

Inequações do 1º grau A UUL AL A Inequações do 1º grau Analisando as condições de vida da população brasileira, certamente encontraremos um verdadeiro desequilíbrio, tanto na área social como na área econômica. Esse desequilíbrio

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Equação de 1º Grau. ax = -b

Equação de 1º Grau. ax = -b Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a

Leia mais

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Relações Prof.: Rogério Dias

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares Matrizes e Sistemas Lineares Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 1 Matrizes Uma matriz é um conjunto retangular de números, símbolos ou expressões, organizados em

Leia mais

ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA Nome: Nº 8º Ano Data: / / Professores: Diego, Marcello e Yuri Nota: (Valor 1,0) 4º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

Prova Final de Matemática

Prova Final de Matemática Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Fase Critérios de Classificação 11 Páginas 015 Prova 9/1.ª F. CC Página 1/ 11 CRITÉRIOS GERAIS DE

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID Atividade nº 2 Oficina de Geometria Analítica com uso

Leia mais

AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número:

AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número: AULA 9 RAZÃO E PROPORÇÃO 1. Determine a razão do primeiro para o segundo número: Para montar a razão, basta fazer o numerador sobre o denominador. Para esse exercício, temos: a) 1 para 9 = 9 1 b) para

Leia mais

Figura 1 Compras do supermercado Fonte: Microsoft Office

Figura 1 Compras do supermercado Fonte: Microsoft Office CONJUNTOS NUMÉRICOS CONTEÚDOS Número naturais Números inteiros Números racionais Números irracionais Números reais AMPLIANDO SEUS CONHECIMENTOS Os números estão presentes nas mais diversas situações do

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

VERSÃO DE TRABALHO. Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Fase. Critérios de Classificação.

VERSÃO DE TRABALHO. Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Fase. Critérios de Classificação. Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Fase Critérios de Classificação 10 Páginas 015 Prova 9/1.ª F. CC Página 1/ 10 CRITÉRIOS GERAIS DE

Leia mais

MATEMÁTICA APLICADA. Portanto, o preço do produto, nessa situação, varia entre 0 e R$ 5,00. 0 < P < R$ 5,00. Ao admitirmos P > 0, ocorre:

MATEMÁTICA APLICADA. Portanto, o preço do produto, nessa situação, varia entre 0 e R$ 5,00. 0 < P < R$ 5,00. Ao admitirmos P > 0, ocorre: MATEMÁTICA APLICADA Apresentação Caro aluno: A contextualização e a aplicação dos conteúdos matemáticos (já estudados) contemplarão o objetivo geral da disciplina Matemática Aplicada à Administração. Este

Leia mais

LISTA DE EXERCÍCIOS 9º ANO 1º BIMESTRE MATEMÁTICA-REVISÃO

LISTA DE EXERCÍCIOS 9º ANO 1º BIMESTRE MATEMÁTICA-REVISÃO 1. (G1 - ifsc) A solução da equação 0,1x 0,6 3 tem como resultado, 1 0,4x 2 a) um número racional negativo. b) um número irracional. c) um número inteiro negativo. d) um número racional maior que 5. e)

Leia mais

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres.

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres. A UA UL LA Revisão I Introdução Vamos iniciar, nesta aula, a revisão do nosso curso do 2º grau. Ela será feita em forma de exemplos que vão abordar de novo os principais conteúdos. Para aproveitar bem

Leia mais

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a: Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)

Leia mais

TAREFA 1 - GABARITO. a) 225 b) 195 c) 185 d)175

TAREFA 1 - GABARITO. a) 225 b) 195 c) 185 d)175 Disciplina: Matemática para Administradores Professor: Rômulo Luiz Oliveira Tutora: Caroline Lima TAREFA 1 - GABARITO 1. Numa pesquisa com jovens, foram feitas as seguintes perguntas para que respondessem

Leia mais

3º Ano do Ensino Médio. Aula nº08

3º Ano do Ensino Médio. Aula nº08 Nome: Ano: º Ano do E.M. Escola: Data: / / 1. Conceitos básicos 3º Ano do Ensino Médio Aula nº08 Assunto: Funções, Equações e Inequações do 1º grau Introdução: Representação de uma equação com 2 variáveis

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

Programa de Recuperação Paralela PRP - 01

Programa de Recuperação Paralela PRP - 01 Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 013 Disciplina: Matemática - 8º Ano Página 1 de 11-8/6/013-6:15 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Resolva a expressão: 1 0

Leia mais

SOMENTE COM CANETA AZUL

SOMENTE COM CANETA AZUL º SIMULADO - 8º ANO - 016 ENSINO FUNDAMENTAL Matemática 45 Questões 0 de dezembro - sexta-feira Nome: Turma: Unidade: º A DI CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI 1 O aluno

Leia mais

SISTEMA ANGLO DE ENSINO G A B A R I T O

SISTEMA ANGLO DE ENSINO G A B A R I T O Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS

Leia mais

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010 1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento

Leia mais

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 13 Sistemas Lineares Professor Luciano Nóbrega 3º Bimestre 2 INTRODUÇÃO Em uma partida de basquete, dois jogadores marcaram juntos 42 pontos. Quantos pontos marcou cada um? Para responder

Leia mais

CADERNO DE EXERCÍCIOS 1B

CADERNO DE EXERCÍCIOS 1B CADERNO DE EXERCÍCIOS B Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Fração Soma de frações Multiplicação de frações Subtração de frações Divisão de frações

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes

Leia mais

Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ

Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ. Questão Funções Sendo D e D, respectivamente, domínios das funções reais f e g, definidas por f ( x) = x e g ( x) de x no intervalo:,

Leia mais

Função polinomial do 1 grau ou função afim

Função polinomial do 1 grau ou função afim Curso Matemática do Zero Professor Rodrigo Sacramento Matemática Função polinomial do 1 grau ou função afim Plano cartesiano O Plano Cartesiano é formado por dois eixos perpendiculares (dois eixos que

Leia mais

Teste de Avaliação Nº 2. 9ºA. Matemática. 9/12/2004 Duração do teste: 90 minutos

Teste de Avaliação Nº 2. 9ºA. Matemática. 9/12/2004 Duração do teste: 90 minutos Agrupamento Vertical de Souselo Escola E.B., de Souselo Teste de Avaliação Nº. 9ºA Matemática 9//004 Duração do teste: 90 minutos Em todas as questões apresenta o teu raciocínio de forma clara, indicando

Leia mais

MATEMÁTICA APLICADA MÓDULO 2

MATEMÁTICA APLICADA MÓDULO 2 MATEMÁTICA APLICADA MÓDULO 2 Índice 1. Receita total...3 2. Custo total...6 3. Ponto de nivelamento e lucro total...7 4. Resolvendo problemas... 10 5. Referências bibliográficas... 13 2 1. RECEITA TOTAL

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11.

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11. Aula n ọ 05 A conta do 11 Para multiplicar um número de dois algarismos por 11, podemos fazê-lo assim: conservamos a unidade na unidade do resultado; a dezena na centena do resultado; e a dezena do resultado

Leia mais

MÓDULO XI. INEQUAÇÕES 2x 20

MÓDULO XI. INEQUAÇÕES 2x 20 MÓDULO XI. Inequação INEQUAÇÕES < Logo, o conjunto solução será S. Vamos supor que, na nossa escola, a média mínima para aprovação automática seja 6 e que essa média, em cada matéria, seja calculada pela

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

Função Afim Fabio Licht

Função Afim Fabio Licht Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a

Leia mais

TESTE DE DIAGNÓSTICO

TESTE DE DIAGNÓSTICO TESTE DE DIAGNÓSTICO 9.º 10.º ANO NOME: N.º: TURMA: ANO LETIVO: / DURAÇÃO DO TESTE: 90 MINUTOS DATA: / / O teste é constituído por dois grupos. No Grupo I, são indicadas quatro opções de resposta para

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

Resolvendo equações. 2 = 26-3 α φ-1

Resolvendo equações. 2 = 26-3 α φ-1 A UA UL LA Resolvendo equações Introdução À medida que os problemas se tornam mais complicados, o método algébrico vai se impondo naturalmente ao método aritmético. Resolver equações fará parte das nossas

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/2012, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 92/1.ª Chamada Critérios de Classificação 8 Páginas 2013 COTAÇÕES

Leia mais

VERSÃO DE TRABALHO. Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Fase. Critérios de Classificação.

VERSÃO DE TRABALHO. Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Fase. Critérios de Classificação. Prova Final de Matemática.º Ciclo do Ensino Básico Decreto-Lei n.º 9/0, de de julho Prova 9/.ª Fase Critérios de Classificação 06 Páginas Prova 9/.ª F. CC Página / CRITÉRIOS GERAIS DE CLASSIFICAÇÃO A classificação

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Resolução das Questões Discursivas

Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/2012, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 92/1.ª Chamada Braille, Entrelinha 1,5, sem figuras nem imagens,

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou

Leia mais

AB de medida igual a 3 cm, qual é a medida do lado BC?

AB de medida igual a 3 cm, qual é a medida do lado BC? LEI DOS SENOS CONTEÚDO Lei dos senos AMPLIANDO SEUS CONHECIMENTOS Dado o triângulo ABC, sendo o ângulo  igual a 80, o ângulo Ĉ igual a 50 e o lado AB de medida igual a 3 cm, qual é a medida do lado BC?

Leia mais

MATEMÁTICA FINANCEIRA CONTEÚDOS. Juros simples Juros compostos AMPLIANDO SEUS CONHECIMENTOS

MATEMÁTICA FINANCEIRA CONTEÚDOS. Juros simples Juros compostos AMPLIANDO SEUS CONHECIMENTOS MATEMÁTICA FINANCEIRA CONTEÚDOS Juros simples Juros compostos AMPLIANDO SEUS CONHECIMENTOS Bom, vamos discutir um dos assuntos que mais envolve o nosso dia a dia. Afinal, constantemente estamos comprando

Leia mais

Revendo as operações

Revendo as operações A UA UL LA 61 Revendo as operações Introdução Nossa aula Assim como já vimos em muitas de nossas aulas, a Matemática é uma ciência que está sempre presente em nosso dia-adia. Na aula de hoje, recordaremos

Leia mais

1. EQUAÇÃO DO 1º GRAU COM UMA VARIÁVEL

1. EQUAÇÃO DO 1º GRAU COM UMA VARIÁVEL CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 0 ASSUNTO: REVISÃO Esta aula é composta pelo teto da apostila aaio e por um link de acesso à AULA VIRTUAL gravada. Estude com atenção o teto antes de acessar a aula

Leia mais

Gráfico de Funções: Seno, Cosseno e Tangente

Gráfico de Funções: Seno, Cosseno e Tangente Reforço escolar M ate mática Gráfico de Funções: Seno, Cosseno e Tangente Dinâmica 6 1ª Série 4º Bimestre Aluno DISCIPLINA Série CAMPO CONCEITO Matemática 1a do Ensino Médio Geométrico Trigonometria na

Leia mais

2. Conteúdos Para ajudar em sua organização dos estudos, vale lembrar quais foram os conteúdos trabalhados neste bimestre:

2. Conteúdos Para ajudar em sua organização dos estudos, vale lembrar quais foram os conteúdos trabalhados neste bimestre: ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 8ºAno Data: / / Professores: Yuri, Marcello e Décio Nota: (Valor 1,0) 2º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

CADERNO DE EXERCÍCIOS 3E

CADERNO DE EXERCÍCIOS 3E CADERNO DE EXERCÍCIOS 3E Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Área de círculo H21 Área do quadrado H21 Multiplicação com números decimais H16 2 Equação do 2º

Leia mais

Aula 1: Reconhecendo Matrizes

Aula 1: Reconhecendo Matrizes Aula 1: Reconhecendo Matrizes Caro aluno, nesta aula você aprenderá a reconhecer matrizes, posteriormente vamos identificar os tipos de matrizes existentes e como realizar algumas operações entre elas.

Leia mais

...l.. = 1 x 50 = 50 = 50DA 2 2 x

...l.. = 1 x 50 = 50 = 50DA 2 2 x Numa banca de jornal, observa-se que 30 pessoas compram o jornal A, 48 compram o jornal B, e 72 compram outros jornais. Você sabe dizer: a porcentagem de pessoas que compram o jornal A? a porcentagem de

Leia mais