2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS"

Transcrição

1 SENO, COSSENO, TANGENTE CONTEÚDO Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS Observe os triângulos ABC e AEF. 6, 3,7,,0 1,,0 Esses triângulos têm em comum o ângulo Â. Os ângulos que: C ˆ e F ˆ são congruentes. Em relação as medidas de seus lados observa-se AC 6, CB 3,7 AB,0,,, AF, EF 1, AE,0 Conhecendo as medidas dos ângulos e sabendo que os lados correspondentes apresentam a mesma razão, conclui-se que esses triângulos são semelhantes. Além disso, podemos ainda fazer as seguintes observações: FE 1, CB 3,7 0,6 0, 6 AF, AC 6, AE AB,0 0,8 0,8 AF, AC 6,

2 FE AE 1, CB 3,7 0,7 0,7,0 AB,0 Considerando que os triângulos ABC e AEF são retângulos, vimos que dado o ângulo Â, temos: cateto oposto ao ângulo  hipotenusa K 1 cateto adjacente ao ângulo  hipotenusa K cateto oposto ao ângulo  cateto adjacente ao ângulo  K 3 Analisando as razões, concluímos que dado um ângulo fio, os valores de cada uma dessas razões não se alteram, ou seja, cada uma dessas três razões terá seus valores alterados somente quando a medida do ângulo for alterada. Essas razões, podem ser identificadas da seguinte forma: Seno Denomina-se seno de um ângulo agudo a razão entre o cateto oposto a esse ângulo e a hipotenusa do triângulo. No caso dos triângulos ABC e AEF, em relação ao ângulo Â, temos: CB sen  = AC FE sen  = AF Cosseno Denomina-se cosseno de um ângulo agudo a razão entre o cateto adjacente a esse ângulo e a hipotenusa do triângulo. No caso dos triângulos ABC e AEF, em relação ao ângulo Â, temos: AE cos  = AF AB cos  = AC

3 Tangente Denomina-se tangente de um ângulo agudo a razão entre o cateto adjacente a esse ângulo e o cateto oposto ao ângulo. No caso dos triângulos ABC e AEF, em relação ao ângulo Â, temos: FE tg  = AE CB tg  = AB Tabela das razões trigonométricas Nas razões observadas vimos que para cada ângulo agudo está associado um único valor para o seno, um único valor para o cosseno e um único valor para a tangente. Desta forma, é possível elaborar uma tabela que relaciona os valores dessas razões com o valor do ângulo correspondente. Acompanhe: Tabela de razões trigonométricas Ângulo sen cos tg Ângulo sen cos tg Ângulo sen cos tg 1 0,017 1,000 0, ,309 0,91 0,3 3 0,74 0,819 0,700 0,03 0,999 0, ,36 0,946 0, ,88 0,809 0,77 3 0,0 0,999 0,0 0 0,34 0,94 0, ,60 0,799 0,74 4 0,070 0,998 0, ,38 0,934 0, ,616 0,788 0,781 0,087 0,996 0,087 0,37 0,97 0, ,69 0,777 0, ,10 0,99 0,10 3 0,390 0,91 0, ,643 0,766 0, ,1 0,993 0,13 4 0,407 0,914 0, ,66 0,7 0, ,139 0,990 0,141 0,43 0,906 0, ,669 0,743 0, ,16 0,988 0,18 6 0,438 0,899 0, ,68 0,731 0, ,174 0,98 0, ,44 0,891 0, ,69 0,719 0, ,191 0,98 0, ,469 0,883 0,3 4 0,707 0,707 1, ,08 0,978 0,13 9 0,48 0,87 0,4 46 0,719 0,69 1, , 0,974 0, ,00 0,866 0, ,731 0,68 1, ,4 0,970 0, ,1 0,87 0, ,743 0,669 1, ,9 0,966 0,68 3 0,30 0,848 0,6 49 0,7 0,66 1, ,76 0,961 0, ,4 0,839 0, ,766 0,643 1, ,9 0,96 0, ,9 0,89 0,67 1 0,777 0,69 1,3

4 Tabela de razões trigonométricas Ângulo sen cos tg Ângulo sen cos tg Ângulo sen cos tg 0,788 0,616 1, ,934 0,38, ,998 0,070 14, ,799 0,60 1, ,940 0,34, ,999 0,0 19, ,809 0,88 1, ,946 0,36, ,999 0,03 8,636 0,819 0,74 1,48 7 0,91 0,309 3, ,999 0,017 7,90 6 0,89 0,9 1, ,96 0,9 3,71 7 0,839 0,4 1, ,961 0,76 3, ,848 0,30 1, ,966 0,9 3,73 9 0,87 0,1 1, ,970 0,4 4, ,866 0,00 1, ,974 0, 4, ,87 0,48 1, ,978 0,08 4,70 6 0,883 0,469 1, ,98 0,191, ,891 0,44 1, ,98 0,174, ,899 0,438, ,988 0,16 6, ,906 0,43,14 8 0,990 0,139 7, ,914 0,407, ,993 0,1 8, ,91 0,391, ,99 0,10 9, ,97 0,37,47 8 0,996 0,087 11,430 Seno, cosseno e tangente de 30, 4 e 60 Os ângulos de 30, 4 e 60 são conhecidos como ângulos notáveis. Essa identificação é dada devido esses ângulos serem classificados como alguns dos principais ângulos. Veja a seguir a tabela que apresenta, na forma não decimal, os valores desses ângulos. Ângulo sen cos tg

5 Observe que o valor referente ao seno 30, por eemplo, não difere entre as duas tabelas. Ocorre apenas que eles estão apresentados por meio de diferentes registros. A mesma situação é válida para os demais ângulos que estão nas duas tabelas. Na resolução de alguns problemas, é mais conveniente utilizar o valor dos ângulos conforme apresentado na última tabela. Vejamos alguns eemplos da utilização das razões trigonométricas: 1º - Dado o triângulo retângulo ADB, vamos determinar qual é a medida do cateto AD. Para que seja possível utilizar as razões trigonométricas, o primeiro passo é identificar qual delas se aplica (seno, cosseno ou tangente), para solucionar o problema dado. No eemplo, deseja-se saber a medida do cateto que fica oposto ao ângulo de 4º. Além disso, observamos que a medida da hipotenusa desse triângulo é conhecida, logo pode-se aplicar a razão referente ao seno. seno 4 = AD Consultando a tabela, vemos que seno 4º é igual a 0,707. Logo, temos: 0,707 = AD 0,707. = AD AD = 3,3 Portanto, a medida do cateto AD é igual a 3,3 unidades de medida. º - Utilizando o mesmo triângulo, vamos agora calcular a medida do cateto BD. Novamente vamos observar qual é a razão trigonométrica que se aplica para solucionar o problema dado. Analisando o triângulo é possível identificar que o cateto BD é o cateto

6 adjacente ao ângulo de 4º, assim, pode-se calcular sua medida utilizando a razão trigonométrica relacionada ao cosseno. cos 4 = BD Consultando a tabela temos o valor de 0,707 para o cos 4. Logo, temos: 0,707 = BD 0,707. = BD BD = 3,3 Portanto, a medida do cateto BD é igual a 3,3 unidades de medida. Neste caso, podemos observar que o triângulo ABD trata-se de um triângulo isósceles. ATIVIDADES 1. Dado o triângulo ABC, qual é a razão que determina: a) o seno do ângulo Ĉ. b) o cosseno do ângulo Ĉ. c) a tangente do ângulo Ĉ. Um triângulo retângulo possui ângulo agudo igual a 30. A hipotenusa desse triângulo mede cm. Qual é aproimadamente a medido do cateto oposto ao ângulo de 30?

7 3. Dado o triângulo DEF, consulte as tabelas das razões trigonométricas e determine: a) a medida aproimada do cateto oposto ao ângulo Ê. b) a medida aproimada do cateto adjacente ao ângulo Ê 4.(ENEM 013) As torres Puerta de Europa são duas torres inclinadas uma contra a outra, construídas numa avenida de Madri, na Espanha. A inclinação das torres é de 1 com a vertical e elas têm, cada uma, uma altura de 114 m (a altura é indicada na figura como o segmento AB). Estas torres são um bom eemplo de um prisma oblíquo de base quadrada e uma delas pode ser observada na imagem. Utilizando 0,6 como valor aproimado para a tangente de 1 e duas casas decimais nas operações, descobre-se que a área da base desse prédio ocupa na avenida um espaço

8 a) menor que 100 m². b) entre 100 m² e 300 m². c) entre 300 m² e 00 m². d) entre 00 m² e 700 m². e) maior que 700 m².. Um atleta que pratica corrida de rua, está realizando alguns eercícios que visam trabalhar a sua resistência em disputar corridas onde o percurso apresente subidas íngremes. Para tanto, o atleta fez duas rampas e está treinando, em dias alternados, em cada uma delas. Rampa 1 Rampa Se em trechos íngremes, o alteta consegue percorrer m a cada segundo, comparando o o tempo de deslocamento de cada rampa, em qual rampa ele levará mais tempo para percorrê-la, e qual será a diferença de tempo entre as duas rampas? Obs.: Neste caso, para os senos considere os seguintes valores: seno 1º = 0, seno 30 =0,

9 6. Ao atender uma ocorrência, uma equipe do corpo de bombeiros teve que improvisar e fazer uma emenda entre duas escadas pequenas, isso porque a escada de maior medida, no momento da ocorrência, não estava funcionando. Veja a seguir, a imagem que permite visualizar o comprimento atingindo ao fazer a emenda das escadas. m Figura 1- Escada de Bombeiro Fonte: Wikipedia De acordo com as medidas apresentadas na imagem, após a medida paliativa, qual foi aproimadamente o comprimento final da escada? INDICAÇÕES Assista os vídeos indicados nos links a seguir e estude um pouco mais sobre as razões trigonométricas Trigonometria Básica Disponível em: nometria_basica

10 Razões trigonométricas no triângulo retângulo Disponível em: Resolvendo eercícios sobre razões trigonométricas Disponível em: Leia também o material A trigonometria no triângulo retângulo. Disponível em: Nele você encontrará uma abordagem sobre o conteúdo e a proposta de alguns eercícios REFERÊNCIAS GIOVANNI, José Ruy. GIOVANNI, José Ruy Júnior. BENEDICTO, Castrucci. A conquista da Matemática. São Paulo: FTD, 01. p IEZZI, Gelson. MACHADO, Antonio. básicos. 1ª ed. São Paulo: Atual, 008. DOCE, Osvaldo. Geometria Plana. Conceitos INEP. ENEM 013. Prova Amarela. Disponível em:< m_amarelo.pdf>. Acesso em: 10 jun h SÃO PAULO (Estado). Secretaria da Educação (SEE). Educação de Jovens e Adultos: Mundo do Trabalho modalidade semipresencial, v 1. Matemática: caderno do estudante. Disponível em: < no>. Acesso em: 18 jan h. WIKIPEDIA. Escada de Bombeiros. Disponível em:< Acesso em:10 jun h.

11 GABARITO AB 1. a) sen Ĉ = CB CA b) cos Ĉ = CB AB c) tg Ĉ = CA. Deseja-se saber qual é a medida do cateto oposto ao ângulo dado. E a hipotenusa tem valor conhecido. Neste caso, pode-se obter a medida do cateto da seguinte forma: seno 30 = De acordo com a tabela de razões trigonométricas, seno 30º é igual a 0,. Assim, temos: 0, = 0,. = =, Portanto, o cateto oposto ao ângulo dado mede, cm. 3. a) Para calcular a medida do cateto oposto, utilizaremos a razão trigonométrica seno. DF seno 60 = 11,4 Consultando a tabela temos para seno 60 o decimal 0,866. DF 0,866 = 11,4 0,866.11,4 = DF Portanto, a medida do cateto DF é de aproimadamente 9,99 m b) Para calcular a medida do cateto adjacente, utilizaremos a razão trigonométricas relacionada ao cos 60. EF cos 60 = 11,4 Consultando a tabela temos para seno 60 o decimal 0,00. EF 0,00 = 11,4 0,00. 11,4 = EF EF =,77 Portanto, a medida do cateto EF é igual a,77.

12 4. A alternativa correta é a letra E. Observando a torre, pode-se identificar o ponto B como um dos vértices de sua base. Assim, pode-se traçar um triângulo retângulo que tem como ângulo reto o ângulo Bˆ. Além disso, o ângulo  (1º) será um dos ângulos agudos desse triângulo. Calculando a base desse triângulo, que é o cateto oposto ao ângulo Â, é possível determinar a área da base da torre. Conforme mencionado no eercício, o segmento AB mede 114 m, e no triângulo traçado ele representa um dos catetos. Temos então um triângulo retângulo em que o valor de um ângulo é conhecido, e o valor do cateto adjacente a esse triângulo também é conhecido. Deseja-se saber qual é a medida do cateto oposto a esse ângulo, logo, pode-se aplicar a razão trigonométrica relacionada a tangente. Identificando o cateto oposto como, temos: tg 1 = 114 0,6 = 114 0,6.114 = = 9,6 Se a base é quadrada e tem medida de comprimento igual a 9,6 m, sua área é de 878, m². Ou seja, maior que 700 m².. Para saber quantos metros ele percorrerá, é necessário conhecer o comprimento de cada rampa. Neste caso, as rampas formam um triângulo retângulo em que são conhecidos um dos ângulos e o lado oposto a esse ângulo. Logo a rampa, representa a hipotenusa desse triângulo, assim temos: Para rampa 1: 10 seno 1º =

13 10 0, = 0,. = 10 = 10 0, = 40 m Portanto, a rampa 1 tem comprimento igual a 40 m. Se o atleta percorre m a cada segundo, para subir a rampa ele levará 8 segundos. Para rampa : 10 seno 30º = 10 0, = 0,. = 10 = 10 0, = 0 Portanto, a rampa tem comprimento igual a 0 m. Se o atleta percorre m a cada segundo, para subir a rampa ele levará 4 segundos. Se ele pecorrerá a rampa 1 em 8 segundos e a rampa em 4 segundos, ele se deslocará por tempo maior na rampa 1, sendo 4 segundos a mais que na rampa. 6. Para saber qual foi o comprimento final da escada, aplicaremos a razão trigonométrica cosseno. cos 70 = Consultando a tabela trigonométrica encontra-se como cos 70º o valor 0,34. 0,34 = 0,34. = = 0,34 = 14,61 Portanto, após realizada a emenda, a escada ficou com o comprimento aproimado de 14,61 m.

FIGURAS SEMELHANTES CONTEÚDOS. Polígonos semelhantes Semelhança de triângulos AMPLIANDO SEUS CONHECIMENTOS. Observe as imagens a seguir.

FIGURAS SEMELHANTES CONTEÚDOS. Polígonos semelhantes Semelhança de triângulos AMPLIANDO SEUS CONHECIMENTOS. Observe as imagens a seguir. FIGURAS SEMELHANTES CONTEÚDOS Polígonos semelhantes Semelhança de triângulos AMPLIANDO SEUS CONHECIMENTOS Observe as imagens a seguir. Figura 1 Balão I Fonte: Microsoft Office Figura 2 Balão II Fonte:

Leia mais

AB de medida igual a 3 cm, qual é a medida do lado BC?

AB de medida igual a 3 cm, qual é a medida do lado BC? LEI DOS SENOS CONTEÚDO Lei dos senos AMPLIANDO SEUS CONHECIMENTOS Dado o triângulo ABC, sendo o ângulo  igual a 80, o ângulo Ĉ igual a 50 e o lado AB de medida igual a 3 cm, qual é a medida do lado BC?

Leia mais

Para discutir a lei dos cossenos, vamos pensar sobre a seguinte situação: Dado o triângulo ABC, determine a medida do lado a desse triângulo.

Para discutir a lei dos cossenos, vamos pensar sobre a seguinte situação: Dado o triângulo ABC, determine a medida do lado a desse triângulo. LEI DOS COSSENOS CONTEÚDO Lei dos cossenos AMPLIANDO SEUS CONHECIMENTOS Para discutir a lei dos cossenos, vamos pensar sobre a seguinte situação: Dado o triângulo ABC, determine a medida do lado a desse

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Matemática 1º Ano - 2º Bimestre / 2013 PLANO DE TRABALHO 2 Tarefa 2 Cursista: Mariane Ribeiro do Nascimento Tutor: Bruno Morais 1 SUMÁRIO

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Formação Continuada em Matemática

Formação Continuada em Matemática Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 2º Bimestre 2013 Tarefa 2 Plano de trabalho: Relações Trigonométricas no Triângulo Retângulo Cursista: Vania Cristina

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas.

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas. Exercícios de Razões Trigonométricas a) No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen 65 = 0,91; cos 65 = 0,42 ; tg 65 = 2,14) b) Considerando o triângulo retângulo

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Com este material esperamos que você trabalhe, de acordo com a Matriz de Avaliação, o desenvolvimento das seguintes habilidades:

Com este material esperamos que você trabalhe, de acordo com a Matriz de Avaliação, o desenvolvimento das seguintes habilidades: Caro monitor, Preparamos este material para que possamos auxiliá-lo no desenvolvimento das aulas 4, 43, 45, 46 e 47. Objetivamos que o uso deste material possa elucidar os conteúdos trabalhados nas referidas

Leia mais

Formação Continuada Nova EJA. Plano de Ação 2

Formação Continuada Nova EJA. Plano de Ação 2 Nome: Jones Paulo Duarte Regional: Centro Sul Tutora: Josiane da Silva Martins Formação Continuada Nova EJA Plano de Ação 2 INTRODUÇÃO Esse PA tem como objetivo enfatizar o assunto do capítulo 19 do 2º

Leia mais

Lista de exercícios 04

Lista de exercícios 04 Lista de exercícios 04 Aluno (a) : Série: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/05/2015. A lista deverá apresentar

Leia mais

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

Gabarito: cateto oposto. sen(30 ) = = x = 85 cm. hipotenusa 2 1,7. x sen7 = x = 14 sen7 x = 14 0,12 x = 1,68 m 14. Resposta da questão 1: [A]

Gabarito: cateto oposto. sen(30 ) = = x = 85 cm. hipotenusa 2 1,7. x sen7 = x = 14 sen7 x = 14 0,12 x = 1,68 m 14. Resposta da questão 1: [A] Gabarito: Resposta da questão 1: Considere a situação Utilizando da relação de seno temos: cateto oposto 1 x sen(30 ) = = x = 85 cm. hipotenusa 1,7 Resposta da questão : Utilizando a relação de tangente

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS. Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS

CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS. Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS Círculo ou circunferência? Talvez essa pergunta já tenha

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

RAZÕES TRIGONOMÉTRICAS

RAZÕES TRIGONOMÉTRICAS Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ MATEMÁTICA 1º ANO 2º BIMESTRE/ 2014 Sandra Maria Vogas Vieira sandravogas@hotmail.com RAZÕES TRIGONOMÉTRICAS TAREFA 2 CURSISTA: Sandra

Leia mais

Roteiro Recuperação Geometria 3º trimestre- 1º ano

Roteiro Recuperação Geometria 3º trimestre- 1º ano Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num

Leia mais

Plano de Trabalho INTRODUÇÃO DESENVOLVIMENTO

Plano de Trabalho INTRODUÇÃO DESENVOLVIMENTO FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ. Professor: Joana Eunice Rodes de Oliveira - Matrículas: 09353525. Série: 1º ANO ENSINO MÉDIO (2º Bimestre) GRUPO 04. Tutora:

Leia mais

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.

Leia mais

Com interesse de ir além de um ensino tradicional, pois os alunos em sua maioria têm grandes dificuldades em diferenciar círculo de circunferência.

Com interesse de ir além de um ensino tradicional, pois os alunos em sua maioria têm grandes dificuldades em diferenciar círculo de circunferência. MARCUS VINICIUS DIONISIO DA SILVA - Angra dos Reis PLANO DE AULA ASSUNTO: 1. INTRODUÇÃO: Com interesse de ir além de um ensino tradicional, pois os alunos em sua maioria têm grandes dificuldades em diferenciar

Leia mais

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm.

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm. Tarefas 05, 0, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B Gabarito: 0. D Calculando: x x x 4x x S,5,5 5 x x 0 x x7 4 ( 7) 5 5 5 x' 0,75 (não convém) x 4 x''

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Relações Métricas nos Triângulos. Joyce Danielle de Araújo Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;

Leia mais

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ponto N é o pé da perpendicular traçada do ponto M para a reta OP, então

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

Distâncias Inacessíveis de se Medir

Distâncias Inacessíveis de se Medir Reforço escolar M ate mática Distâncias Inacessíveis de se Medir Dinâmica 7 1ª Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Aluno Matemática Ensino Médio 1ª Geométrico Utilizar as razões trigonométricas

Leia mais

Prova Escrita de Matemática

Prova Escrita de Matemática PROVA FINAL DE CICLO A NÍVEL DE ESCOLA Decreto-Lei nº 139/2012, de 5 de julho Prova Escrita de Matemática 9.º Ano de Escolaridade Prova 82 / 1.ª Fase 16 Páginas Duração da Prova: Caderno 1-35 min ( tolerância:

Leia mais

TRIÂNGULOS RETÂNGULOS

TRIÂNGULOS RETÂNGULOS . (Unesp 05) A figura representa a vista superior do tampo plano e horizontal de uma mesa de bilhar retangular ABCD, com caçapas em A, B, C e D. O ponto P, localizado em AB, representa a posição de uma

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente B

Gabarito Extensivo MATEMÁTICA volume 1 Frente B Gabarito Etensivo MATEMÁTICA volume Frente B sen cos tan 0 5 60 0) E 5 5 6 9 +y=+8= sen0 y y 8 cateto oposto ipotenusa 0) m Seja O a origem no solo alinado verticalmente com o bastão. A medida OB será

Leia mais

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo

Leia mais

Módulo de Trigonometria. Seno, Cosseno e Tangente. 1 a série E.M.

Módulo de Trigonometria. Seno, Cosseno e Tangente. 1 a série E.M. Módulo de Trigonometria Seno, Cosseno e Tangente 1 a série E.M. Trigonometria Seno, Cosseno e Tangente. 1 Exercícios Introdutórios Exercício 1. Determine a) sen 10 o. b) sen 180 o. c) sen 40 o. d) sen

Leia mais

Aplica-se a Lei dos cossenos quando conhecemos o valor de dois lados e de um ângulo do triângulo.

Aplica-se a Lei dos cossenos quando conhecemos o valor de dois lados e de um ângulo do triângulo. Caro aluno, Objetivamos que o uso deste material possa elucidar os conteúdos trabalhados nas aulas 42, 43, 45, 46 e 47, e assim, proporcionar o seu preparo para aplicar os conhecimentos desenvolvidos nas

Leia mais

Vamos conhecer mais sobre triângulos!

Vamos conhecer mais sobre triângulos! Vamos conhecer mais sobre triângulos! Aula 18 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Fonte: http://cache0.stormap.sapo.pt/fotostore0/fotos//f1/87/c6/06166_dfcbk.png Meta Apresentar

Leia mais

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar 1 TRIGONOMETRIA A palavra Trigonometria

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

SEGUNDO ANO - PARTE UM

SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o

Leia mais

b) Todos eles possuem uma característica em comum. Qual é esta característica?

b) Todos eles possuem uma característica em comum. Qual é esta característica? ATIVIDADE INICIAL 1 Título da Atividade: Comparando triângulos a) Quantos triângulos você enxerga na figura? Escreva os seus nomes (por exemplo: ABC) ABC, BEF, BDG b) Todos eles possuem uma característica

Leia mais

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen65º = 0,91; cos65º = 0,42 e tg65º = 2,14) 2. Determine no

Leia mais

Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo

Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo Plano de ulas Matemática Módulo 9 Trigonometria no triângulo retângulo Resolução dos eercícios propostos Retomada dos conceitos PÍTULO 1 1 Os catetos medem 1 e 16 u.c. e o ilustrar esta situação, nota-se

Leia mais

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas. LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como M é o ponto médio da corda [], temos que AM = MB, e assim Logo, substituindo

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Produto escalar Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria - Produto escalar Propostas de resolução MTEMÁTI - 11o no Geometria - Produto escalar Propostas de resolução Eercícios de eames e testes intermédios 1. omo para qualquer ponto P da circunferência de diâmetro [RS] o ângulo RP Q é reto, então para

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ).

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ). Geometria Analítica Módulo 1 Revisão de funções trigonométricas, Vetores: Definições e aplicações Módulo, direção e sentido. Igualdades entre vetores 1. Revisão de funções trigonométricas a) Triângulo

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

ROTEIRO DE RECUPERAÇÃO - 3º BIMESTRE - GEOMETRIA

ROTEIRO DE RECUPERAÇÃO - 3º BIMESTRE - GEOMETRIA ROTEIRO DE RECUPERAÇÃO - 3º BIMESTRE - GEOMETRIA Nome: Nº 9ºAno Data: / / Professores: Diego Leandro, Diego Silva e Yuri 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral do Colégio

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 4 BIMESTRE PLANO DE TRABALHO

FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 4 BIMESTRE PLANO DE TRABALHO FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 4 BIMESTRE PLANO DE TRABALHO TRIGONOMETRIA CURSISTA: ROBSON DOS SANTOS PRAXEDE TUTOR: MARCELO RODRIGUES NOVEMBRO

Leia mais

Lista de Exercícios. b. Dado tg α =

Lista de Exercícios. b. Dado tg α = Lista de Exercícios 1. Nos triângulos retângulos representados abaixo, determine as medias x e y indicadas: a. 4. Calcule os valores de x e y nos triângulos retângulos representados a seguir. a. Dado sen

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto

Leia mais

ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C).

ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C). ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A A: R E S O L U Ç Ã O D O TR A B A L H O I N D I V I D U A L P R O F E S S O R C A R L O S MI G U E L SA N T O S. Pela lei dos Senos, tem-se que: De onde se tem

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

TRIÂNGULOS. Condição de existência de um triângulo

TRIÂNGULOS. Condição de existência de um triângulo TRIÂNGULOS Condição de existência de um triângulo Em todo triângulo, a soma das medidas de dois lados sempre tem que ser maior que a medida do terceiro lado. EXERCÍCIO 1º Será que conseguiríamos desenhar

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo Matemática Básica II - Trigonometria Nota 0 - Trigonometria no Triângulo Retângulo Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

Trigonometria no triângulo retângulo

Trigonometria no triângulo retângulo COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Trigonometria no triângulo retângulo Questão 01 A figura a seguir é um prisma

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

ROTEIRO DE RECUPERAÇÃO TRIMESTRAL DE GEOMETRIA

ROTEIRO DE RECUPERAÇÃO TRIMESTRAL DE GEOMETRIA ROTEIRO DE RECUPERAÇÃO TRIMESTRAL DE GEOMETRIA Professor da Disciplina: VAGNER ANTIQUEIRA 2017 Aluno (a): Nº Ano: 9º ANO Ensino Fundamental II Período: Matutino 2º TRIMESTRE O estudo da matemática começa

Leia mais

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:

Leia mais

FUNÇÃO TRIGONOMÉTRICA

FUNÇÃO TRIGONOMÉTRICA FORMAÇÃO CONTINUADA EM MATEMÁTICA Tutora: Maria Tereza Baierl Matemática 1º ano - 4º bimestre/2012 PLANO DE TRABALH0 FUNÇÃO TRIGONOMÉTRICA Professora: Valéria Gomes Gonçalves Tutora:Maria Tereza Baierl

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA TRIGONOMETRIA Aula 5 NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

Resolução de Questões do ENEM

Resolução de Questões do ENEM Resolução de Questões do ENEM Aula ao Vivo 1. As torres Puerta de Europa são duas torres inclinadas uma contra a outra, construídas numa avenida de Madri, na Espanha. A inclinação das torres é de 15 com

Leia mais

Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo.

Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo. Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo. Tarefa 4 Aluna: Monique Andrade da Conceição Grupo: 5 Tutor: LEZIETI CUBEIRO

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette Lista de Estudo para a Prova de 1º Ano Prof. Lafayette 1. Um triângulo ABC é retângulo em A e os ângulos em B e C são, respectivamente, de 30 e 60. A hipotenusa mede 4. a) Faça um desenho representativo.

Leia mais

Apostila de Matemática 06 Trigonometria

Apostila de Matemática 06 Trigonometria Apostila de Matemática 06 Trigonometria.0 Triângulo Retângulo. Introdução Quanto mais o ângulo ou o índice, mais íngreme o triângulo retângulo é. ÍNDICE Altura Afastamento Área do Triângulo Retângulo:

Leia mais

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais