Unidade 14 Conservação da Quantidade de Movimentos. Forças internas e externas Sistemas mecanicamente isolados Colisões

Tamanho: px
Começar a partir da página:

Download "Unidade 14 Conservação da Quantidade de Movimentos. Forças internas e externas Sistemas mecanicamente isolados Colisões"

Transcrição

1 Unidade 14 Conseração da Quantidade de Moimentos Forças internas e externas Sistemas mecanicamente isolados Colisões

2 Introdução Quando descreemos a atuação de uma força, podemos fazê-lo dizendo que essa força atuou em um determinado deslocamento, ou seja, que essa força realizou trabalho. Mas também, descreer a atuação dessa força dizendo que ela atuou durante determinado interalo de tempo. Nessas condições, dizemos que a força aplicou ao corpo um certo impulso.

3 Introdução Da definição de impulso, obtemos a lei da conseração da quantidade de moimento, um dos pilares da descrição física de nosso unierso, tão abrangente que mantém a sua alidade mesmo nas teorias mais atuais da Física Moderna. lém das grandezas etoriais impulso e quantidade de moimento, discutiremos as colisões, que podem ser descritas e equacionadas de um modo relatiamente simples com a aplicação do princípio da conseração da quantidade de moimento.

4 Introdução Durante as colisões, os corpos trocam forças muito intensas, que proocam deformações neles. Essas forças recebem o nome de forças impulsias, classificadas como forças internas ao sistema constituído pelos corpos enolidas em um choque.

5 Teorema do Impulso Na figura 1 estão representadas árias forças agindo simultaneamente sobre um corpo de massa (m). Essas forças podem ser substituídas por uma única: força resultante, que produzirá no corpo o mesmo efeito dinâmico que toda as demais.

6 Teorema do Impulso Se a força resultante (R) agir sobre um corpo, durante um dado interalo de tempo ( t), diremos que a força aplicará no coro um impulso (I), dado por: I = R. t

7 Teorema do Impulso grandeza etorial impulso pode ser associada a qualquer força que atue em um corpo durante um interalo de tempo e possui sempre a mesma direção e o mesmo sentido da força que lhe deram origem. No SI, usamos as seguintes unidades: R em newtons, t em segundos e I em newtons. segundos (N.s). Quando uma força resultante não-nula age sobre um corpo durante um interalo de tempo, o corpo sofre uma ariação em sua elocidade.

8 Teorema do Impulso Para estudar essa ariação, amos definir a grandeza denominada quantidade de moimento (Q) pelo produto da massa pela elocidade: Q = m. quantidade de moimento possui sempre a mesma direção e o mesmo sentido da elocidade. No SI, usamos as seguintes unidades: m em kg; em m/s e Q em kg. m/s

9 Teorema do Impulso Com essas duas grandezas impulso e quantidade de moimento podemos enunciar o teorema do impulso: O impulso resultante de um sistema de forças sobre corpo é igual à ariação da quantidade de moimento do corpo. lgebricamente: Lembrando que I = escrita - 0 essa assim : R. t = = R. t e sendo expressão pode ( ) m - 0 I = Q R

10 Obseração intensidade de uma força que produz um impulso em um corpo pode ariar no decorrer do tempo. Nesse caso, o módulo do impulso produzido pela força é obtido, no diagrama horário F x t, pelo cálculo da área compreendida entre o gráfico e o eixo das abscissas, no interalo de tempo considerando:

11 Exemplo 1

12 Exemplo 2

13 Sistemas isolados Se pensarmos, por exemplo, em um sistema constituído de um ímã e de um bloco de ferro, diersas forças atuarão sobre os corpos citados:

14 Sistemas isolados F 1,2 e F 2, 1 constituem o par de ação e reação de forças magnéticas; N 1 e N 2 são as reações de apoio, ou seja as forças normais em cada um dos corpos; P 1 e P 2 são os resultados das interações graitacionais entre esses corpos e a Terra, isto é, os pesos deles.

15 Sistemas isolados Definido que o sistema é constituído apenas pelo ímã e pelo bloco de ferro; F 1,2 e F 2, 1 são consideradas forças internas, pois são trocadas entre os próprios corpos do sistema; N 1 e N 2 são formadas por forças externas, pois não faz parte do sistema, ou seja, as normais são trocadas com o apoio; P 1 e P 2 são formadas por forças externas, pois não faz parte do sistema, ou seja, os pesos são trocadas com a Terra

16 Sistema isolados - conclusão Um conjunto de corpos, ou de pontos materiais, constitui um sistema no qual podem agir forças internas e forças externas. Forças internas: são interações de dois componentes do sistema. Quando consideramos o sistema como um único corpo e somamos todas as forças que agem nesse sistema, a parcela relatia á soma das forças internas é nula.

17 Sistema isolados Forças extenas: são interações de um componente do sistema com corpos que não sejam do sistema. Se a soma das forças externas que atuam no sistema for nula, dizemos que se trata de um sistema isolado de forças externas. Nesse caso, como o somatório das forças são nulas, não há ariação na quantidade de moimento do sistema.

18 Sistema Isolado F externas = 0 Q = sistema cons tan te Nessa expressão, para um sistema constituído de n elementos, temos Q = Q + Q sistema 1 2 Q n Essa conclusão mostra-nos que a quantidade de moimento de cada elemento do sistema pode ariar, mas não aria a quantidade de moimento do conjunto. Portanto: Para um sistema isolado de forças externas, a quantidade de moimento do sistema se consera. No caso particular de um sistema constituído por dois corpos ( e ) e isolados de forças externas, temos: Qincial = Q final m. + m. = m. + m.

19 Exemplo

20 Exemplo - continuação

21 Exemplo de plicação -Modelo 1 Uma peça de artilharia de massa 2 toneladas dispara uma bala de 8 kg. elocidade do projétil no instante em que abandona a peça é 250 m/s. Calcule a elocidade do recuo da peça, desprezando a ação de forças externas. PROCEDIMENTOS: 1. Represente a peça de artilharia e a bala antes e depois do disparo; 2. Utilize o princípio da conseração da quantidade de moimento.

22 Exemplo de plicação -Modelo 1 Q antes = Q = - p depois p = 2000 p =1m/s

23 Colisões

24 Colisões Nas colisões (choques), as interações entre os corpos são de grande intensidade e possuem magnitudes que ariam bruscamente durante fenômeno. Dentro da Dinâmica Impulsia, ela pode ser útil, por exemplo, para explicar inestigações e dados sobre batida de automóeis.

25 Colisões figura mostra uma colisão frontal de dois eículos ( e ) que se deslocam na mesma direção; M a e m as suas massas; V e V suas respectias elocidade antes de colidirem; V e V as elocidades deles depois da colisão:

26 Colisões Recordando que os corpos enolidos em colisões constituem sistemas isolados e, portanto, obedecem à conseração de quantidade de moimento, então: Q antes = Q depois Substituímos por: m. V + m. V = m. V + m. V

27 Velocidade relatia Se o corpo possui elocidade de 2m/s, então, a cada 1s que passa, ele percorre 2m para direita; De maneira similar, a cada 1s que passa, o outro corpo, percorre 3 m para esquerda; Portanto eles se aproximam um total de 5m. ssim podemos dizer que a elocidade de aproximação entre os corpo foi de 5m/s.

28 Velocidade relatia Como poderíamos obter o mesmo resultado sem que haja a necessidade desse raciocínio? maneira mais fácil é subtrair as elocidades e respeitando seus respectios sinais. V aprox = V - V

29 Velocidade relatia pós uma colisão, nem sempre temos uma fase de afastamento, pois os corpos podem permanecer grudados depois de sofrerem o choque. pesar disso, em nossos estudos, sempre consideremos essa fase (mesmo que a elocidade de afastamento seja nula). Seguindo o mesmo raciocínio da elocidade relatia de aproximação, os corpos e se afastam com elocidade Vaf (elocidade relatia de afastamento), que também pode ser calculada com subtração: V afast = V V

30 Exemplo de plicação -Modelo 2 Uma bomba de massa 600 kg tem elocidade de 50 m/s e explode em duas partes. Um terço da massa é lançada para trás com elocidade de 30 m/s. Determine a elocidade com que é lançada a outra parte. PROCEDIMENTOS: 1. Represente a bomba antes da explosão, e as partes da bomba após a explosão; 2. Use Q antes =Q depois. (Obsere a orientação)

31 Exemplo de plicação -Modelo 2

32 Fases de uma colisão Em choque entre dois corpo, temos a tendência de estudar o ocorre, como se um fenômeno único, indiisíel, estiesse acontecendo. Durante uma colisão, por exemplo, podemos supor existência de pelo menos, duas fases distintas: a de deformação e a de restituição.

33 Fases de uma colisão Fase de deformação

34 Fases de uma colisão Fase de restituição

35 Exemplo de plicação Modelo 3 Dois corpos e moimentam-se na mesma direção e possuem elocidades de módulo 3m/s e 2m/s. Calcule a elocidade relatia entre eles se suas elocidades tierem o mesmo sentido e se tierem sentidos opostos. Resposta: pesar de muito usada, essa regra não é alida, pois a elocidade relatia entre os dois é sempre a diferença entre as elocidades, considerando-se seus respectios sinais. Para que pudéssemos usar a regra da soma ou da diferença, teríamos de fazer os cálculos com os módulo das elocidades dos corpos.

36 Coeficiente de restituição Quando começamos a estudar as colisões, percebemos que a equação da conseração da quantidade de moimento era necessária para podermos quantificar choques, mas insuficiente no caso de termos situações com sua incógnitas. Veremos outra expressão matemática que poderá ser usada em casos como esse na constituição de um sistema de equações.

37 Coeficiente de restituição o pensarmos, por exemplo, numa batida entre dois carros e numa bolinha de golfe que é golpeada, perceberemos semelhanças muito claras: os dois fatos analisados são colisões, mas os formatos dos corpos enolidos sofrem restituições percentualmente diferentes. Essas duas situações mostram que cada colisão apresenta um certo níel ou percentual de restituição. Para os carros, teríamos praticamente 0% e, para a bolinha, quase 100% de restituição.

38 Coeficiente de restituição De forma geral, deemos pensar que, em qualquer tipo de choque, existe um coeficiente de restituição (e) que compara dados dos corpos enolidos antes e depois do contato entre eles. Matematicamente, isso pode ser representado pela seguinte equação: e = afast aprox =

39 Tipos de Choque Se analisarmos um sistema de corpos que sofrem uma colisão, poderão ocorrer perdas de energia cinética em irtude de aquecimento, deformação e som proocados no impacto.

40 Choque inelástico, anelástico ou plástico a) e = 0 b) Q final = Q inicial (a quantidade de moimento do sistema se consera c) E c final < E c inicial (não há conseração de energia cinética; d) Perda de energia no processo: m. Ec antes = ( V ) m.( V ) 2 Perda 2 Ec depois ( V V ) e) Só existe a fase de deformação f) Os corpos moem-se juntos após o choque (ficam "grudados") = m = E c E + m. 2 antes c depois 2

41 Choque parcialmente elástico a) 0 < e < 1 b) Q final = Q inicial (a quantidade de moimento do sistema se consera) c) E c final < E c inicial (parte da energia cinética se conerte em outras formas de energia, notadamente, calor e som) d) Perda de energia no processo: e) Existem as fases de deformação e de restituição f) Equacionamento: (1) m a. a + m b. b = m a. a + m b. b (2) e. ( a - b ) = - ( a - b )

42 Choque perfeitamente elástico a) e = 1, logo, V apro = - V afast b) Q final = Q inicial (a quantidade de moimento do sistema se consera) c) E c final = E c inicial (a energia cinética do sistema se consera) d) Existem as fases de deformação e de restituição e) Equacionamento (fixar inicialmente o eixo de moimento para referência de sinais): (1)m a. a + m b. b = m a. a + m b. b (2) ( a - b ) = - ( a - b )

43 Exemplos de plicação Modelo 4 a) Uma esfera de massa m = 5,0kg e elocidade de 3,0m/s, choca-se com outra esfera idêntica, inicialmente em repouso. dmitindo-se o choque elástico e frontal, determine a elocidade das esferas após o choque. ( ) ( ) = + + = + = + + = + = depois antes m m m m m Q Q ( ) e 1.Logo : e Como o choque é elástico, + = = = = =

44 Exemplos de plicação Modelo 4 ( ) ( ) ( ) = = + = + + = s m / 1 = ( ) + = + = s m / = 4

45 Exemplos de plicação Modelo 5

46 Exemplos de plicação Modelo 6

47 Exemplos de plicação Modelo 6

48 Exemplos de plicação Modelo 6 d) Um projétil de massa m = 15g atinge um corpo de teste de 10kg do aparelho pêndulo balístico. medida da altura de 5 cm. Determine a elocidade do projétil antes do impacto M + m =. 2g. h m ( ) = = 667,7m / s

01) Uma força constante de 50N age sobre um móvel durante 0,2 s. Calcule o impulso da força.

01) Uma força constante de 50N age sobre um móvel durante 0,2 s. Calcule o impulso da força. www.medeirosjf.net Unidade VII: Impulso, Quantidade de Mo. e Colisões 124 UNIDDE VII: Impulso e Quantidade de Moimento 7.1- Impulso Suponhamos que uma força constante F age numa partícula, durante um interalo

Leia mais

Aulas Multimídias Santa Cecília. Profº Rafael Rodrigues Disciplina: Física

Aulas Multimídias Santa Cecília. Profº Rafael Rodrigues Disciplina: Física Aulas Multimídias Santa Cecília Profº Rafael Rodrigues Disciplina: Física IMPULSO E QUANTIDADE DE MOVIMENTO CONCEITO DE IMPULSO Δt F O taco está exercendo força durante um intervalo de tempo pequeno. Impulso

Leia mais

Impulso e Quantidade de Movimento

Impulso e Quantidade de Movimento Impulso e Quantidade de Movimento 1. Definição de impulso (I ) *Grandeza vetorial 2. Impulso de Força Variável I f = F. Δt (N. s) kg. m s 2. s (kg. m s) F = constante *A área de um gráfico de força em

Leia mais

Fís. Leonardo Gomes (Caio Rodrigues)

Fís. Leonardo Gomes (Caio Rodrigues) Semana 13 Leonardo Gomes (Caio Rodrigues) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 03/05

Leia mais

Lista de exercícios Impulso e Quantidade de movimento

Lista de exercícios Impulso e Quantidade de movimento Lista de exercícios Impulso e Quantidade de movimento 1. Uma nave espacial de 10 3 kg se movimenta, livre de quaisquer forças, com velocidade constante de 1 m/s, em relação a um referencial inercial. Necessitando

Leia mais

AULA 15 IMPULSO E QUANTIDADE DE MOVIMENTO

AULA 15 IMPULSO E QUANTIDADE DE MOVIMENTO AULA 15 IMPULSO E QUANTIDADE DE MOVIMENTO Profa. MSc.: Suely Silva IMPULSO E QUANTIDADE DE MOVIMENTO 1. Impulso de uma força constante Consideremos uma força constante, que atua durante um intervalo de

Leia mais

Aluno (a): nº: Turma:

Aluno (a): nº: Turma: Aluno (a): nº: Turma: Nota Ano: 1º EM Data: / /2018 Trabalho Recuperação Final Professor (a): Lélio Matéria: Física Valor: 20,0 pts 1 O gráfico seguinte representa a projeção da força resultante que atua

Leia mais

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Dinâmica Impulsiva

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Dinâmica Impulsiva Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Dinâmica Impulsiva 1. (Uerj 2012) Observe a tabela abaixo, que apresenta as massas de alguns corpos

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO IMPULSO E QUANTIDADE DE MOVIMENTO Prof.: Henrique Dantas Impulso É a grandeza física vetorial relacionada com a força aplicada em um corpo durante um intervalo de tempo. O impulso é dado pela expressão:

Leia mais

Fís. Leonardo Gomes (Caio Rodrigues)

Fís. Leonardo Gomes (Caio Rodrigues) Semana 14 Leonardo Gomes (Caio Rodrigues) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. 17 Exercícios

Leia mais

O Momento Linear ou Quantidade de movimento (Q ou p) é a grandeza vetorial dada pelo produto entre a massa de um corpo e sua velocidade.

O Momento Linear ou Quantidade de movimento (Q ou p) é a grandeza vetorial dada pelo produto entre a massa de um corpo e sua velocidade. Quantidade de movimento e colisões RESUMO Imagine que temos uma bola em movimento e aplicamos uma força na mesma direção nessa bola. Com isso, a bola terá uma nova velocidade. Essa força aplicada não é

Leia mais

FACULDADE FINOM DE PATOS DE MINAS CENTRO BRASILEIRO DE EDUCAÇÃO E CULTURA - CENBEC DIRETORIA ACADÊMICA FISICA I PROFESSOR: LUIZ CLAUDIO SILVA PIRES

FACULDADE FINOM DE PATOS DE MINAS CENTRO BRASILEIRO DE EDUCAÇÃO E CULTURA - CENBEC DIRETORIA ACADÊMICA FISICA I PROFESSOR: LUIZ CLAUDIO SILVA PIRES FACULDADE FINOM DE PATOS DE MINAS CENTRO BRASILEIRO DE EDUCAÇÃO E CULTURA - CENBEC DIRETORIA ACADÊMICA FISICA I PROFESSOR: LUIZ CLAUDIO SILVA PIRES Matéria Semestral Vetores; Mecânica Newtoniana; leis

Leia mais

Colisões e Impulso. Evandro Bastos dos Santos. 23 de Maio de 2017

Colisões e Impulso. Evandro Bastos dos Santos. 23 de Maio de 2017 Colisões e Impulso Evandro Bastos dos Santos 23 de Maio de 2017 1 Introdução Sempre que ocorrem colisões, explosões, verificam-se que entre as partículas do sistema as forças trocadas são internas e de

Leia mais

Fís. Fís. Monitor: João Carlos

Fís. Fís. Monitor: João Carlos Fís. Professor: Leonardo Gomes Monitor: João Carlos Colisões 11 jul RESUMO As colisões são classificadas de acordo com a energia conservada no choque. Vamos usar a queda de uma bola sem resistência do

Leia mais

1. Determine o coeficiente de restituição dos seguintes choques: a)

1. Determine o coeficiente de restituição dos seguintes choques: a) DISCIPLINA PROFESSOR FÍSICA REVISADA DATA (rubrica) RENATO 2017 NOME Nº ANO TURMA ENSINO 2º MÉDIO 1. Determine o coeficiente de restituição dos seguintes choques: a) b) c) d) e) 2. Classifique os choques

Leia mais

DINÂMICA IMPULSIVA & COLISÕES - EXERCÍCIOS

DINÂMICA IMPULSIVA & COLISÕES - EXERCÍCIOS DINÂMIC IMPULSIV & COLISÕES - EXERCÍCIOS 1) Um corpo de massa 200 g está em queda livre. Dê as características do impulso do peso do corpo durante 5s de movimento. 2) Um corpo de massa 1 kg realiza um

Leia mais

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho Samuel.carvalho@ifsudestemg.edu.br Juiz de Fora MG Introdução: Objetivo: Desenvolver

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos 1 P.380 Dados: t s; F 0 N Intensidade: I F t 0 I 40 N s Direção: a esa da força ertical Sentido: o eso da força de baixo para cia P.381 Dados: 0,6 kg; g 10 /s ; t 3 s P g 0,6 10 P 6 N Intensidade do ipulso:

Leia mais

Aproximação Interação rápida Afastamento v apr. = v F média = m( v/ t) = Q/ t v afas. = v duração do choque

Aproximação Interação rápida Afastamento v apr. = v F média = m( v/ t) = Q/ t v afas. = v duração do choque setor 1201 12010508 Aula 39 CHOQUE CONTRA OSTÁCULO IXO Aproximação Interação rápida Afastamento v apr. = v média = m( v/ t) = Q/ t v afas. = v Q = mv Q = mv v v Velocidade de aproximação Deformação Restituição

Leia mais

Calcule: a) as velocidades da esfera e do pêndulo imediatamente após a colisão; b) a compressão máxima da mola.

Calcule: a) as velocidades da esfera e do pêndulo imediatamente após a colisão; b) a compressão máxima da mola. 1) Um pequeno bloco, de massa m = 0,5 kg, inicialmente em repouso no ponto A, é largado de uma altura h = 0,8 m. O bloco desliza, sem atrito, ao longo de uma superfície e colide com um outro bloco, de

Leia mais

TRABALHO E ENERGIA. F t. O trabalho realizado pela força constante F para deslocar o bloco de uma distância d é:

TRABALHO E ENERGIA. F t. O trabalho realizado pela força constante F para deslocar o bloco de uma distância d é: Trabalho e Energia. Nota: As fotografias assinaladas com ( foram retiradas do liro ( A. Bello, C. Portela e H. Caldeira Ritmos e Mudança, Porto editora. As restantes são retiradas de Sears e Zemansky Física

Leia mais

Energia Mecânica. A Energia Mecânica de um corpo é a soma de sua energia cinética com sua energia potencial. E m = E c + E P

Energia Mecânica. A Energia Mecânica de um corpo é a soma de sua energia cinética com sua energia potencial. E m = E c + E P Energia Mecânica A Energia Mecânica de um corpo é a soma de sua energia cinética com sua energia potencial. E m = E c + E P Unidade no S.I.: J (joule) 1 Energia Cinética (Ec) Todo corpo que se encontra

Leia mais

Impulso. Quantidade de Movimento. Diego Ricardo Sabka

Impulso. Quantidade de Movimento. Diego Ricardo Sabka Impulso Quantidade de Movimento Impulso Grandeza física que varia a quantidade de movimento de um corpo. Denominamos de impulso o produto da força resultante pelo tempo. Unidade de medida: Newton.segundo

Leia mais

Lista 9 Impulso, Quantidade de Movimento Professor: Alvaro Lemos - Instituto Gaylussac 3ª série 2019

Lista 9 Impulso, Quantidade de Movimento Professor: Alvaro Lemos - Instituto Gaylussac 3ª série 2019 1. (Enem 2016) O trilho de ar é um dispositivo utilizado em laboratórios de física para analisar movimentos em que corpos de prova (carrinhos) podem se mover com atrito desprezível. A figura ilustra um

Leia mais

1 Quantidade de movimento (Introdução) 2 Conceito de quantidade de movimento. 3 Características do vetor quantidade de movimento 4 Princípio da

1 Quantidade de movimento (Introdução) 2 Conceito de quantidade de movimento. 3 Características do vetor quantidade de movimento 4 Princípio da 1 Quantidade de movimento (Introdução) 2 Conceito de quantidade de movimento. 3 Características do vetor quantidade de movimento 4 Princípio da conservação da quantidade de movimento 5 Energia nas colisões

Leia mais

FÍSICA. 02. O gráfico a seguir representa o módulo da Quantidade de Movimento (Q) de uma partícula em função do módulo de sua velocidade.

FÍSICA. 02. O gráfico a seguir representa o módulo da Quantidade de Movimento (Q) de uma partícula em função do módulo de sua velocidade. DATA: Parte I 01. O Impulso de uma força constante F, durante o intervalo de tempo t: a) é nulo se a força F não produz o deslocamento; b) é uma grandeza escalar; c) é nulo se a força F for perpendicular

Leia mais

Aluno(a): Turma: N.º: a) Qual é a velocidade do bloco no instante t = 3 s? b) Qual é a intensidade da força média entre os instantes t = 0 e t = 3 s?

Aluno(a): Turma: N.º: a) Qual é a velocidade do bloco no instante t = 3 s? b) Qual é a intensidade da força média entre os instantes t = 0 e t = 3 s? P3 simulado DISCIPLINA: FÍSICA NOTA: 2ª SÉRIE do Ensino Médio SEGUNDO BIMESTRE Professor(a): MANUEL Data: / /17 Aluno(a): Turma: N.º: QUESTÃO 01 Um bloco de massa 2,0 kg tem movimento retilíneo e uniforme

Leia mais

Física A Extensivo V. 7

Física A Extensivo V. 7 Extensivo V 7 Exercícios ) B Ocorre violação do princípio da conservação da energia ) E perdida E PI E PII E perdida m g h I m g h II E perdida,65,8,65,4 E perdida,6 J b) V x t 5,7 m/s c) Existe a presença

Leia mais

Física A Extensivo V. 7

Física A Extensivo V. 7 Física Extensivo V. 7 Resolva ula 6 6.1) Quantidade de movimento: v = 9 km/h = 5 m/s Q =. 1 4 kg. m/s Q = m. v. 1 4 = m. (5) m = 8 kg Energia cinética: = m. 8.1) E = (1,5). (15) + (15 c 15v c = (1,5).

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO. Professora Daniele Santos Instituto Gay-Lussac 2º ano

IMPULSO E QUANTIDADE DE MOVIMENTO. Professora Daniele Santos Instituto Gay-Lussac 2º ano IMPULSO E QUANTIDADE DE MOVIMENTO Professora Daniele Santos Instituto Gay-Lussac 2º ano IMPULSO IMPULSO Considere um corpo de massa m deslocando-se com velocidade vetorial constante. Em um determinado

Leia mais

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

Prova de Física Prof. Júnior

Prova de Física Prof. Júnior Prova de Física Prof. Júnior Em dois veículos iguais (mesma massa) colidindo numa parede, um a 80 km/h e o outro a 60 km/h, em qual deles o efeito da colisão será maior? Logicamente o estrago será maior

Leia mais

Professora Florence. Como o sistema se encontra em repouso a Quantidade de Movimento inicial de ambos é igual a zero (ainda não houve o disparo).

Professora Florence. Como o sistema se encontra em repouso a Quantidade de Movimento inicial de ambos é igual a zero (ainda não houve o disparo). 10. Um projétil com massa de 4,0 kg é disparado, na direção horizontal, com velocidade de módulo 6 x 10 m/s, por um canhão de massa,0 x 10 3 kg, inicialmente em repouso. Determine o módulo da velocidade

Leia mais

Física 1. 2 a prova 26/05/2018. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 26/05/2018. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 26/05/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Lista 10 - Impulso e Quantidade de Movimento Professor Alvaro Lemos.

Lista 10 - Impulso e Quantidade de Movimento Professor Alvaro Lemos. 1. (Uerj 019) Em uma mesa de sinuca, as bolas A e B, ambas com massa igual a 140 g, deslocam-se com velocidades VA e V B, na mesma direção e sentido. O gráfico abaixo representa essas velocidades ao longo

Leia mais

Prof. Oscar Capitulo 9

Prof. Oscar Capitulo 9 Centro de Massa e Momento Linear (Colisões) Prof. Oscar Capitulo 9 O centro de massa Mesmo quando um corpo gira ou vibra, existe um ponto nesse corpo, chamado centro de massa, que se desloca da mesma maneira

Leia mais

Quantidade de movimento ou momento linear Sistemas materiais

Quantidade de movimento ou momento linear Sistemas materiais Quantidade de oiento ou oento linear Sisteas ateriais Nota: s fotografias assinaladas co fora retiradas do liro. ello, C. Portela e H. Caldeira Ritos e Mudança, Porto editora. s restantes são retiradas

Leia mais

Parte 2 - P2 de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1

Parte 2 - P2 de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1 Parte - P de Física I - 017- Nota Q1 88888 Nota Q Nota Q3 NOME: DRE Teste 1 Assinatura: AS RESPOSTAS DAS QUESTÕES DISCURSIVAS DEVEM SER APRESENTADAS APENAS NAS FOLHAS GRAMPEA- DAS DE FORMA CLARA E ORGANIZADA.

Leia mais

Física I Prova 2 10/05/2014

Física I Prova 2 10/05/2014 Posição na sala Física I Prova 2 10/05/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente)

Leia mais

Força Elástica FÍSICA CURSINHO UFMS. P ROF ESSORA : CA R L A RODR I G UES

Força Elástica FÍSICA CURSINHO UFMS. P ROF ESSORA : CA R L A RODR I G UES Força Elástica FÍSICA CURSINHO UFMS. PROFESSORA: CARLA RODRIGUES Lei de Hooke Define o comportamento da mola. k = constante de deformação. Peso da Carga (N) 5 10 15 20 Elongação (cm) 2 4 6 8 k = F x Exemplo

Leia mais

EXPERIMENTO IV COLISÕES

EXPERIMENTO IV COLISÕES EXPERIMENTO IV COLISÕES Introdução Nesta experiência estudaremos colisões unidimensionais entre dois carrinhos sobre o trilho de ar. Com este arranjo experimental, um colchão de ar gerado entre a superfície

Leia mais

Resolução Dinâmica Impulsiva

Resolução Dinâmica Impulsiva Resposta da questão 1: [C] Aplicando o teorema do impulso: m v I ΔQ F Δt m v F Δt km 1m s 80 kg 7 m v h 3,6 km h F F F 8.000 N Δt 0, s F 8.000 N nº sacos nº sacos nº sacos 16 peso de cd saco 500 N Resposta

Leia mais

CENTRO DE MASSA E MOMENTO LINEAR

CENTRO DE MASSA E MOMENTO LINEAR CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I CENTRO DE MASSA E MOMENTO LINEAR Prof. Bruno Farias Introdução Neste módulo vamos discutir

Leia mais

EN 2010 (A)0,8 (B) 1,0 (C) 2,0 (D) 3,0 (E) 4,0

EN 2010 (A)0,8 (B) 1,0 (C) 2,0 (D) 3,0 (E) 4,0 EN 010 1. Uma pequena esfera de massa m está presa a um fio ideal de comprimento L = 0,4m, que tem sua outra extremidade presa ao teto, conforme indica a figura. No instante t = 0, quando o fio faz um

Leia mais

LISTA EXTRA - UERJ. Desprezando o atrito, o trabalho total, em joules, realizado por F, equivale a: a) 117 b) 130 c) 143 d) 156

LISTA EXTRA - UERJ. Desprezando o atrito, o trabalho total, em joules, realizado por F, equivale a: a) 117 b) 130 c) 143 d) 156 1. (Uerj 01) Uma pessoa empurrou um carro por uma distância de 6 m, aplicando uma força F de mesma direção e sentido do deslocamento desse carro. O gráfico abaixo representa a variação da intensidade de

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos 1 T.318 Resposta: b y E ec.(o) E ec.() 0 0 gh 0 gh gh h O 0 x Q 0 Q gh T.319 Resposta: e De E C, e: E C. Portanto: E C Q Sendo E C 0 J e Q 0 N s, resulta: 0 ( 0) 10 kg De Q, teos: 0 10,0 /s T.30 Resposta:

Leia mais

400 ms de duração, a força média sentida por esse passageiro é igual ao peso de:

400 ms de duração, a força média sentida por esse passageiro é igual ao peso de: 1. Ao utilizar o cinto de segurança no banco de trás, o passageiro também está protegendo o motorista e o carona, as pessoas que estão na frente do carro. O uso do cinto de segurança no banco da frente

Leia mais

Considerando o sistema isolado de forças externas, calcula-se que o módulo da velocidade da parte m 3 é 10 m/s, com a seguinte orientação: a) d) y

Considerando o sistema isolado de forças externas, calcula-se que o módulo da velocidade da parte m 3 é 10 m/s, com a seguinte orientação: a) d) y 2 a EM Dione Dom Lista de Exercícios sobre Impulso, Quantidade de Movimento e Colisões - 2a Série - Física 1 1) Uma explosão divide um pedaço de rocha em repouso em três partes de massas m 1 = m 2 = 20

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Princípio do impulso e quantidade de

Leia mais

19/Mar/2018 Aula 9 9. Colisões 9.1 Elásticas 9.2 Inelásticas 9.3 Em 2D e 3D 9.4 Explosões

19/Mar/2018 Aula 9 9. Colisões 9.1 Elásticas 9.2 Inelásticas 9.3 Em 2D e 3D 9.4 Explosões 14/Mar/018 Aula 8 8. Momento linear 8.1 Definição 8. Impulso de uma força 8.3 Centro de massa 8.4 Conservação do momento 19/Mar/018 Aula 9 9. Colisões 9.1 Elásticas 9. Inelásticas 9.3 Em D e 3D 9.4 Explosões

Leia mais

TURMA: 9A. Neste caso, = 0 e cos0 = 1. Assim, o trabalho é calculado por: = F.d.cos => = F.d.cos0

TURMA: 9A. Neste caso, = 0 e cos0 = 1. Assim, o trabalho é calculado por: = F.d.cos => = F.d.cos0 ESCOLA DE ENSINO FUND. E MÉDIO TEN. RÊGO BARROS. DIRETOR: CESAR ALVES DE ALMEIDA COSTA - CEL. INT. R1 PROFESSORES: CÁSSIO - POMPEU ALUNO (A): N º SÉRIE: 9 a TURMA: 9A TRABALHO MECÂNICO 1. Trabalho de uma

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

EXERCÍCIOS EXTRAS 2ª Série

EXERCÍCIOS EXTRAS 2ª Série EXERCÍCIOS EXTRAS 2ª Série 1) Um carro A, de massa m, colide com um carro B, de mesma massa m que estava parado em um cruzamento. Na colisão os carros se engastam, saem juntos, arrastando os pneus no solo,

Leia mais

Trabalho, Energia Mecânica. Impulso e Quantidade de Movimento

Trabalho, Energia Mecânica. Impulso e Quantidade de Movimento Trabalho, Energia Mecânica. Impulso e Quantidade de Movimento PROFESSOR WALESCKO 15 de setembro de 2005 1. Um bloco de 5,0 kg de massa é arrastado, a partir do repouso, sobre um plano horizontal por uma

Leia mais

LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 11 COLISÕES PROF. BETO E PH

LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 11 COLISÕES PROF. BETO E PH LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 11 COLISÕES PROF. BETO E PH 1) (PUC SP - 2017) A figura mostra uma colisão envolvendo um trem de carga e uma camionete. Segundo testemunhas, o condutor da camionete

Leia mais

Aula da prática 8 Colisões em uma dimensão. Prof. Paulo Vitor de Morais

Aula da prática 8 Colisões em uma dimensão. Prof. Paulo Vitor de Morais Aula da prática 8 Colisões em uma dimensão Prof. Paulo Vitor de Morais O que é Energia? De forma simplificada: Energia é uma grandeza escalar associada ao estado de um ou mais objetos! Também podemos dizer

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel As leis de Newton e suas aplicações Disciplina: Física Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Dois blocos de massas 4, 00 kg e 8, 00 kg estão ligados por um fio e deslizam para baixo de um plano inclinado de

Leia mais

Halliday Fundamentos de Física Volume 1

Halliday Fundamentos de Física Volume 1 Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Roteiro do experimento Colisões bidimensionais Parte 2

Roteiro do experimento Colisões bidimensionais Parte 2 Roteiro do experimento Colisões bidimensionais Parte 2 Retomada do Experimento Como visto na primeira parte do experimento, o fluxo de ar injetado pelos furos do tampo formou um colchão de ar que praticamente

Leia mais

04- Uma escada homogênea de 40kg apóia-se sobre uma parede, no ponto P, e sobre o chão, no ponto C. Adote g = 10m/s².

04- Uma escada homogênea de 40kg apóia-se sobre uma parede, no ponto P, e sobre o chão, no ponto C. Adote g = 10m/s². PROFESSOR: Raphael Carvalho BANCO DE QUESTÕES - FÍSICA 2ª SÉRIE - ENSINO MÉDIO ============================================================================================== 01- Dois atletas em lados opostos

Leia mais

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações. Lista 10: Energia Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas

Leia mais

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções gratis em simplificaaulas.com.

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções gratis em simplificaaulas.com. FÍSICA 1 - RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções gratis em simplificaaulas.com. FORMULÁRIO DA P2 RESUMO

Leia mais

Retardado: quando o módulo da velocidade diminui no decorrer. do tempo. Nesse caso teremos: v. e a têm sinais contrários. Movimento Uniforme (M.U.

Retardado: quando o módulo da velocidade diminui no decorrer. do tempo. Nesse caso teremos: v. e a têm sinais contrários. Movimento Uniforme (M.U. Cinemática Escalar Conceitos Básicos Espaço (S) O espaço de um móvel num dado instante t é dado pelo valor da medida algébrica da sua distância até a origem dos espaços O. Retardado: quando o módulo da

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 9 (pág. 92) AD TM TC. Aula 10 (pág. 92) AD TM TC. Aula 11 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 9 (pág. 92) AD TM TC. Aula 10 (pág. 92) AD TM TC. Aula 11 (pág. Física Setor Prof.: Índice-controle de Estudo ula 9 (pág. 9) D TM TC ula 0 (pág. 9) D TM TC ula (pág. 94) D TM TC ula (pág. 95) D TM TC ula 3 (pág. 95) D TM TC ula 4 (pág. 97) D TM TC ula 5 (pág. 98) D

Leia mais

CENTRO DE MASSA. 2.Cinco pontos materiais de massas iguais a m estão situados nas posições indicadas na figura. Determine as coordenadas do

CENTRO DE MASSA. 2.Cinco pontos materiais de massas iguais a m estão situados nas posições indicadas na figura. Determine as coordenadas do CENTRO DE MASSA 1.Três pontos materiais, A, B e D, de massas iguais a m estão situados nas posições indicadas na figura ao lado. Determine as coordenadas do centro de massa do sistema de pontos materiais.

Leia mais

Impulso e quantidade de movimento.

Impulso e quantidade de movimento. Impulso e quantidade de movimento. Respostas: CAPÍTULO 4 Resolução dos Exercícios Propostos e Complementares Exercícios Propostos 3) Cálculo da intensidade de Q : Q m v,0 0 40 kg m/s A quantidade de movimento

Leia mais

Questões Conceituais

Questões Conceituais Questões em Aula Questões Conceituais QC.1) Três blocos de massas iguais deslizam sobre rampas sem atrito como mostrado na Fig.1. Os blocos não se desprendem da rampa até chegarem na base. Eles partem

Leia mais

d) Determine a posição da partícula quando ela atinge o repouso definitivamente.

d) Determine a posição da partícula quando ela atinge o repouso definitivamente. QUESTÕES DE TRABALHO E ENERGIA DA UFPE DE FÍSICA 1 - PROVA 2 2002.2 1) Um bloco de massa M = 1,0 Kg é solto a partir do repouso no ponto A a uma altura H = 0,8 m, conforme mostrado na figura. No trecho

Leia mais

TURMA: 9A. Neste caso, = 0 e cos0 = 1. Assim, o trabalho é calculado por: = F.d.cos => = F.d.cos0

TURMA: 9A. Neste caso, = 0 e cos0 = 1. Assim, o trabalho é calculado por: = F.d.cos => = F.d.cos0 ESCOLA DE ENSINO FUND. E MÉDIO TEN. RÊGO BARROS. DIRETOR: CESAR ALVES DE ALMEIDA COSTA - CEL. INT. R1 PROFESSORES: CÁSSIO - POMPEU ALUNO (A): N º SÉRIE: 9 a TURMA: 9A TRABALHO MECÂNICO 1. Trabalho de uma

Leia mais

(d) K 1 > K 2 e K 2 < K 3 (e) K 1 = K 3 < K 2

(d) K 1 > K 2 e K 2 < K 3 (e) K 1 = K 3 < K 2 Segunda Prova de Física I - 019/1 Instituto de Física Nas questões onde for necessário, considere que: todos os fios e molas são ideais; a resistência do ar é nula; a aceleração da gravidade tem módulo

Leia mais

Aula 13 e 14. Leis de Newton e Energia

Aula 13 e 14. Leis de Newton e Energia Aula 13 e 14 Leis de Newton e Energia Revisão Estudo dos Movimentos Princípio da Independência dos Movimentos (Galileu) O movimento da bola é um movimento bidimensional, sendo realizado nas direções horizontal

Leia mais

Nesta aula veremos os significados de alguns termos úteis que são comumente encontrados e conheceremos a primeira lei da termodinâmica.

Nesta aula veremos os significados de alguns termos úteis que são comumente encontrados e conheceremos a primeira lei da termodinâmica. Aula: 05 Temática: Primeira Lei da Termodinâmica Nesta aula eremos os significados de alguns termos úteis que são comumente encontrados e conheceremos a primeira lei da termodinâmica. 1. Conceitos e definições

Leia mais

5ª Série de Problemas Mecânica e Relatividade MEFT

5ª Série de Problemas Mecânica e Relatividade MEFT 5ª Série de Problemas Mecânica e Relatividade MEFT 1. Um vagão move-se sem atrito em linha recta sobre um plano horizontal. A sua massa é M=500 kg. No instante t=0, a sua velocidade é de 7 m/s. Nesse instante

Leia mais

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico.

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. Grandezas Vetores É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. GRANDEZA ESCALAR São aquelas medidas que precisam

Leia mais

Treino Gráficos de Energia

Treino Gráficos de Energia 1. As moléculas que compõem o ar estão em constante movimento, independentemente do volume no qual estejam contidas. Ludwig Boltzmann (1844-1906) colaborou para demonstrar matematicamente que, em um determinado

Leia mais

Um atirador, com um rifle de 2 kg apoiado ao ombro, dispara uma bala de 15 g, cuja velocidade na extremidade de saída do cano é 800 m/s.

Um atirador, com um rifle de 2 kg apoiado ao ombro, dispara uma bala de 15 g, cuja velocidade na extremidade de saída do cano é 800 m/s. )$3±(&Æ1,&$D/LVWDGH([HUFtFLRV±DJRVWRGH ([HUFtFLRVSDUDHQWUHJDUH'DWDGHHQWUHJD &ROLV}HV RHK Q 6.4) Explique como um airbag de um automóvel pode ajudar a proteger um passageiro de se machucar seriamente no

Leia mais

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. Lista 10: Energia NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão de

Leia mais

Teorema da energia cinética

Teorema da energia cinética TIPOS DE ENERGIA Podemos definir energia como sendo a propriedade que determinado corpo ou sistema possui que lhe permite realizar trabalho. Assim, um corpo ou sistema qualquer que realiza ou é capaz de

Leia mais

Física I Prova 2 20/02/2016

Física I Prova 2 20/02/2016 Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões

Leia mais

Introdução ao movimento no plano

Introdução ao movimento no plano Introdução ao moimento no plano Moimento de Projécteis Prof. Luís C. Perna O disparo de um canhão ou de uma espingarda, o moimento de uma bola de golfe, depois de uma tacada e o lançamento do martelo ou

Leia mais

Lista 9: Impulso e Momentum. Questões. passarinho está voando é superior, inferior ou igual à leitura quando ele pousa na gaiola.

Lista 9: Impulso e Momentum. Questões. passarinho está voando é superior, inferior ou igual à leitura quando ele pousa na gaiola. Lista 9: Impulso e Momentum Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de

Leia mais

Capítulo 13. Quantidade de movimento e impulso

Capítulo 13. Quantidade de movimento e impulso Capítulo 13 Quantidade de movimento e impulso Quantidade de movimento e impulso Introdução Neste capítulo, definiremos duas grandezas importantes no estudo do movimento de um corpo: uma caracterizada pela

Leia mais

Lista de Exercícios - 1ª Série

Lista de Exercícios - 1ª Série ENSINO MÉDIO Data: 08/06/2016 Estudante: Exercícios Série: 1ª Turma: Turno: Matutino 2º Trimestre Componente: Física Professor: Wellington Lista de Exercícios - 1ª Série 1) Um bloco se apoia sobre um plano

Leia mais

COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professor (a): Bleidiana Dias 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO - QUESTÕES

COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professor (a): Bleidiana Dias 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO - QUESTÕES COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO - 2013 Professor (a): Bleidiana Dias 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO - QUESTÕES Estudante: Turma: Data: / / 1) - (UESC BA) Um projétil

Leia mais

COLÉGIO SHALOM Ensino Médio 1 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No.

COLÉGIO SHALOM Ensino Médio 1 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. COLÉGIO SHALOM Ensino Médio 1 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: /12/2017 Valor: 1 - (FATEC) Uma pequena esfera de massa 0,10kg abandonada do repouso, em

Leia mais

04 (UFV MG) Um trenó, com massa total de 250kg, desliza no gelo à velocidade de 10 m/s. Se o o seu condutor atirar para trás

04 (UFV MG) Um trenó, com massa total de 250kg, desliza no gelo à velocidade de 10 m/s. Se o o seu condutor atirar para trás Arrastão de Física 2 EM 01 ( UNESP SP) Um garoto de 50 kg está parado dentro de um barco de 150 kg nas proximidades da plataforma de um ancoradouro. Nessa situação, o barco flutua em repouso, conforme

Leia mais

Lista de Exercícios de Física

Lista de Exercícios de Física Lista de Exercícios de Física 1º) Suponha que, na figura ao lado, corpo mostrado tenha, em uma energia potencial EP = 20 J e uma energia cinética EC = 10 J. a) qual a energia mecânica total do corpo em?

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO EXERCÍCIOS E TESTES DE VESTIBULARES

IMPULSO E QUANTIDADE DE MOVIMENTO EXERCÍCIOS E TESTES DE VESTIBULARES IMPULSO E QUANTIDADE DE MOVIMENTO EXERCÍCIOS E TESTES DE VESTIBULARES 1. (Funrei-97) Um jogador de bilhar dá uma tacada numa bola, imprimindo nela uma velocidade de 10m/s. A bola atinge uma outra que estava

Leia mais

FÍSICA - 1 o ANO MÓDULO 26 ENERGIA

FÍSICA - 1 o ANO MÓDULO 26 ENERGIA FÍSICA - 1 o ANO MÓDULO 26 ENERGIA m g h E pg = t P = m g h 16 F (N) 8 0 2 4 S (m) Como pode cair no enem? (ENEM) Com o objetivo de se testar a eficiência de fornos de micro-ondas, planejou-se o aquecimento

Leia mais

Prof. Neckel. 1ª Lei de Newton: A Lei da Inércia

Prof. Neckel. 1ª Lei de Newton: A Lei da Inércia Prof. Neckel Leis de Newton e suas aplicações As leis de Newton são responsáveis pelo tratamento e compreensão da grandeza que representa a interação entre corpos: a Força. Porém, antes da definição formal

Leia mais

Física Geral. Trabalho, Energia e Momentum Linear.

Física Geral. Trabalho, Energia e Momentum Linear. Física Geral Trabalho, Energia e Momentum Linear. l Energia e Momentum Há muitas formas de energia como por exemplo, energia nuclear, energia elétrica, energia sonora, energia luminosa. Quando você levanta

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos oblíquo no ácuo Resoluções dos eercícios propostos 1 gt P.167 a) S. 5 t t s b) t 5 5. m c) gt 1 m/s h. m (5) () 3 m/s P.168 = 4, m/s h = 39, m 4, m d Tempo de queda: h gt 39, 1 Alcance horizontal: t 4,,8

Leia mais

Física. (A) a força de atração da Terra sobre o haltere. (B) a variação da energia mecânica do haltere

Física. (A) a força de atração da Terra sobre o haltere. (B) a variação da energia mecânica do haltere 3 Um halterofilista leanta um haltere de 20 kg, do chão até uma altura de,5 m em 5,0 s No dia seguinte, ele realiza o mesmo exercício em 0 s No segundo dia, a grandeza física que certamente mudou foi:

Leia mais

ACELERAÇÃO (grandeza vetorial)

ACELERAÇÃO (grandeza vetorial) Ano Letivo 2011/2012 Agrupamento de Escolas de Porto de Mós / Escola Secundária Ciências Físico-Químicas 9º ano Ficha de Informativa nº 2 ACELERAÇÃO (grandeza vetorial) aceleração média (unidade SI: m/s

Leia mais

Trabalho Mecânico Teorema da energia cinética

Trabalho Mecânico Teorema da energia cinética 1. (Mackenzie 01) Trabalho Mecânico Teorema da energia cinética Um corpo de massa,0 kg é lançado sobre um plano horizontal rugoso com uma velocidade inicial de,0 m / s e sua velocidade varia com o tempo,

Leia mais

Física 1 - EMB5034. Prof. Diego Duarte Impulso e conservação do momento linear (lista 12) 7 de novembro de 2017

Física 1 - EMB5034. Prof. Diego Duarte Impulso e conservação do momento linear (lista 12) 7 de novembro de 2017 Física 1 - EMB5034 Prof. Diego Duarte Impulso e conservação do momento linear (lista 12) 7 de novembro de 2017 1. Um canhão dispara um projétil com uma velocidade inicial v 0 = 20 m/s e um ângulo θ 0 =

Leia mais

Lista de exercícios 4 Mecânica Geral III

Lista de exercícios 4 Mecânica Geral III Lista de exercícios 4 Mecânica Geral III F15.3 O motor exerce uma força de = 20 N sobre o cabo, onde t é dado em segundos.determine a velocidade da caixa onde t = 4 s. Os coeficientes de atrito estático

Leia mais

Colisões Elásticas e Inelásticas

Colisões Elásticas e Inelásticas Colisões Elásticas e Inelásticas 1. Introdução Colisão é a interação entre dois ou mais corpos, com mútua troca de quantidade de movimento e energia. O choque entre bolas de bilhar é um exemplo, o movimento

Leia mais

Conservação do momento linear - Colisões.

Conservação do momento linear - Colisões. Conservação do momento linear - Colisões. o o o o Momento linear e a sua conservação Impulso Colisões elásticas e inelásticas Colisões em duas dimensões 1 Momento Linear Momento linear de uma partícula

Leia mais