HEP Bioestatística

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "HEP Bioestatística"

Transcrição

1 HEP Bioestatística DATA Aula CONTEÚDO PROGRAMÁTICO 05/03 Terça 1 Níveis de mensuração, variáveis, organização de dados, apresentação tabular 07/03 Quinta 2 Apresentação tabular e gráfica 12/03 Terça 3 Apresentação gráfica; medidas de tendência central e de posição 14/03 Quinta 4 Medidas de tendência central e de posição; medidas de dispersão ou de variabilidade 19/03 Terça 5 Medidas de correlação, noções de regressão linear simples, estimando a equação da reta 21/03 Quinta 6 Medidas de associação 26/03 Terça 7 Consolidação de conteúdo - Exercícios 28/03 Quinta 8 Avaliação 1 09/04 Terça 9 Noções de probabilidade; noções de amostragem; distribuição binomial 11/04 Quinta 10 Distribuição normal, distribuição amostral da 16/04 Terça 11 Teste de hipóteses de parâmetros populacionais conceitos; teste de hipóteses de uma proporção populacional 18/04 Quinta 12 Teste de hipóteses de associação 23/04 Terça 13 Teste de hipóteses de uma populacional 25/04 Quinta 14 Teste de hipóteses de duas s com amostras independentes e dependentes 30/04 Terça 15 Consolidação de conteúdo Exercícios 02/06 Quinta 16 Estimação de parâmetros por intervalo de confiança: e proporção 07/05 Terça 17 Exercícios 09/05 Quinta 18 Exercícios 14/05 Terça 19 Avaliação 2 1

2 Teste de hipóteses para uma populacional com variância conhecida e desconhecida Teste de hipóteses para uma populacional com variância conhecida Tomando-se como exemplo os dados de recém-nascidos com Síndrome de Desconforto Idiopático Grave (SDIG) é possível elaborar a hipótese de que crianças que nascem com esta síndrome possuem peso médio ao nascer menor do que o peso médio ao nascer de crianças sadias. A variável de estudo é peso ao nascer (quantitativa contínua) Com base em conhecimento prévio (da literatura) sabe-se que a distribuição do peso ao nascer em crianças sadias segue uma distribuição normal com 3000 gramas e desvio padrão 500 gramas, ou seja ~ N( = 3000; σ = 500). µ 2

3 Teste de hipóteses para uma populacional com variância populacional conhecida Pela abordagem de Neyman e Pearson Formulação das hipóteses H H 0 a : µ : µ SDIG SDIG = µ < µ Sadia Sadia ou H H 0 a : µ : µ SDIG SDIG = < Fixando-se o nível de significância α = 0, 05 Supor um tamanho de amostra n=50 recém-nascidos com SDIG Distribuição de probabilidade Como as hipóteses envolvem a populacional, é necessário utilizar a distribuição de probabilidade da. Pelo Teorema Central do Limite tem-se que σ ~ N( µ = µ ; σ = ) portanto, se H 0 for verdade, n e admitindo-se que as crianças com SDIG possuem distribuição do peso ao nascer com mesma dispersão que as crianças sadias, tem-se 500 ~ N( µ = 3000; σ = 50) 3

4 Teste de hipóteses para uma populacional com variância populacional conhecida Pode-se utilizar Z ou x obs para a tomada de decisão. Região de rejeição e aceitação da hipótese H 0. H 0 Rejeição de H 0 Aceitação de H 0 α=0,05 µ = z Z crítico =-1,64 σ = 70,71 4

5 Teste de hipóteses para uma populacional com variância populacional conhecida Cálculo do peso médio na amostra de crianças com SDIG Supor que na amostra de 50 crianças, foi observado peso médio ao nascer igual a 2800 gramas ( x obs = 2800). Cálculo do peso médio observado em número de desvios x padrão: obs µ Z = = = 2, 83 obs σ 70,71 Confrontar o valor da estatística do teste com a região de rejeição e aceitação de H 0 Como Z obs está à esquerda de Z crítico (região de rejeição), decide-se por rejeitar H 0. Decisão Rejeita-se H 0. Conclusão Foi encontrada diferença estatisticamente significante entre os pesos ao nascer de crianças sadias e com SDIG para nível de significância α = 0,05. Crianças com SDIG nascem com peso menor do que crianças sadias. 5

6 Teste de hipóteses para uma populacional com variância populacional conhecida É possível realizar o teste comparando a observada na amostra ( x = 2800) e o valor de peso médio ao nascer que deixa, no caso deste exemplo, uma área α=0,05 à sua esquerda. O valor de peso médio que limita esta área é denominado x critico. Cálculo de De Z x critico x cri tico x criti co = tem-s e critico Z critico σ µ x crit ico = 1,64x70, = 2884, 04 g x = σ + µ obs Rejeita-se H 0 Aceita-se H 0 x critico = 2884, 04g Como x = 2800 é menor que x critico (fica à esquerda), opta-se por rejeitar H 0. obs µ σ = 3000 = 70,71 6

7 Teste de hipóteses para uma populacional com variância populacional conhecida Regra geral: Rejeita-se H 0 se H : µ > µ Z obs >Z crítico para a SDIG Sadias H : µ < µ Z obs <-Z crítico para a SDIG Sadias H : µ µ Z obs >Z crítico ou Z obs <-Z crítico para a SDIG Sadias Ou Rejeita-se H 0 se x obs > x critico para H a : µ SDIG > µ Sadias x obs < x critico para H a : µ SDIG < µ Sadias x obs > x critico ou x obs < xcritico para H a : µ SDIG µ Sadias 7

8 Teste de hipóteses para uma populacional com variância populacional desconhecida Supor a situação anterior, só que a variância (desvio padrão) populacional do peso ao nascer de crianças sadias é desconhecida sendo conhecido somente o peso médio populacional de crianças sadias ( µ Sadias =3000 gramas). Formulação das hipóteses H 0 : µ SDIG = 3000 : < 3000 H a µ SDIG Fixando-se o nível de significância α = 0, 05 8

9 Teste de hipóteses para uma populacional com variância populacional desconhecida Cálculo do tamanho da amostra: supor um tamanho de amostra n=50 recém-nascidos com SDIG Distribuição de probabilidade Como as hipóteses envolvem a populacional, é necessário utilizar a distribuição de probabilidade da. σ Pelo Teorema Central do Limite tem-se que ~ N( µ = µ ; σ = ). n Admitindo-se que H 0 é verdade, resta um problema que é o fato de não se conhecer o valor da dispersão do peso ao nascer das crianças sadias. Neste caso não é possível utilizar a estatística Z. Utiliza-se, então, a estatística T onde µ T = S µ = S n população de estudo, estimado com os dados da amostra de crianças com SDIG. sendo S o desvio padrão da 9

10 Teste de hipóteses para uma populacional com variância populacional desconhecida T segue uma distribuição t de Student, com (n-1) graus de liberdade. Quando o tamanho da amostra é grande, a estatística T tende para uma distribuição normal com 0 e desvio padrão 1 ( n T ~ N( 0 ;1 ) ). A família t de Student Student é o pseudônimo de W. S. Gosset que, em 1908, propôs a distribuição t. Esta distribuição é muito parecida com a distribuição normal. A família de distribuições t é centrada no zero e possui formato em sino. A curva não é tão alta quanto a curva da distribuição normal e as caudas da distribuição t são mais altas que as da distribuição normal. O parâmetro que determina a altura e largura da distribuição t depende do tamanho da amostra (n) e é denominado graus de liberdade (gl), denotado pela letra grega (ν ) (lê-se ni). A notação da distribuição t é t ν. 10

11 Teste de hipóteses para uma populacional com variância populacional desconhecida Curvas t para graus de liberdade (tamanhos de amostra) diferentes. Quando o número de graus de liberdade da distribuição t aumenta, a distribuição se aproxima de uma distribuição normal. 11

12 Teste de hipóteses para uma populacional com variância populacional desconhecida 12

13 Teste de hipóteses para uma populacional com variância populacional desconhecida Esta família t não descreve o que acontece na natureza mas sim o que aconteceria se selecionássemos milhares de amostras aleatórias de uma população normal com µ e fosse calculado amostra. t µ s = para cada Calculando o valor de t para 500 amostras de tamanho 6 de uma população com distribuição normal, obtém-se o gráfico a seguir n 13

14 Teste de hipóteses para uma populacional com variância populacional desconhecida Obs: A tabela da distribuição de Student apresenta um valor de probabilidade dividido em duas partes iguais. Para n=50, o número de graus de liberdade (gl) é 49; como não existe este valor na tabela, deve-se trabalhar com o número de gl mais próximo e dependendo se o teste é mono ou bicaudal, utiliza-se respectivamente o valor de p/2 ou p, apresentados na primeira linha da tabela. Por exemplo: n=10; teste bicaudal, α=0,05; t crítico =-2,262 e t crítico = 2,262 (p da tabela =0,05) n=10; teste monocaudal a esquerda, α=0,05; t crítico =-1,833 (p da tabela = 0,10) n=10; teste monocaudal a direita, α=0,05; t crítico = 1,833 (p da tabela = 0,10) 14

15 Teste de hipóteses para uma populacional com variância populacional desconhecida Região de rejeição e aceitação da hipótese H 0. H 0 Rejeição de H 0 Aceitação de H 0 α=0,05 µ = 3000 t crítico = -1,676 0 t 15

16 Teste de hipóteses para uma populacional com variância populacional desconhecida Cálculo do peso médio na amostra de crianças com SDIG Supor que na amostra de 50 crianças, foi observado peso médio ao nascer igual a 2800 gramas e desvio padrão igual a 610g ( x 2800; s = 610). obs = Cálculo do peso médio observado em número de desvios t obs = x obs S µ = = 2,

17 Teste de hipóteses para uma populacional com variância populacional desconhecida Confrontar o valor da estatística do teste com a região de rejeição e aceitação de H 0 Como t obs está à esquerda de t crítico (região de rejeição), decide-se por rejeitar H 0. Decisão Rejeita-se H 0. Conclusão Foi encontrada diferença estatisticamente significante entre os pesos ao nascer de crianças sadias e com SDIG para nível de significância α = 0,05. Crianças com SDIG nascem com peso menor do que crianças sadias. 17

18 Exemplo Uma companhia de produtos alimentícios utiliza uma máquina para embalar salgadinhos cujas embalagens especificam 454gramas. Com o propósito de verificar se a máquina está trabalhando corretamente, selecionou-se 50 pacotes de salgadinhos, obtendo-se os seguintes valores de peso: da amostra, x =451,22 gramas e s=8,40 gramas Testar a hipótese de que a máquina está trabalhando corretamente. 18

19 Exercício 1 O conteúdo de iodo em pacotes de sal é recomendado que seja igual a 590 µ g. Determinada indústria, tendo recebido reclamações de que estava vendendo seu produto com teor de iodo abaixo do recomendado, realizou um estudo com dosagem de iodo em 15 amostras de sal. Os resultados das quantidades de iodo são apresentados a seguir. Realize um teste de hipóteses pela abordagem de Neyman e Pearson (nível de significância = 5%) para verificar se a reclamação procedia Exercício 2 Em uma pesquisa realizada entre os cadetes da Força Aérea sobre a relação entre saúde em geral e patologias orais, o escore médio de CPO (número de superfícies de dentes cariados, obturados ou extraídos em um indivíduo) foi 27,2. Em 121 cadetes que procuraram os serviços médicos 5 ou mais vezes durante um ano, o CPO médio foi 31,1 com desvio padrão 15,5. Se for assumido que estes 121 cadetes representam a população de cadetes com pior saúde, existe evidência que pior nível de saúde está associado a escore de CPO mais elevado? Tome a decisão utilizando as duas estratégias: a clássica de Neyman e Pearson, com nível de significância de 5%. 19

20 Teste de hipóteses de uma populacional (µ) (com variância conhecida e desconhecida) Abordagem de Fisher Revisão de conceitos básicos Distribuição Normal Medindo-se a altura de muitas mulheres (população), obtém-se o gráfico a seguir..35 proporção Altura(cm) Aos dados pode ser ajustada uma curva teórica.35.3 proporção Altura (cm) 20

21 .35 proporção Altura (cm) A curva ajustada aos dados é uma curva teórica (curva de Gauss) que representa a altura de µ = σ mulheres idosas. Notação: : altura, ~ N( 160, = 10). A curva tem propriedades conhecidas: Soma da área sob a curva é igual a 1 ou 100%; Pode-se calcular probabilidade trabalhando-se com a área sob a curva; Sorteia-se uma mulher ao acaso; P(desta mulher ter mais de 160) = 50%; P(esta mulher tenha mais de 180)= P ( > 180) = P( Z > ) = P( Z > 2) =0,5-0,47725=0, ou 2,3% Sortear uma mulher com altura 180 ou mais desta população é uma coisa comum? 21

22 P(esta mulher tenha mais de 170)= P ( > 170) = P( Z > ) = P( Z > 1) = 0,5-0,34134=0,15866 ou 15,9% Sortear uma mulher com altura 170 ou mais desta população é uma coisa comum? O limite para decidir o que é comum é arbitrário. O investigador é que decide, com base no problema que está sendo estudado. Supor agora uma outra distribuição de altura, por exemplo, entre homens..35 proporção : altura, ~ N( 180, = 10) m = σ Altura (cm) P(homem tenha mais de 180)= P(>180)=0,5 ou 50% 22

23 Supor que as pessoas da primeira curva tenham uma marca vermelha e as pessoas da segunda curva tenham uma marca azul. Misturam-se todas as pessoas e sorteia-se uma pessoa ao acaso e ela tem altura 180. De qual população seria este indivíduo? Agora não estamos mais interessados em um indivíduo e sim em vários indivíduos portanto, vamos trabalhar com a altura. Supor : altura, ~ N( 160, = 20). Toma-se uma amostra de tamanho n=30 desta população e calcula-se a altura ( x = 170 ). m = σ Deseja-se saber a probabilidade desta amostra vir de população com altura maior ou igual a 170. µ= Pelo Teorema Central do Limite m P( 170) = P( ) = P( Z ) = P( Z 2,74) σ 20 3,

24 Na curva da Normal reduzida tem-se P(Z 2,74) = 0,5-0,49693 = 0,0031 ou 0,31% µ=0 2,74 Z Sortear uma amostra que apresenta altura igual a 170 cm ou mais da população que tem altura 160 cm é uma coisa comum? Para decidir se a amostra representa uma população com altura maior e que o resultado não é devido ao acaso, realiza-se o teste de hipóteses. 24

25 Teste de hipóteses para uma populacional com variância conhecida - Abordagem de Fisher Situação: Estudos mostram que crianças sadias possuem peso médio (m) ao nascer igual a 3100 gramas e desvio padrão σ = 610gramas. Suspeita-se que crianças que nascem com síndrome de desconforto idiopático grave possuem peso ao nascer abaixo do peso ao nascer da população de crianças sadias. Proposição (equivalente à H 0 ): Crianças com síndrome vêm de uma população com peso médio =3100 gramas Realiza-se um estudo em uma amostra de n=50 crianças que nasceram com esta síndrome, onde observou-se peso médio ( x ) igual a 2800 gramas. x Supondo-se que as crianças da amostra (com síndrome) vêm de uma população com mesma dispersão do peso ao nascer de crianças sadias, teste a hipótese de que crianças com síndrome idiopática grave possuem peso médio ao nascer igual ao peso médio ao nascer de crianças sadias. Distribuição de probabilidade: Distribuição do peso médio: segue uma distribuição normal com m=3100 gramas e desvio σ 610 padrão = = 86, 27 gramas n 50 25

26 2800 µ=3100 Cálculo da probabilidade de observar um peso médio ao nascer igual ou menor que 2800 se H 0 for verdade. m P ( 2800) = P ( ) = P ( Z ) = P ( Z 3,48) σ , , 48 µ = 0 Z 26

27 -3, 48 µ = 0 Pela distribuição Normal reduzida tem-se que P ( Z 3,48) = 0,5 0,49975 = 0, ou 0,025% Os resultados não são compatíveis com uma distribuição que tem peso médio igual a Possivelmente a amostra vem de uma população com menor que Pode-se dizer que crianças com síndrome de desconforto idiopático grave possivelmente possuem peso ao nascer menor do que o peso médio de crianças sadias. Z 27

28 Teste de hipóteses para uma populacional com variância desconhecida - Abordagem de Fisher Supor a mesma situação anterior, só que neste caso somente a populacional é conhecida. O peso médio de crianças sadias (µ) é igual a 3100 gramas. H 0 : Crianças com síndrome de desconforto idiopático grave vêm de uma população com peso médio = 3100 gramas Seleciona-se uma amostra de 50 crianças com a síndrome e calcula-se o peso médio e o desvio padrão do peso, obtendo-se n=50; x = 2800 e s=510 Distribuição de probabilidade: Distribuição do peso médio ao nascer de crianças sadias: como não se sabe o desvio padrão populacional, este é estimado utilizando-se os dados da amostra. Neste caso a variável a variável segue uma distribuição t de Student com n-1=50-1=49 graus de liberdade. m P( 2800) = P( ) = P( t ) = P( t 4,159) S ,

29 -4,16 µ=0 t Pela distribuição t de Student com 49 graus de liberdade, tem-se P ( 4,159) < 0,05% Os resultados não são compatíveis com uma distribuição que tem peso médio igual a Pode-se dizer que crianças com desconforto idiopático grave provavelmente vêm de uma população com peso médio ao nascer menor do que o peso médio ao nascer de crianças sadias. t 29

30 Valor de p é a probabilidade de ocorrência do valor observado ou de um valor mais extremo de uma estatística, em uma curva de probabilidade especificada (conhecida, verdadeira). Fisher dizia que antes de dar uma forma matemática a um problema, propondo hipóteses a serem testadas, era necessário um amplo conhecimento dos dados, o que poderia ser realizado com base no valor de p. Passos necessários para a realização de um teste de hipóteses segundo a abordagem de Fisher. Formular a proposição inicial ( hipótese ) que será testada; Identificar a distribuição de probabilidade; Realizar o estudo e observar o resultado da estatística de interesse; Calcular o valor de p, ou seja, a probabilidade de ocorrer o valor observado ou um valor mais extremo, sob a curva especificada na proposição inicial; Tomar a decisão com base no valor de p. Apresentar as conclusões 30

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Camila Gomes de Souza Andrade 1 Denise Nunes Viola 2 Alexandro Teles de Oliveira 2 Florisneide

Leia mais

AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL

AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL E. F. S. PEREIRA e L. M. N de Gois Universidade Federal da Bahia, Escola Politécnica, Departamento de Engenharia

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

Pós-Graduação em Computação Distribuída e Ubíqua

Pós-Graduação em Computação Distribuída e Ubíqua Pós-Graduação em Computação Distribuída e Ubíqua INF612 - Aspectos Avançados em Engenharia de Software Engenharia de Software Experimental [Head First Statistics] Capítulos 10, 11, 12 e 13 [Experimentation

Leia mais

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002....

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002.... GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002.... 1 Como encaminhar uma Pesquisa? A pesquisa é um projeto racional e sistemático com objetivo de proporcionar respostas

Leia mais

1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza

1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza 1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza 1) Arredonde os valores abaixo, para apenas dois algarismos significativos: (a) 34,48 m (b) 1,281 m/s (c) 8,563x10

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Walter Francisco HurtaresOrrala 1 Sílvio de Souza Lima 2 Resumo A determinação automatizada de diagramas

Leia mais

IV Seminário de Iniciação Científica

IV Seminário de Iniciação Científica 385 AVALIAÇÃO DA RESISTÊNCIA À COMPRESSÃO E DO MÓDULO DE ELASTICIDADE DO CONCRETO QUANDO SUBMETIDO A CARREGAMENTO PERMANENTE DE LONGA DURAÇÃO (Dt = 9 dias) Wilson Ferreira Cândido 1,5 ;Reynaldo Machado

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

WWW.RENOVAVEIS.TECNOPT.COM

WWW.RENOVAVEIS.TECNOPT.COM Energia produzida Para a industria eólica é muito importante a discrição da variação da velocidade do vento. Os projetistas de turbinas necessitam da informação para otimizar o desenho de seus geradores,

Leia mais

AULA 4 DELINEAMENTO EM QUADRADO LATINO (DQL)

AULA 4 DELINEAMENTO EM QUADRADO LATINO (DQL) AULA 4 DELINEAMENTO EM QUADRADO LATINO (DQL) Características Utiliza-se de três princípios básicos da experimentação: repetição, casualização e controle local. Possui um controle local mais eficiente que

Leia mais

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03)

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03) UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS DA SAÚDE E DO ESPORTE - CEFID DEPARTAMENTO DE EDUCAÇÃO FÍSICA - DEF CURSO: LICENCIATURA EM EDUCAÇÃO FÍSICA CURRÍCULO: 2008/2 P R O G

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

PRIMEIROS RESULTADOS DA ANÁLISE DA LINHA DE BASE DA PESQUISA DE AVALIAÇÃO DE IMPACTO DO PROGRAMA BOLSA FAMÍLIA

PRIMEIROS RESULTADOS DA ANÁLISE DA LINHA DE BASE DA PESQUISA DE AVALIAÇÃO DE IMPACTO DO PROGRAMA BOLSA FAMÍLIA PRIMEIROS RESULTADOS DA ANÁLISE DA LINHA DE BASE DA PESQUISA DE AVALIAÇÃO DE IMPACTO DO PROGRAMA BOLSA FAMÍLIA Instituição Executora: Centro de Desenvolvimento e Planejamento Regional CEDEPLAR / UFMG Ministério

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma

Leia mais

CADERNO DE EXERCÍCIOS 2F

CADERNO DE EXERCÍCIOS 2F CADERNO DE EXERCÍCIOS F Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Números inteiros (positivos e negativos) H9 Proporcionalidade H37 3 Média aritmética H50 4 Comprimento

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

Título do Case: Categoria: Temática: Resumo: Introdução:

Título do Case: Categoria: Temática: Resumo: Introdução: Título do Case: Diagnóstico Empresarial - Vendendo e Satisfazendo Mais Categoria: Prática Interna. Temática: Mercado Resumo: Na busca por uma ferramenta capaz de auxiliar na venda de mais consultorias

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.)

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) De acordo com o PMBok 5ª ed., o escopo é a soma dos produtos, serviços e resultados a serem fornecidos na forma de projeto. Sendo ele referindo-se a: Escopo

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

GRADUAÇÃO TECNOLÓGICA EM GESTÃO DA PRODUÇÃO INDUSTRIAL GERENCIAMENTO ESTATÍSTICO DOS PROCESSOS PRODUTIVOS (tópicos da aula 3)

GRADUAÇÃO TECNOLÓGICA EM GESTÃO DA PRODUÇÃO INDUSTRIAL GERENCIAMENTO ESTATÍSTICO DOS PROCESSOS PRODUTIVOS (tópicos da aula 3) 1 GRADUAÇÃO TECNOLÓGICA EM GESTÃO DA PRODUÇÃO INDUSTRIAL GERENCIAMENTO ESTATÍSTICO DOS PROCESSOS PRODUTIVOS (tópicos da aula 3) ANÁLISE DO PROCESSO Só é possivel monitorar um processo após conhecê-lo bem.

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

Observando embalagens

Observando embalagens Observando embalagens A UUL AL A O leite integral é vendido em caixas de papelão laminado por dentro. Essas embalagens têm a forma de um paralelepípedo retângulo e a indicação de que contêm 1000 ml de

Leia mais

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO SUMÁRIO. INTRODUÇÃO... 3.. GENERALIDADES... 3.. METODOLOGIA DO TESTE DE HIPÓTESES... 3.3. AS HIPÓTESES... 3.4. A ESCOLHA DO TESTE ESTATÍSTICO... 4.5. CONCEITOS ADICIONAIS DO TESTE DE HIPÓTESES... 4.6.

Leia mais

tipo e tamanho e com os "mesmos" elementos do vetor A, ou seja, B[i] = A[i].

tipo e tamanho e com os mesmos elementos do vetor A, ou seja, B[i] = A[i]. INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL-RIO- GRANDENSE CAMPUS SAPUCAIA DO SUL PROFESSOR: RICARDO LUIS DOS SANTOS EXERCÍCIO DE REVISÃO E FIXAÇÃO DE CONTEÚDO - ARRAYS 1. Criar um vetor A

Leia mais

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA Apresentar a Estatística no contexto do dia-a-dia e fazendo uso da planilha Excel. Espera-se que o estudante ao término do curso esteja apto a usar a planilha

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Tema Custo Fixo, Lucro e Margem de Contribuição

Tema Custo Fixo, Lucro e Margem de Contribuição Tema Custo Fixo, Lucro e Margem de Contribuição Projeto Curso Disciplina Tema Professor(a) Pós-Graduação Engenharia da Produção Custos Industriais Custo Fixo, Lucro e Margem de Contribuição Luizete Fabris

Leia mais

Prova de Fundamentos de Bancos de Dados 1 a Prova

Prova de Fundamentos de Bancos de Dados 1 a Prova Prova de Fundamentos de Bancos de Dados 1 a Prova Prof. Carlos A. Heuser Abril de 2009 Prova sem consulta duas horas de duração 1. (Peso 2 Deseja-se projetar um banco de dados para o sítio de uma prefeitura.

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

Inferência sobre duas proporções

Inferência sobre duas proporções Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA

AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA 1.0 INTRODUÇÃO 1.1 Ponte de Wheatstone O método da ponte de Wheatstone, estudado por Wheatstone no sec. XIX é um dos métodos mais empregados para a medição de resistências

Leia mais

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar

Leia mais

Relatório das Provas da 2ª. Fase - Vestibular 2016

Relatório das Provas da 2ª. Fase - Vestibular 2016 Relatório das Provas da 2ª. Fase - Vestibular 2016 Resumo Executivo O presente relatório apresenta os resultados da segunda fase do Vestibular UNICAMP 2016 constituída por três provas. Esta etapa do vestibular

Leia mais

Departamento de Informática - PUC-Rio INF 1005 Programação I P1 22/09/2010 Nota

Departamento de Informática - PUC-Rio INF 1005 Programação I P1 22/09/2010 Nota P1 22/09/2010 Matrícula: Turma: Questão 1) (3,5 pontos) O Índice de Desenvolvimento Humano (IDH) é uma medida do bemestar de uma população. Engloba três dimensões: educação (E), longevidade (L) e a riqueza

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 21 de Junho de 2013 3 Uma outra medida usada para verificar o ajuste do modelo. Essa estatística é dada por X

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução

Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução Tópicos em Inferência Estatística Frases Torture os dados por um tempo suficiente, e eles contam tudo! fonte: mcrsoft@aimnet.com (Barry Fetter) Um homem com um relógio sabe a hora certa. Um homem com dois

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

Ceará e o eclipse que ajudou Einstein

Ceará e o eclipse que ajudou Einstein Ceará e o eclipse que ajudou Einstein Eixo(s) temático(s) Terra e Universo Tema Sistema Solar Conteúdos Sistema Terra-Lua-Sol / eclipses Usos / objetivos Retomada de conhecimentos / avaliação / problematização

Leia mais

A dependência entre a inflação cabo-verdiana e a portuguesa: uma abordagem de copulas.

A dependência entre a inflação cabo-verdiana e a portuguesa: uma abordagem de copulas. A dependência entre a inflação cabo-verdiana e a portuguesa: uma abordagem de copulas. Jailson da Conceição Teixeira Oliveira 1 Murilo Massaru da Silva 2 Robson Oliveira Lima 3 Resumo: Cabo Verde é um

Leia mais

Estudos. População e Demografia

Estudos. População e Demografia População e Demografia Prof. Dr. Rudinei Toneto Jr. Guilherme Byrro Lopes Rafael Lima O Instituto Brasileiro de Geografia e Estatística (IBGE), desde 1991, divulga anualmente uma base com a população dos

Leia mais

2 Workshop processamento de artigos em serviços de saúde Recolhimento de artigos esterilizados: é possível evitar?

2 Workshop processamento de artigos em serviços de saúde Recolhimento de artigos esterilizados: é possível evitar? 2 Workshop processamento de artigos em serviços de saúde Recolhimento de artigos esterilizados: é possível evitar? 3 Farm. André Cabral Contagem, 19 de Maio de 2010 Rastreabilidade É definida como a habilidade

Leia mais

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA Leitura e Análise de Texto O π e a agulha de Buffon O estudo da probabilidade, aparentemente, não tem uma ligação direta com a Geometria. A probabilidade

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

Tutorial. Georreferenciamento de Imagens. versão 1.0-23/08/2008. Autores: Rafael Bellucci Moretti, Vitor Pires Vencovsky

Tutorial. Georreferenciamento de Imagens. versão 1.0-23/08/2008. Autores: Rafael Bellucci Moretti, Vitor Pires Vencovsky Tutorial Georreferenciamento de Imagens versão 1.0-23/08/2008 Autores: Rafael Bellucci Moretti, Vitor Pires Vencovsky 1. Introdução O tutorial tem como objetivo fornecer informações básicas para georreferenciar

Leia mais

Uso de escalas logaritmicas e linearização

Uso de escalas logaritmicas e linearização Uso de escalas logaritmicas e linearização Notas: Rodrigo Ramos 1 o. sem. 2015 Versão 1.0 Obs: Esse é um texto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as coisas

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 (UNESP) O gráfico a seguir apresenta dados

Leia mais

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM Programação de Computadores I BCC 701 2012-02 Lista de Exercícios 02 Desvio do Fluxo de Execução - Parte A Exercício 01 Codifique um programa que faça a entrada de um número qualquer pelo teclado. A seguir

Leia mais

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados Prof. Hugo Souza Após vermos uma breve contextualização sobre esquemas para bases dados e aprendermos

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNVERSDADE DO ESTADO DO RO GRANDE DO NORTE UERN FACULDADE DE CÊNCAS EXATAS E NATURAS FANAT DEPARTAMENTO DE

Leia mais

Calculando seno(x)/x com o interpretador Hall.

Calculando seno(x)/x com o interpretador Hall. Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0

Leia mais

Unidade 1: O Computador

Unidade 1: O Computador Unidade : O Computador.3 Arquitetura básica de um computador O computador é uma máquina que processa informações. É formado por um conjunto de componentes físicos (dispositivos mecânicos, magnéticos, elétricos

Leia mais

tecfix ONE quartzolit

tecfix ONE quartzolit Pág. 1 de 8 Adesivo para ancoragem à base de resina epóxi-acrilato 1. Descrição: Produto bicomponente disposto numa bisnaga com câmaras independentes, projetada para realizar a mistura adequada dos constituintes

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

LINEARIZAÇÃO DE GRÁFICOS

LINEARIZAÇÃO DE GRÁFICOS LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em uma

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

A prova foi de nível médio para difícil, considerando que se trata de uma matéria complexa, que a maioria não gosta, nem tem afinidade.

A prova foi de nível médio para difícil, considerando que se trata de uma matéria complexa, que a maioria não gosta, nem tem afinidade. Comentário da prova de Física PRF 013 COMNTÁRIO PROA DA PRF 013 Pro. - CSP inícius Silva Aula 03 Olá prezados concurseiros da PRF 013, é com muito prazer que venho echar o meu trabalho para esse concurso

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE I

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE I O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE I O que são medidas de tendência central? Média Aritmética Simples Média Aritmética Ponderada Media Geométrica e Harmônica

Leia mais

Métodos Quantitativos. PROF. DR. Renato Vicente

Métodos Quantitativos. PROF. DR. Renato Vicente Métodos Quantitativos PROF. DR. Renato Vicente Método Estatístico Amostra População Estatística Descritiva Inferência Estatística Teoria de Probabilidades Aula 4A Inferência Estatística: Um pouco de História

Leia mais

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2) Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...

Leia mais