HEP Bioestatística

Tamanho: px
Começar a partir da página:

Download "HEP Bioestatística"

Transcrição

1 HEP Bioestatística DATA Aula CONTEÚDO PROGRAMÁTICO 05/03 Terça 1 Níveis de mensuração, variáveis, organização de dados, apresentação tabular 07/03 Quinta 2 Apresentação tabular e gráfica 12/03 Terça 3 Apresentação gráfica; medidas de tendência central e de posição 14/03 Quinta 4 Medidas de tendência central e de posição; medidas de dispersão ou de variabilidade 19/03 Terça 5 Medidas de correlação, noções de regressão linear simples, estimando a equação da reta 21/03 Quinta 6 Medidas de associação 26/03 Terça 7 Consolidação de conteúdo - Exercícios 28/03 Quinta 8 Avaliação 1 09/04 Terça 9 Noções de probabilidade; noções de amostragem; distribuição binomial 11/04 Quinta 10 Distribuição normal, distribuição amostral da 16/04 Terça 11 Teste de hipóteses de parâmetros populacionais conceitos; teste de hipóteses de uma proporção populacional 18/04 Quinta 12 Teste de hipóteses de associação 23/04 Terça 13 Teste de hipóteses de uma populacional 25/04 Quinta 14 Teste de hipóteses de duas s com amostras independentes e dependentes 30/04 Terça 15 Consolidação de conteúdo Exercícios 02/06 Quinta 16 Estimação de parâmetros por intervalo de confiança: e proporção 07/05 Terça 17 Exercícios 09/05 Quinta 18 Exercícios 14/05 Terça 19 Avaliação 2 1

2 Teste de hipóteses para uma populacional com variância conhecida e desconhecida Teste de hipóteses para uma populacional com variância conhecida Tomando-se como exemplo os dados de recém-nascidos com Síndrome de Desconforto Idiopático Grave (SDIG) é possível elaborar a hipótese de que crianças que nascem com esta síndrome possuem peso médio ao nascer menor do que o peso médio ao nascer de crianças sadias. A variável de estudo é peso ao nascer (quantitativa contínua) Com base em conhecimento prévio (da literatura) sabe-se que a distribuição do peso ao nascer em crianças sadias segue uma distribuição normal com 3000 gramas e desvio padrão 500 gramas, ou seja ~ N( = 3000; σ = 500). µ 2

3 Teste de hipóteses para uma populacional com variância populacional conhecida Pela abordagem de Neyman e Pearson Formulação das hipóteses H H 0 a : µ : µ SDIG SDIG = µ < µ Sadia Sadia ou H H 0 a : µ : µ SDIG SDIG = < Fixando-se o nível de significância α = 0, 05 Supor um tamanho de amostra n=50 recém-nascidos com SDIG Distribuição de probabilidade Como as hipóteses envolvem a populacional, é necessário utilizar a distribuição de probabilidade da. Pelo Teorema Central do Limite tem-se que σ ~ N( µ = µ ; σ = ) portanto, se H 0 for verdade, n e admitindo-se que as crianças com SDIG possuem distribuição do peso ao nascer com mesma dispersão que as crianças sadias, tem-se 500 ~ N( µ = 3000; σ = 50) 3

4 Teste de hipóteses para uma populacional com variância populacional conhecida Pode-se utilizar Z ou x obs para a tomada de decisão. Região de rejeição e aceitação da hipótese H 0. H 0 Rejeição de H 0 Aceitação de H 0 α=0,05 µ = z Z crítico =-1,64 σ = 70,71 4

5 Teste de hipóteses para uma populacional com variância populacional conhecida Cálculo do peso médio na amostra de crianças com SDIG Supor que na amostra de 50 crianças, foi observado peso médio ao nascer igual a 2800 gramas ( x obs = 2800). Cálculo do peso médio observado em número de desvios x padrão: obs µ Z = = = 2, 83 obs σ 70,71 Confrontar o valor da estatística do teste com a região de rejeição e aceitação de H 0 Como Z obs está à esquerda de Z crítico (região de rejeição), decide-se por rejeitar H 0. Decisão Rejeita-se H 0. Conclusão Foi encontrada diferença estatisticamente significante entre os pesos ao nascer de crianças sadias e com SDIG para nível de significância α = 0,05. Crianças com SDIG nascem com peso menor do que crianças sadias. 5

6 Teste de hipóteses para uma populacional com variância populacional conhecida É possível realizar o teste comparando a observada na amostra ( x = 2800) e o valor de peso médio ao nascer que deixa, no caso deste exemplo, uma área α=0,05 à sua esquerda. O valor de peso médio que limita esta área é denominado x critico. Cálculo de De Z x critico x cri tico x criti co = tem-s e critico Z critico σ µ x crit ico = 1,64x70, = 2884, 04 g x = σ + µ obs Rejeita-se H 0 Aceita-se H 0 x critico = 2884, 04g Como x = 2800 é menor que x critico (fica à esquerda), opta-se por rejeitar H 0. obs µ σ = 3000 = 70,71 6

7 Teste de hipóteses para uma populacional com variância populacional conhecida Regra geral: Rejeita-se H 0 se H : µ > µ Z obs >Z crítico para a SDIG Sadias H : µ < µ Z obs <-Z crítico para a SDIG Sadias H : µ µ Z obs >Z crítico ou Z obs <-Z crítico para a SDIG Sadias Ou Rejeita-se H 0 se x obs > x critico para H a : µ SDIG > µ Sadias x obs < x critico para H a : µ SDIG < µ Sadias x obs > x critico ou x obs < xcritico para H a : µ SDIG µ Sadias 7

8 Teste de hipóteses para uma populacional com variância populacional desconhecida Supor a situação anterior, só que a variância (desvio padrão) populacional do peso ao nascer de crianças sadias é desconhecida sendo conhecido somente o peso médio populacional de crianças sadias ( µ Sadias =3000 gramas). Formulação das hipóteses H 0 : µ SDIG = 3000 : < 3000 H a µ SDIG Fixando-se o nível de significância α = 0, 05 8

9 Teste de hipóteses para uma populacional com variância populacional desconhecida Cálculo do tamanho da amostra: supor um tamanho de amostra n=50 recém-nascidos com SDIG Distribuição de probabilidade Como as hipóteses envolvem a populacional, é necessário utilizar a distribuição de probabilidade da. σ Pelo Teorema Central do Limite tem-se que ~ N( µ = µ ; σ = ). n Admitindo-se que H 0 é verdade, resta um problema que é o fato de não se conhecer o valor da dispersão do peso ao nascer das crianças sadias. Neste caso não é possível utilizar a estatística Z. Utiliza-se, então, a estatística T onde µ T = S µ = S n população de estudo, estimado com os dados da amostra de crianças com SDIG. sendo S o desvio padrão da 9

10 Teste de hipóteses para uma populacional com variância populacional desconhecida T segue uma distribuição t de Student, com (n-1) graus de liberdade. Quando o tamanho da amostra é grande, a estatística T tende para uma distribuição normal com 0 e desvio padrão 1 ( n T ~ N( 0 ;1 ) ). A família t de Student Student é o pseudônimo de W. S. Gosset que, em 1908, propôs a distribuição t. Esta distribuição é muito parecida com a distribuição normal. A família de distribuições t é centrada no zero e possui formato em sino. A curva não é tão alta quanto a curva da distribuição normal e as caudas da distribuição t são mais altas que as da distribuição normal. O parâmetro que determina a altura e largura da distribuição t depende do tamanho da amostra (n) e é denominado graus de liberdade (gl), denotado pela letra grega (ν ) (lê-se ni). A notação da distribuição t é t ν. 10

11 Teste de hipóteses para uma populacional com variância populacional desconhecida Curvas t para graus de liberdade (tamanhos de amostra) diferentes. Quando o número de graus de liberdade da distribuição t aumenta, a distribuição se aproxima de uma distribuição normal. 11

12 Teste de hipóteses para uma populacional com variância populacional desconhecida 12

13 Teste de hipóteses para uma populacional com variância populacional desconhecida Esta família t não descreve o que acontece na natureza mas sim o que aconteceria se selecionássemos milhares de amostras aleatórias de uma população normal com µ e fosse calculado amostra. t µ s = para cada Calculando o valor de t para 500 amostras de tamanho 6 de uma população com distribuição normal, obtém-se o gráfico a seguir n 13

14 Teste de hipóteses para uma populacional com variância populacional desconhecida Obs: A tabela da distribuição de Student apresenta um valor de probabilidade dividido em duas partes iguais. Para n=50, o número de graus de liberdade (gl) é 49; como não existe este valor na tabela, deve-se trabalhar com o número de gl mais próximo e dependendo se o teste é mono ou bicaudal, utiliza-se respectivamente o valor de p/2 ou p, apresentados na primeira linha da tabela. Por exemplo: n=10; teste bicaudal, α=0,05; t crítico =-2,262 e t crítico = 2,262 (p da tabela =0,05) n=10; teste monocaudal a esquerda, α=0,05; t crítico =-1,833 (p da tabela = 0,10) n=10; teste monocaudal a direita, α=0,05; t crítico = 1,833 (p da tabela = 0,10) 14

15 Teste de hipóteses para uma populacional com variância populacional desconhecida Região de rejeição e aceitação da hipótese H 0. H 0 Rejeição de H 0 Aceitação de H 0 α=0,05 µ = 3000 t crítico = -1,676 0 t 15

16 Teste de hipóteses para uma populacional com variância populacional desconhecida Cálculo do peso médio na amostra de crianças com SDIG Supor que na amostra de 50 crianças, foi observado peso médio ao nascer igual a 2800 gramas e desvio padrão igual a 610g ( x 2800; s = 610). obs = Cálculo do peso médio observado em número de desvios t obs = x obs S µ = = 2,

17 Teste de hipóteses para uma populacional com variância populacional desconhecida Confrontar o valor da estatística do teste com a região de rejeição e aceitação de H 0 Como t obs está à esquerda de t crítico (região de rejeição), decide-se por rejeitar H 0. Decisão Rejeita-se H 0. Conclusão Foi encontrada diferença estatisticamente significante entre os pesos ao nascer de crianças sadias e com SDIG para nível de significância α = 0,05. Crianças com SDIG nascem com peso menor do que crianças sadias. 17

18 Exemplo Uma companhia de produtos alimentícios utiliza uma máquina para embalar salgadinhos cujas embalagens especificam 454gramas. Com o propósito de verificar se a máquina está trabalhando corretamente, selecionou-se 50 pacotes de salgadinhos, obtendo-se os seguintes valores de peso: da amostra, x =451,22 gramas e s=8,40 gramas Testar a hipótese de que a máquina está trabalhando corretamente. 18

19 Exercício 1 O conteúdo de iodo em pacotes de sal é recomendado que seja igual a 590 µ g. Determinada indústria, tendo recebido reclamações de que estava vendendo seu produto com teor de iodo abaixo do recomendado, realizou um estudo com dosagem de iodo em 15 amostras de sal. Os resultados das quantidades de iodo são apresentados a seguir. Realize um teste de hipóteses pela abordagem de Neyman e Pearson (nível de significância = 5%) para verificar se a reclamação procedia Exercício 2 Em uma pesquisa realizada entre os cadetes da Força Aérea sobre a relação entre saúde em geral e patologias orais, o escore médio de CPO (número de superfícies de dentes cariados, obturados ou extraídos em um indivíduo) foi 27,2. Em 121 cadetes que procuraram os serviços médicos 5 ou mais vezes durante um ano, o CPO médio foi 31,1 com desvio padrão 15,5. Se for assumido que estes 121 cadetes representam a população de cadetes com pior saúde, existe evidência que pior nível de saúde está associado a escore de CPO mais elevado? Tome a decisão utilizando as duas estratégias: a clássica de Neyman e Pearson, com nível de significância de 5%. 19

20 Teste de hipóteses de uma populacional (µ) (com variância conhecida e desconhecida) Abordagem de Fisher Revisão de conceitos básicos Distribuição Normal Medindo-se a altura de muitas mulheres (população), obtém-se o gráfico a seguir..35 proporção Altura(cm) Aos dados pode ser ajustada uma curva teórica.35.3 proporção Altura (cm) 20

21 .35 proporção Altura (cm) A curva ajustada aos dados é uma curva teórica (curva de Gauss) que representa a altura de µ = σ mulheres idosas. Notação: : altura, ~ N( 160, = 10). A curva tem propriedades conhecidas: Soma da área sob a curva é igual a 1 ou 100%; Pode-se calcular probabilidade trabalhando-se com a área sob a curva; Sorteia-se uma mulher ao acaso; P(desta mulher ter mais de 160) = 50%; P(esta mulher tenha mais de 180)= P ( > 180) = P( Z > ) = P( Z > 2) =0,5-0,47725=0, ou 2,3% Sortear uma mulher com altura 180 ou mais desta população é uma coisa comum? 21

22 P(esta mulher tenha mais de 170)= P ( > 170) = P( Z > ) = P( Z > 1) = 0,5-0,34134=0,15866 ou 15,9% Sortear uma mulher com altura 170 ou mais desta população é uma coisa comum? O limite para decidir o que é comum é arbitrário. O investigador é que decide, com base no problema que está sendo estudado. Supor agora uma outra distribuição de altura, por exemplo, entre homens..35 proporção : altura, ~ N( 180, = 10) m = σ Altura (cm) P(homem tenha mais de 180)= P(>180)=0,5 ou 50% 22

23 Supor que as pessoas da primeira curva tenham uma marca vermelha e as pessoas da segunda curva tenham uma marca azul. Misturam-se todas as pessoas e sorteia-se uma pessoa ao acaso e ela tem altura 180. De qual população seria este indivíduo? Agora não estamos mais interessados em um indivíduo e sim em vários indivíduos portanto, vamos trabalhar com a altura. Supor : altura, ~ N( 160, = 20). Toma-se uma amostra de tamanho n=30 desta população e calcula-se a altura ( x = 170 ). m = σ Deseja-se saber a probabilidade desta amostra vir de população com altura maior ou igual a 170. µ= Pelo Teorema Central do Limite m P( 170) = P( ) = P( Z ) = P( Z 2,74) σ 20 3,

24 Na curva da Normal reduzida tem-se P(Z 2,74) = 0,5-0,49693 = 0,0031 ou 0,31% µ=0 2,74 Z Sortear uma amostra que apresenta altura igual a 170 cm ou mais da população que tem altura 160 cm é uma coisa comum? Para decidir se a amostra representa uma população com altura maior e que o resultado não é devido ao acaso, realiza-se o teste de hipóteses. 24

25 Teste de hipóteses para uma populacional com variância conhecida - Abordagem de Fisher Situação: Estudos mostram que crianças sadias possuem peso médio (m) ao nascer igual a 3100 gramas e desvio padrão σ = 610gramas. Suspeita-se que crianças que nascem com síndrome de desconforto idiopático grave possuem peso ao nascer abaixo do peso ao nascer da população de crianças sadias. Proposição (equivalente à H 0 ): Crianças com síndrome vêm de uma população com peso médio =3100 gramas Realiza-se um estudo em uma amostra de n=50 crianças que nasceram com esta síndrome, onde observou-se peso médio ( x ) igual a 2800 gramas. x Supondo-se que as crianças da amostra (com síndrome) vêm de uma população com mesma dispersão do peso ao nascer de crianças sadias, teste a hipótese de que crianças com síndrome idiopática grave possuem peso médio ao nascer igual ao peso médio ao nascer de crianças sadias. Distribuição de probabilidade: Distribuição do peso médio: segue uma distribuição normal com m=3100 gramas e desvio σ 610 padrão = = 86, 27 gramas n 50 25

26 2800 µ=3100 Cálculo da probabilidade de observar um peso médio ao nascer igual ou menor que 2800 se H 0 for verdade. m P ( 2800) = P ( ) = P ( Z ) = P ( Z 3,48) σ , , 48 µ = 0 Z 26

27 -3, 48 µ = 0 Pela distribuição Normal reduzida tem-se que P ( Z 3,48) = 0,5 0,49975 = 0, ou 0,025% Os resultados não são compatíveis com uma distribuição que tem peso médio igual a Possivelmente a amostra vem de uma população com menor que Pode-se dizer que crianças com síndrome de desconforto idiopático grave possivelmente possuem peso ao nascer menor do que o peso médio de crianças sadias. Z 27

28 Teste de hipóteses para uma populacional com variância desconhecida - Abordagem de Fisher Supor a mesma situação anterior, só que neste caso somente a populacional é conhecida. O peso médio de crianças sadias (µ) é igual a 3100 gramas. H 0 : Crianças com síndrome de desconforto idiopático grave vêm de uma população com peso médio = 3100 gramas Seleciona-se uma amostra de 50 crianças com a síndrome e calcula-se o peso médio e o desvio padrão do peso, obtendo-se n=50; x = 2800 e s=510 Distribuição de probabilidade: Distribuição do peso médio ao nascer de crianças sadias: como não se sabe o desvio padrão populacional, este é estimado utilizando-se os dados da amostra. Neste caso a variável a variável segue uma distribuição t de Student com n-1=50-1=49 graus de liberdade. m P( 2800) = P( ) = P( t ) = P( t 4,159) S ,

29 -4,16 µ=0 t Pela distribuição t de Student com 49 graus de liberdade, tem-se P ( 4,159) < 0,05% Os resultados não são compatíveis com uma distribuição que tem peso médio igual a Pode-se dizer que crianças com desconforto idiopático grave provavelmente vêm de uma população com peso médio ao nascer menor do que o peso médio ao nascer de crianças sadias. t 29

30 Valor de p é a probabilidade de ocorrência do valor observado ou de um valor mais extremo de uma estatística, em uma curva de probabilidade especificada (conhecida, verdadeira). Fisher dizia que antes de dar uma forma matemática a um problema, propondo hipóteses a serem testadas, era necessário um amplo conhecimento dos dados, o que poderia ser realizado com base no valor de p. Passos necessários para a realização de um teste de hipóteses segundo a abordagem de Fisher. Formular a proposição inicial ( hipótese ) que será testada; Identificar a distribuição de probabilidade; Realizar o estudo e observar o resultado da estatística de interesse; Calcular o valor de p, ou seja, a probabilidade de ocorrer o valor observado ou um valor mais extremo, sob a curva especificada na proposição inicial; Tomar a decisão com base no valor de p. Apresentar as conclusões 30

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I)

Aula 6. Testes de Hipóteses Paramétricos (I) Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 8 Testes de hipóteses APOIO: Fundação de Ciência e Tecnologia

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Hipóteses. Hipótese. É uma pressuposição de um determinado problema.

Hipóteses. Hipótese. É uma pressuposição de um determinado problema. Bioestatística Aula 7 Teoria dos Teste de Hitóteses Prof. Tiago A. E. Ferreira 1 Hipóteses Hipótese É uma pressuposição de um determinado problema. Uma vez formulada, a hipótese estará sujeita a uma comprovação

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 16/11/2011 Testes de

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Testes

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de Hipóteses Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de hipóteses O Teste de Hipótese é uma regra de decisão para aceitar ou rejeitar uma hipótese

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

HEP-5800 BIOESTATÍSTICA. Capitulo 2

HEP-5800 BIOESTATÍSTICA. Capitulo 2 HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

Biometria Teste t para dados emparelhados

Biometria Teste t para dados emparelhados 1 Sumário: Dados emparelhados Biometria Teste t para dados emparelhados (Leitura complementar ao capítulo 5) Duas amostras pertencem à mesma população? Estimação do tamanho amostral Menor diferença detectável

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

META Estudar características de populações com base nas informações colhidas por amostras de dados selecionados aleatoriamente nestas populações.

META Estudar características de populações com base nas informações colhidas por amostras de dados selecionados aleatoriamente nestas populações. AMOSTRAGEM: POPULAÇÃO E AMOSTRA. TIPOS DE AMOSTRAGEM. AMOSTRA PILOTO. NÍVEL DE CONFIANÇA. ESTIMATIVA DA MÉDIA E PROPORÇÃO POPULACIONAL POR PONTO E POR INTERVALO. META Estudar características de populações

Leia mais

Poder do teste e Tamanho de Amostra

Poder do teste e Tamanho de Amostra Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 24 Poder do teste e Tamanho de Amostra APOIO: Fundação de Ciência

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Significância do Coeficiente de Correlação

Significância do Coeficiente de Correlação Significância do Coeficiente de Correlação A primeira coisa que vamos tentar fazer nesta aula é apresentar o conceito de significância do coeficiente de correlação. Uma vez entendido este conceito, vocês

Leia mais

Estatística. Professora: Eliana Carvalho Estatística e Probabilidade 1

Estatística. Professora: Eliana Carvalho Estatística e Probabilidade 1 Estatística Fonte bibliográfica: FARIAS, Alberto Alves Introdução a Estatística MEYER, Paul L. Probabilidade: Aplicações à Estatística MONTGOMERY, Douglas C; Estatística aplicada e probabilidade para engenheiros.

Leia mais

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO Luiz Fernando Stringhini 1 Na tentativa de mostrar as possibilidades de uso das ferramentas da estatística dentro da contabilidade,

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 4 - Medidas de dispersão Departamento de Economia Universidade Federal de Pelotas (UFPel) Abril de 2014 Amplitude total Amplitude total: AT = X max X min. É a única medida de dispersão que não tem

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Avaliação de Sistemas de Medição

Avaliação de Sistemas de Medição Monitoramento de um processo: medição de uma característica da qualidade X por meio de um sistema de medição. Sistema de medição ideal: produz somente resultados corretos, ou seja, que coincidem com o

Leia mais

6 Intervalos de confiança

6 Intervalos de confiança 6 Intervalos de confiança Estatística Aplicada Larson Farber Seção 6.1 Intervalos de confiança para a média (amostras grandes) Estimativa pontual DEFINIÇÃO: Uma estimativa pontual é a estimativa de um

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo do Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 32 2 / 32 Cálculo do Tamanho de Amostra Parte fundamental

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão Prof. Dr. Guanis de Barros Vilela Junior Relembrando!!! Não é uma CIÊNCIA EXATA!!! É UMA CIÊNCIA PROBABILÍSTICA!!!!!!! Serve

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

NÍVEL DE ENSINO: CARGA HORÁRIA: PROBABILIDADE EST PROFESSOR-AUTOR:

NÍVEL DE ENSINO: CARGA HORÁRIA: PROBABILIDADE EST PROFESSOR-AUTOR: ESTATÍSTICA E PROBABILIDADE NÍVEL DE ENSINO: Graduação CARGA HORÁRIA: 80h PROFESSOR-AUTOR: Bráulio Roberto Gonçalves Marinho Couto Janaína Giovani Noronha de Oliveira Octávio Alcântara Torres Reinaldo

Leia mais

Inferência Estatística - Teoria da Estimação

Inferência Estatística - Teoria da Estimação Inferência Estatística - Teoria da Estimação Introdução Neste capítulo abordaremos situações em que o interesse está em obter informações da população a partir dos resultados de uma amostra. Como exemplo,

Leia mais

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II) ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)! Como calcular o retorno usando dados históricos?! Como calcular a variância e o desvio padrão?! A análise do retorno através da projeção de retornos

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

A Influência da Amostragem na Representatividade dos Dados

A Influência da Amostragem na Representatividade dos Dados A Influência da Amostragem na Representatividade dos Dados por Manuel Rui F. Azevedo Alves ESTG- Instituto Politécnico de Viana do Castelo REQUIMTE Rede de Química e Tecnologia Sumário Tópico 1: Definições

Leia mais

Comparando riscos e chances. Risco relativo e Razão de Chances

Comparando riscos e chances. Risco relativo e Razão de Chances Comparando riscos e chances Risco relativo e Razão de Chances Exemplo Inicial Estudo para verificar se a ingestão de extrato de guaraná tem efeito sobre a fadiga em pacientes tratados com quimioterapia

Leia mais

Poder do teste e determinação do tamanho da amostra:pca & PBC

Poder do teste e determinação do tamanho da amostra:pca & PBC Poder do teste e determinação do tamanho da amostra:pca & PBC Relembrando: α = probabilidade do erro do tipo I: P(Rejeitar H 0 H 0 é verdadeira). β = probabilidade do erro do tipo II: P(Não rejeitar H

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

TEM ALTERNATIVA CORRETA!!!! CERTAMENTE A BANCA EXAMINADORA DARÁ COMO RESPOSTA CERTA LETRA (E). SERIA A MENOS ERRADA POR ELIMINAÇÃO.

TEM ALTERNATIVA CORRETA!!!! CERTAMENTE A BANCA EXAMINADORA DARÁ COMO RESPOSTA CERTA LETRA (E). SERIA A MENOS ERRADA POR ELIMINAÇÃO. Prezados concursandos!!! Muita paz e saúde para todos!!! Passemos aos comentários da prova de Raciocínio Lógico Quantitativo propostas pela CESGRANRIO no último concurso para o IBGE, no dia 10/01/010.

Leia mais

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS DA SAÚDE FACULDADE DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA DISCIPLINA DE EPIDEMIOLOGIA ESTUDOS DE COORTE 1) Com o objetivo de investigar

Leia mais

Tópico 6. Distribuição Normal

Tópico 6. Distribuição Normal Tópico 6 Distribuição Normal Distribuição Normal Existe uma importante diferença entre dados que são normalmente distribuídos e a curva normal em si Distribuição Normal Muitas variáveis apresentam distribuição

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

ERRO E TRATAMENTO DE DADOS ANALÍTICOS

ERRO E TRATAMENTO DE DADOS ANALÍTICOS Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Química Introdução a Analise Química - I sem/2013 Profa Ma Auxiliadora - 1 Disciplina QUIO94 - Introdução à Análise Química

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência Tabelas e Diagramas de Freqüência Probabilidade e Estatística I Antonio Roque Aula 2 O primeiro passo na análise e interpretação dos dados de uma amostra consiste na descrição (apresentação) dos dados

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

Livro Texto recomendado para a Disciplina

Livro Texto recomendado para a Disciplina Livro Texto recomendado para a Disciplina FREUND, John E. Estatística aplicada: economia, administração e contabilidade. Porto Alegre: Bookman, 2006. 11ª Edição, 536 p. (com CD) ISBN: 8573075317 Biblioteca:

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Análise Exploratória de Dados Objetivos da aula Resolver exercícios do livro-texto com o auxílio do R. 1) Exercício 29 Uma amostra de dez casais e seus respectivos salários anuais (em salários mínimos)

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade 1/59

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade 1/59 ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 06: Intervalo de Confiança e Teste de Hipótese 1/59 população probabilidade (dedução) inferência estatística

Leia mais

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [.

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [. 6 Embora o conceito de diferencial tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18 Escola Secundária de Lousada Planificação anual disciplina de Matemática Ano: 8º Ano lectivo: 01-013 CALENDARIZAÇÃO Nº de aulas de 5 minutos previstas 1 1º Período º Período 3º Período 9 7 DISTRIBUIÇÃO

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

Agrupamento de Escolas do Fundão

Agrupamento de Escolas do Fundão Agrupamento de Escolas do Fundão MATEMÁTICA P GPI 13 12º Ano CURRÍCULO DA DISCIPLINA E Nº DE AULAS PREVISTAS Período PLANIFICAÇÃO ANUAL Módulos a leccionar + Conteúdos Programáticos Módulo A6- Taxa de

Leia mais

Estimando probabilidades

Estimando probabilidades A UA UL LA Estimando probabilidades Introdução Nas aulas anteriores estudamos o cálculo de probabilidades e aplicamos seu conceitos a vários exemplos. Assim, vimos também que nem sempre podemos calcular

Leia mais

Testes t para médias

Testes t para médias Testes t para médias 1-1 Testes t para médias Os testes t aplicam-se tanto a amostras independentes como a amostras emparelhadas. Servem para testar hipóteses sobre médias de uma variável quantitativa

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Teóricas Curso Eng. Electrotécnica ECTS 5 Teóricopráticas Distribuição das horas de contacto Trabalho Práticas e de Seminário Estágio Laboratoriais campo Orientação tutória Outras

Leia mais

Distribuição de Frequências

Distribuição de Frequências Distribuição de Frequências ENG09004 2014/2 Prof. Alexandre Pedott pedott@producao.ufrgs.br 2.1. Distribuições de Frequência Na análise de conjuntos de dados é costume dividi-los em classes ou categorias

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 1. Unidade Orgânica Ciências da Economia e da Empresa (1º Ciclo) 2. Curso Engenharia Informática 3. Ciclo de Estudos 1º

Leia mais

GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL. Estatística Descritiva

GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL. Estatística Descritiva GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL Estatística Descritiva A análise descritiva consiste basicamente na organização e descrição

Leia mais

Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014

Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014 Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014 Objetivo: Decidir se um conjunto de dados segue uma determinada distribuição de probabilidades. Exemplo 1: Uma emissora

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 9º ano do Ensino Fundamental Turma 1º semestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 9º ano do Ensino Fundamental Turma 1º semestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 08 9º ano do Ensino Fundamental Turma 1º semestre de 2015 Data / / Escola Aluno Questão 1 O fabricante de uma marca de tinta recomenda que o produto seja

Leia mais

Tema 0: Módulo Inicial Nº de Aulas Previstas (90 m): 18

Tema 0: Módulo Inicial Nº de Aulas Previstas (90 m): 18 Planificação Anual Matemática A 0º Ano Ano Lectivo 0/0 Tema 0: Módulo Inicial Nº de Aulas Previstas (90 m): 8 (BLOCOS DE 90M) Revelar espírito crítico, de rigor e confiança nos seus raciocínios. Abordar

Leia mais

ESCOLA SECUNDÁRIA DE LOUSADA

ESCOLA SECUNDÁRIA DE LOUSADA ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA Revista da Estatística da UFOP, Vol I, 2011 - XI Semana da Matemática e III Semana da Estatística, 2011 ISSN 2237-8111 EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

Teste U Teste de Mann-whitney. Karla szczypkovski Silva Lilian Sayuri Sakamoto

Teste U Teste de Mann-whitney. Karla szczypkovski Silva Lilian Sayuri Sakamoto Teste U Teste de Mann-whitney Karla szczypkovski Silva Lilian Sayuri Sakamoto Testes Não-paramétricos VANTAGENS DOS MÉTODOS NÃO- PARAMÉTRICOS 1. Aplicado a uma grande variedade de situações ; 2. Não exige

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser

Leia mais

(") ; b) ρ b1b2 = 0,5; ρ b1b3 = 0,5; ρ b1b4 = 0

() ; b) ρ b1b2 = 0,5; ρ b1b3 = 0,5; ρ b1b4 = 0 GA PROJETO E ANÁLISE E REES GEOÉSICAS EXERCÍCIOS ) Estimar a precisão do perímetro e da área de uma circunferência, e do volume de uma esfera, cujo raio (R) pode ser medido com as seguintes características:

Leia mais

Exploração e Transformação de dados

Exploração e Transformação de dados Exploração e Transformação de dados A DISTRIBUIÇÃO NORMAL Normal 99% 95% 68% Z-score -3,29-2,58-1,96 1,96 2,58 3,29 Normal A distribuição normal corresponde a um modelo teórico ou ideal obtido a partir

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

Cursos / Treinamentos

Cursos / Treinamentos Cursos / Treinamentos Carga Horária 1 Estatística Básica em Todos os Níveis. 16 Horas 2 Estatística Avançada. 60 Horas 3 Formação de Auditores Internos da Qualidade. 32 Horas 4 Controle Estatístico de

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Padronização. Momentos. Coeficiente de Assimetria

Padronização. Momentos. Coeficiente de Assimetria Padronização Seja X 1,..., X n uma amostra de uma variável com com média e desvio-padrão S. Então a variável Z, definida como, tem as seguintes propriedades: a) b) ( ) c) é uma variável adimensional. Dizemos

Leia mais

3ª Eduardo e Ana. Competência Objeto de aprendizagem Habilidade

3ª Eduardo e Ana. Competência Objeto de aprendizagem Habilidade Matemática 3ª Eduardo e Ana 8 Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 3 Foco: Espaço e Forma Utilizar o conhecimento geométrico para realizar a leitura e a representação da realidade

Leia mais

RESOLUÇÃO DE QUESTÕES DE MATEMÁTICA FINANCEIRA E ESTATÍSTICA

RESOLUÇÃO DE QUESTÕES DE MATEMÁTICA FINANCEIRA E ESTATÍSTICA RESOLUÇÃO DE QUESTÕES DE MATEMÁTICA FINANCEIRA E ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática Financeira e Estatística da prova para o cargo de Auditor Fiscal da

Leia mais

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos

Leia mais

INTRODUÇÃO À ESTATÍSTICA BÁSICA AULA 4

INTRODUÇÃO À ESTATÍSTICA BÁSICA AULA 4 INTRODUÇÃO À ESTATÍSTICA BÁSICA AULA 4 Dr. Pedro Giovâni da Silva (Ecologia UFC) MSc. Juliano André Bogoni (Ecologia UFSC) Florianópolis, agosto de 2015 Aula 4: Wilcoxon-Mann-Whitney; Kruskall-Wallis;

Leia mais

Medidas Estatísticas NILO FERNANDES VARELA

Medidas Estatísticas NILO FERNANDES VARELA Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar

Leia mais