MAT Cálculo Resolução parcial da Lista 0 de Cálculo

Tamanho: px
Começar a partir da página:

Download "MAT Cálculo Resolução parcial da Lista 0 de Cálculo"

Transcrição

1 MAT Cálculo Resolução parcial da Lista 0 de Cálculo 1. O imposto de renda mensal referente ao ano calendário 2017 (fonte: era calculado segundo a tabela: Base de cálculo mensal, em R$ Alíquota em % Parcela a deduzir do imposto Até 1.903, De 1.903,99 até 2.826,65 7,5 142,80 De 2.826,66 até 3.751,05 15,0 354,80 De 3.751,06 até 4.664,68 22,5 636,13 Acima de 4.664,68 27,5 869,36 O imposto a pagar I é função da base de cálculo (rendimento do mês) b. a) Escreva expressões algébricas que representam os valores da função I(b) para os valores de b em cada intervalo. b) Qual a diferença do imposto a pagar para b = 2.800, 00 e b = 2.900, 00? E entre b = 2.820, 00 e b = 2.830, 00? O que você observa? c) Esboce o gráfico de I em função de b. d) Determine o domínio e a imagem de I(b). O que se pode dizer sobre crescimento ou descrescimento da função I(b)? Resolução parcial (sem os gráficos): a) Para simplificar a resolução da questão, iremos considerar o domínio da função como um intervalo de R (no caso, um intervalo ilimitado superiormente, como discutiremos no item d). Note que, a rigor, não poderíamos fazer isso porque tanto a base de cálculo para imposto quanto o imposto pago é um valor monetário, cuja unidade mínima é 0,01 (1 centavo). Porém, é normal, na prática da modelagem matemática (isto é, quando se usa a Matemática para resolver um problema prático, convertendo-o para um problema matemático), usar funções com domínio e imagem que incluem números fracionários e irracionais em problemas cujos valores são, a princípio, números inteiros (por exemplo, problemas de crescimento populacional). Isso ocorre porque, ao contrário do que se pensa, funções cujos domínio e imagem são intervalos de R são muito mais fáceis de trabalhar do que funções discretas (com domínio contido em Z. São justamente os teoremas de cálculo, que veremos nesta disciplina, que tornam mais fáceis esse tipo de função. O uso de funções reais em lugar de funções discretas geralmente é feita quando no problema a unidade mínima está dentro da margem de erro tolerada (por exemplo, neste caso, erros de menos de 1 centavo são desprezados). Feita essa discussão, escrevemos a função algebricamente separando seu domínio em intervalos de números reais (o último deles ilimitado). Cada linha da tabela representa um desses intervalos.

2 I(b) = 0; se b < 1.903, 99 0, 075 b 142, 80; se 1.903, 99 b < 2.826, 66 0, 15 b 354, 80; se 2.826, 66 b < 3.751, 06 0, 225 b 636, 13; se 3.751, 06 b < 4.664, 69 0, 275 b 869, 36; se b 4.664, 69 b) Tomando o cuidado para usar a faixa correta em cada um desses valores, obtemos os seguintes valores: I(2800) = 67, 20; I(2900) = 80, 20; I(2820) = 68, 70; I(2830) = 69, 70. Observamos que pequenas alterações na base de cálculo do imposto causam alterações também pequenas no valor do imposto devido, mesmo quando ocorre uma mudança de uma faixa para outra. Veremos, durante a disciplina, que isso é a definição de função contínua, que, a grosso modo, significar que podemos desenhá-la sem tirar o lápis do papel (não dá saltos ). c) Para esboçar o gráfico de I precisamos calcular o valor de I(b) para cada valor de b em que ocorre uma mudança de faixa, e também para algum valor de b acima de 4.664,69, para observarmos como o gráfico se comporta a partir desse valor. Para conferirmos que o gráfico não dá saltos, precisamos calcular cada um desses valores de mudança de faixa usando ambas as expressões, correspondentes às duas faixas onde ocorre a transição. Fazendo isso, observamos que a diferença é menor que 1 centavo. Arredondando os valores, podemos apenas ligar os pontos, usando segmentos de retas. Os valores usados para completar o gráfico (com o arredondamento de 1 centavo) são: I(0) = 0. I(1.903, 99) = 0. I(2.826, 66) = 69, 20. I(3.751, 06) = 207, 86. I(4.664, 69) = 413, 43. I(5.600, 00) = 670, 64. d) Tanto o domínio quanto a imagem é R + também denotado por [0, [, ou seja, todos os reais não-negativos. Isso porque não estamos considerando um valor máximo possível (embora na prática esse valor existe) para a base de cálculo do imposto. No item (a) discutimos por que consideramos que o domínio possui valores fracionários e até irracionais, mesmo que, na prática, só consideramos múltiplos de centavos. Dessa forma, também é correto responder que o domínio de I são os múltiplos inteiros não-negativos de 0,01. Pelo gráfico percebemos que o valor pago também é ilimitado e pode assumir qualquer valor, porque o último trecho é uma reta crescente. Como o gráfico começa do 0 e não dá saltos, todos os valores reais não-negativos podem ser atingidos.

3 A função é não-decrescente (isto é, não decresce em nenhum trecho) e, a partir do valor 1903,99, é estritamente crescente (isto é, sempre aumenta de valor: se x < y então I(x) < I(y)). 2. Uma determinada empresa paga o salário dos funcionários de acordo com a jornada semanal de trabalho. Até 40 horas semanais de trabalho o salário é de 20 reais por hora e o valor da hora extra é de 26 reais, sendo permitida no máximo uma carga horária semanal de 50 horas. Para efeito de cálculo do salário mensal, considera-se que um mês possui 4,5 semanas. Considere S o salário mensal (bruto) em função do número de horas trabalhadas por semana. a) Determine o domínio e a imagem de S. Você pode considerar que o número de horas trabalhadas é fracionário. b) Escreva as expressões algébricas da função S, separando por intervalos. Esboce o gráfico. c) Considere a função L = S I S, onde I é a função do exercício anterior. O que significa, em termos práticos, a função L? Qual é o seu domínio e imagem? d) Escreva algebricamente a função L, separando por intervalos, e esboce o gráfico. Resolução: a) O domínio é o intervalo [0, 50], visto que o enunciado diz explicitamente que o número máximo permitido de horas trabalhadas por semana é 50. A função é claramente crescente e, para o máximo de horas trabalhadas, o salário é de 4, 5 ( ), o que resulta em 4770, que é o salário máximo possível nas condições do enunciado. Logo, a imagem é [0, 4770]. b) Se o número de horas trabalhadas semanais x for menor ou igual a 40, a expressão do valor do salário mensal é 4, 5 20 x, que resulta em 90 x. Se x for maior que 40, o funcionário recebe 800 reais por semana pelas primeiras 40 horas e mais 26 reais por hora excedente, resultando em um salário mensal de 4, 5 ( (x 40)). Simplificando, a fórmula nessa segunda faixa é 117x Isto é, a função S(x) é dada por: S(x) = O gráfico é deixado para o(a) estudante. { 90x, se x x 1080, se 40 < x 50 c) A função L é o salário menos o imposto pago (considerando, hipoteticamente, que a base de cálculo é todo o salário, sem descontos) em funções das horas trabalhadas por semana. Ou seja, desconsiderando outros descontos (como previdência), é o salário líquido em função das horas trabalhadas semanalmente. Vimos no item (a) que o maior salário possível obtido nessa empresa é o de mensais, que corresponde à jornada de 50 horas semanais. Esse corresponde também ao valor que resulta no maior salário líquido. Para esse valor, aplicando

4 na função I do exercício 1, obtemos I(4770) = 442, 39. Logo, L(50) = , 39 = 4327, 61. Portanto, a imagem de L é [0; 4327, 61]. d) Como ambas as funções S e I são divididas por faixas, precisamos, primeiro, encontrar os pontos em que a expressão linear da função L altera. Vamos, então, dar nome às variáveis que queremos calcular. São elas: x 1, o número de horas em que começa a pagar a alíquota de 7,5% de imposto; x 2, o número de horas que faz o salário mudar da faixa que paga 7,5% de imposto para 15%; x 3, o número de horas que faz o salário mudar da faixa que paga 15% de imposto para 22,5%; x 4, o número de horas que faz o salário mudar da faixa que paga 22,5% de imposto para 27,5%. Outros pontos notáveis que usaremos para esboçar o gráfico e representar a função algebricamente são: 0, 40 e 50. Como S(40) = 3600, que está na faixa da alíquota de 15%, e S(50) = 4770, que está na última faixa, temos que: 0 < x 1 < x 2 < 40 < x 3 < x 4 < 50. É importante localizarmos onde se encaixa o número de 40 horas para sabermos qual fórmula usar em cada parte. Assim, para encontrarmos o valor x 1 resolvemos a equação S(x 1 ) = 1903, 99. Sabendo que x 1 < 40, substituímos S(x 1 ) pela primeira fórmula que a define, obtendo a equação: 90x 1 = 1903, 99, de onde obtemos x 1 = 21, 2, aproximadamente. Analogamente, obtemos x 2 = 31, 4, aproximadamente. Para x 3, sabendo que x 3 > 40, usamos a equação: 117x = 3751, 06, obtendo aproximadamente x 3 = 41, 3. Finalmente, x 4 = 49, 1 Se 0 x < 21, 2, a pessoa é isenta de imposto, e o salário líquido é o próprio salário. Ou seja, nessa faixa, L(x) = 90x. Se 21, 2 x < 31, 4, a função L(x) é dada por: L(x) = S(x) I(S(x)) = 90x (0, x 142, 8) = 83, 25x + 142, 8. Se 31, 4 x 40,

5 L(x) = 90x (0, 15 90x 354, 8) = 76, 5x + 354, 8. Se 40 < x < 41, 3, mantemos a mesma expressão do cálculo do imposto, mas a expressão da base de cálculo em função das horas muda: L(x) = (117x 1080) ((0, 15 (117x 1080)) 354, 8) = 99, 45x 563, 2. Se 41, 3 x < 49, 1 temos a expressão: L(x) = (117x 1080) ((0, 225 (117x 1080)) 636, 13) = 90, 675x 200, 87. Finalmente, nesse pequeno intervalo em que 49, 1 x 50 temos: L(x) = (117x 1080) ((0, 275 (117x 1080)) 869, 36) = 84, 825x + 86, 36. Resumindo: L(x) = 90x; se 0 x < 21, 2 83, 25x + 142, 8; se 21, 2 x < 31, 4 76, 5x + 354, 8; se 31, 4 x 40 99, 45x 563, 2; se 40 < x < 41, 3 90, 675x 200, 87; se 41, 3 x < 49, 1 84, 825x + 86, 36; se 49, 1 x Uma xícara de café contém cerca de 100mg de cafeína. A meia-vida da cafeína no corpo é de cerca de 4 horas. Isto significa que a cafeína decai a uma taxa de 16% por hora. (a) Confirme que a meia vida de uma substância decai a uma taxa de 16% por hora é de cerca de 4 horas. (b) Escreva uma fórmula para a quantidade de cafeína P no corpo como função do número de horas t, desde que o café foi tomado. (c) Quanta cafeína permanece no corpo depois de 2 horas? (d) Quanto tempo levará até que o nível de cafeína no corpo atinja 20mg? OBS: Chama-se meia-vida de uma substância o tempo necessário para que a quantidade desta substância se reduza pela metade. Resolução:

6 (a) Se a substância decai a uma taxa de 16% por hora, isso significa que a cada hora a quantidade da substância é multiplicada por (1 16 ), que é igual a 0, 84. Logo, se a 100 quantidade inicial da substância é Q, daqui a t horas a quantidade será t 0, 84 t. Em particular, para t = 4 obtemos que a quantidade da substância daqui a 4 horas será de aproximadamente Q 0, 498, o que é aproximadamente metade da quantidade inicial. (b) Como feito no item (a), obtemos a expressão: onde t é dada em horas e P (t) em mg. P (t) = 100 (0, 84) t, (c) P (2) = 100 (0, 84) 2 = 70, 56. Portanto, a resposta é 70, 56mg. (d) Precisamos resolver a equação isto é: que é equivalente a Logo, P (t) = 20, 100 (0, 84) t = 20, 0, 84 t = 0, 2 t = log 0,84 2, que é aproximadamente 9, 23. Ou seja, levará aproximadamente 9h14min para a cafeína ser reduzida a 20mg no corpo. 4. Um fenômeno bastante importante e intrigante é o das marés. A altura da maré é uma função periódica, pois oscila regularmente entre maré alta e baixa. Jornais paulistas publicam regularmente a altura das marés no porto de Santos. A altura (em metros) no porto de Boston é aproximada pela fórmula ( π ) f(t) = 1, 5 + 1, 4cos 6 t onde t é o tempo em horas desde a meia-noite de 10 de fevereiro de (a) Esboce o gráfico da função f ao longo do dia 10 de fevereiro de (b) Qual era a altura da água à maré alta? (c) Quando foi a maré baixa e qual era a altura da água neste momento? (d) Qual é o período desta função e o que ele representa em termos das marés?

7 (e) Qual é a amplitude desta função e o que ele representa em termos das marés? Resolução: (b) A imagem da função cosseno é [ 1, 1]. Portanto, o valor máximo atingido pela função f é 1, 5 + 1, 4 = 2, 8. Ou seja, a altura da água à maré alta era de 2,8m. (c) O primeiro valor positivo de x para o qual cos(x) = 1 é π. Para os outros valores, basta somar um múltiplo inteiro de 2π. Resolvendo a equação π t = π obtemos t = 6 e, para 6 π t = 3π, obtemos t = 18. Para esses valores temos f(t) = 1, 5 1, 4 = 0, 1. Logo, a maré 6 baixa ocorreu às 6h e às 18h daquele dia, e a altura da água nesses horários era de 10cm. (d) O período é de 12 horas, que é o tempo do ciclo completo da maré (o intervalo de tempo entre duas marés altas ou entre duas marés baixas). (e) A amplitude é a diferença entre o máximo e mínimo atingido pela função. No caso, a diferença entre a altura da água na maré alta e a altura da água na maré baixa. Pelos itens (b) e (c), esse valor é de 2,7m. 5. Expresse a área da superfície de um cubo como função de seu volume. Dê o domínio e a imagem da função. Resolução: Como o volume de um cubo de aresta l é l 3, um cubo de volume v tem aresta medindo 3 v. Como o cubo tem 6 faces quadradas, cada uma com área igual ao quadrado do lado, a função A(v) da área da superfície em função do volume v do cubo é dada por: A(v) = 6 3 v 2. Note que tanto a área da superfície quanto o volume precisam ser valores reais positivos, e podem assumir qualquer valor real positivo. Algebricamente, observamos que a expressão A(v) está bem definida para todo v R + e que a equação A(v) = r sempre tem solução real, para qualquer r > 0. Isso significa que tanto o domínio quanto a imagem de A é ]0, [. 6. Esboce o gráfico das seguintes funções, determinando o maior domínio possível para o qual a função está definida. Estude cada uma com relação a crescimento e descrescimento. (a) f(x) = (1 x) 2 (b) f(x) = 1 x 2 (c) f(x) = 1 x (d) f(x) = 1 x (e) f(x) = 3x + 5 (f) g(x) = x x (g) f(x) = x 3 (h) f(x) = sen (x + π/2) (i) f(x) = x 3 9 (j) g(x) = 1 x+5 (k) f(x) = x (l) f(x) = 3 x (m) f(x) = x (n) f(x) = 3 1 x 2 (o) f(x) = 3 x 2 4 (p) g(y) = y 2 1 y 2 4

8 7. Um aluno resolveu uma inequação da seguinte forma: x 1 < 3 2x ( x 1) 2 < ( 3 2x) 2 x 1 < 3 2x x < 4/3 No entanto percebeu que a solução estava errada, pois x = 0 não é solução. Qual o erro do aluno? 8. Decida quais afirmações são verdadeiras ou falsas e justifique a resposta. a) se x 1 < 3 então (x 1) 2 < 9 b) se (x 1) 2 < 9 então x 1 < 3 c) se 1 x < 3 e x 0 então x > 1 3 d) se x 2, x 2 + x + 1 x 2 > 3 então (x 2 + x + 1) > 3(x 2) 9. Sejam f : A B e g : B C funções. Decida quais afirmações são verdadeiras ou falsas. Justifique a resposta. Pode usar diagramas para ilustrar a justificativa. a) Se f e g são injetoras, então g f é injetora; b) Se g f é injetora, então g é injetora; c) Se g f é injetora, então f é injetora; d) Se f e g são sobrejetoras, então g f é sobrejetora; e) Se g f é sobrejetora, então g é sobrejetora; f) Se g f é sobrejetora, então f é sobrejetora; g) g f é bijetora se, e somente se, f e g são bijetoras. 10. Represente, no plano cartesiano, o conjunto dos pares (x, y) pertencentes a R 2 que satisfazem cada uma das seguintes condições: a) x + y 1; b) x y + x y 2; c) x 1 3; d) x + 1 y 2.

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Soluções dos Problemas do Capítulo 3

Soluções dos Problemas do Capítulo 3 48 Temas e Problemas Soluções dos Problemas do Capítulo 3. A cada período de 5 anos, a população da cidade é multiplicada por,0. Logo, em 0 anos, ela é multiplicada por,0 4 =,084. Assim, o crescimento

Leia mais

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

26 A 30 D 27 C 31 C 28 B 29 B

26 A 30 D 27 C 31 C 28 B 29 B 26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

Aula 10 Regiões e inequações no plano

Aula 10 Regiões e inequações no plano MÓDULO 1 - AULA 10 Aula 10 Regiões e inequações no plano Objetivos Resolver inequações do segundo grau. Analisar sistemas envolvendo inequações do primeiro e segundo graus. Resolver inequações modulares

Leia mais

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma: QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G4 21 de junho de 2011 (versão I)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G4 21 de junho de 2011 (versão I) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G4 21 de junho de 2011 (versão I) Início: 13:00 Término: 14:50 Nome: Matrícula: Turma: Se você é um(a) aluno(a) aprovado(a)

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de

Leia mais

Simulado 1 (Corrigido no Final)

Simulado 1 (Corrigido no Final) Simulado 1 (Corrigido no Final) Mottola Resolver em horas, sem interrupções e sem consulta. Após este tempo, as questões não respondidas devem ser marcadas de forma aleatória. 1) O menor ângulo formado

Leia mais

Funções como instrumento de modelagem

Funções como instrumento de modelagem Funções como instrumento de modelagem Funções como instrumento de modelagem Problema do mundo real Modelo matemático Predições sobre o mundo real Conclusões matemáticas Função Afim Índice de massa corporal

Leia mais

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes: 2 Matemática 01. Recorde que uma função f: R R diz-se par quando f( x) = f(x) para todo x real, e que f diz-se ímpar quando f( x) = f(x) para todo x real. Com base nessas definições, analise a veracidade

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 0/11/014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n.

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.2 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. (b) Para quais valores de

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G4 29 de junho de 2009 (versão I)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G4 29 de junho de 2009 (versão I) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G4 29 de junho de 2009 (versão I) Início: 17:00 Término: 18:50 Nome: Matrícula: Turma: Se você é um(a) aluno(a) aprovado(a)

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução): Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa.

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa. DR. SIMON G. CHIOSSI @ GMA / UFF MB V 1 0/02/2016 NOME LEGÍVEL: Matemática Básica Prova V 1 turma A1 0 / 02 / 2016 MATRÍCULA: EXERCÍCIOS OBRIGATÓRIOS (1) Sejam P(x) o predicado x 2 = x e Q(x) o predicado

Leia mais

O domínio [ 1, 1] é simétrico em relação a origem.

O domínio [ 1, 1] é simétrico em relação a origem. QUESTÕES-AULA 33 1. Determine quais das funções abaixo são pares, quais são impares e quais não são pares nem impares. Justifique as suas respostas. (a) g : [ 3, 3] R, x x 3 (b) h : ( 3, 3) R, x x 3 x

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Gabarito e Pauta de Correção ENQ

Gabarito e Pauta de Correção ENQ Gabarito e Pauta de Correção ENQ 015.1 Questão 01 [ 1,00 ::: (a=0,50; (b=0,50 ] (a Mostre que se x e y são números irracionais tais que x y seja racional não nulo, então x + y e x y são ambos irracionais.

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2019.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Resolva as seguintes recorrências: (a) a n+2 5a n+1 + 4a n = 0, a 0 = 1, a 1 = 3. (b)

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

Matemática A Extensivo V. 3

Matemática A Extensivo V. 3 Extensivo V. Exercícios 01) 01. Falso. Substitua a e b por e, respectivamente. ( + ) = + 9+ 16 = 7 = 7 = 7 (falso) Como a equação já não vale para esses números, não vale para todos os reais. 0. Verdadeiro.

Leia mais

Portanto, = 4 1= 2. LETRA D

Portanto, = 4 1= 2. LETRA D TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 22 de novembro de 2010 (versão IIa)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 22 de novembro de 2010 (versão IIa) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G3 22 de novembro de 2010 (versão IIa) Início: 9:00 Término: 10:40 Nome: Matrícula: Turma: Questão Valor Grau Revisão

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Sistemas de inequações Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. O declive da reta AB é dado por: m AB = y B y A x B x A = 2 = 2 + = Como retas paralelas têm o mesmo declive, de

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G2 26 de outubro de 2009 (versão IIa)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G2 26 de outubro de 2009 (versão IIa) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G2 26 de outubro de 2009 (versão IIa) Início: 11:00 Término: 12:50 Nome: Matrícula: Turma: Questão Valor Grau Revisão

Leia mais

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Equação Exponencial... 1 Equação Exponencial... 1 Exemplo 1... 1 Método da redução à base comum...

Leia mais

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição

Leia mais

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,

Leia mais

1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5.

1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5. Lista de Exercícios de Cálculo I - Funções de uma variável Real 1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (a) 2x + 5 < 3x 7 3 2x 3 5 7 (c) x 2 x 6 < 0 (d)

Leia mais

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO)

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 018-19 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA QUESTÃO:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Temos que P A B) P A) + P B) P A B) P A B) P A) + P B) P A B) Como A e B são independentes, então P A) P B) P A B), pelo

Leia mais

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

RESPOSTA ESPERADA MATEMÁTICA

RESPOSTA ESPERADA MATEMÁTICA Questão 3 a) Quando se usa o cartucho Preto BR, o custo por página é igual a 90/80 /9. Para o cartucho Preto AR, esse custo baixa para 50/400 /6. Como /6 < /9, o cartucho Preto AR é mais econômico. Você

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016. Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.

Leia mais

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10 Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ

Leia mais

Semana 1 Revendo as Funções

Semana 1 Revendo as Funções 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 1 Revendo as Funções Professor Luciano Nóbrega UNIDADE 1 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas

Leia mais

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total 1 a Prova de MAT036 - Geometria Diferencial I IME - 9/09/016 Nome:................................................... Q N Assinatura:............................................... 1 RG:......................................................

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2

Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2 Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente

Leia mais

Solução da Prova de Matemática

Solução da Prova de Matemática SOLUÇÃO DA PROVA DE MATEMÁTICA UNEAL 014 Solução da Prova de Matemática Temos uma típica questão de Conjuntos no parágrafo inicial, misturada em sequência por um tópico de média aritmética simples. Usaremos

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3

:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3 Questão 26 - Alternativa D Proporcionalidade Dados: Em 24 horas temos: 25 0,2 = 5 ml por minuto 25 gotas por minuto 0,2 ml por gota 24. 60 = 1440 minutos 5 ml _ 1 minuto x _ 1.440 minutos x = 5 1.440 =

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 009 - a Fase Proposta de resolução GRUPO I 1. Como a Maria escolheu CD de um conjunto de 9, sem considerar a ordem relevante, existem 9 C pares diferentes que podem

Leia mais

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Eercícios Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios Resolvidos Neste último material, resolvemos

Leia mais

MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A. Lista 3 - Função Afim - 25/08/2017

MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A. Lista 3 - Função Afim - 25/08/2017 MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A Nome: RA: Lista 3 - Função Afim - 25/08/2017 Obs.: É importante fazer todos os exercícios e discutir as dúvidas existentes. 1. Dados os gráficos

Leia mais

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E. UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados

Leia mais

Teste de Matemática 2017/I

Teste de Matemática 2017/I Universidade Federal de Viçosa Departamento de Matemática Teste de Matemática 017/I 1. Os ovos de galinha são mais baratos do que os de perua. Não tenho dinheiro suficiente para comprar duas dúzias de

Leia mais

1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy

1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy 1ª Avaliação 1) Se = 3,666 e y = 0,777, calcule y ) Determine o conjunto solução do sistema de inequações: 7 0 1 3 0 3) Calcule m para que o gráfico de f( ) ( m 7m) no ponto de ordenada 10 = + corte o

Leia mais

Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo

Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Com esta apostila espera-se levar o aluno a: Apostila organizada por: Vanderlane Andrade Florindo Silvia

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova 2 09 de Junho de 2010

MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova 2 09 de Junho de 2010 MAT 104 Cálculo 1 Prof. Paolo Piccione Prova 2 09 de Junho de 2010 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas corretas na folha

Leia mais

MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova 2 09 de Junho de 2010

MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova 2 09 de Junho de 2010 MAT 104 Cálculo 1 Prof. Paolo Piccione Prova 2 09 de Junho de 2010 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas corretas na folha

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 010 - Época especial Proposta de resolução GRUPO I 1. O grupo dos 3 livros de Matemática pode ser arrumado de 3 A 3 = P 3 = 3! formas diferentes. Como a prateleira

Leia mais

Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas

Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas Material Teórico - O Plano Cartesiano e Sistemas de Equações Sistemas de Equações do Primeiro Grau com Duas Incógnitas Sétimo Ano do Ensino Fundamental Prof Francisco Bruno Holanda Prof Antonio Caminha

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 018 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 Qual é o valor da expressão? 016 1 01

Leia mais

Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo

Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo Cálculo Diferencial - 2016.2 - Lista de Problemas 1.1 1 Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo Questão 01 Encontre o domínio da função (a) f(x) = x + 4 x 2 9 (b) f(t) = 3 2t 1 (c)

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 5 de Fevereiro de - Parte I (h3m). Considere

Leia mais

CÁLCULO I. Lista Semanal 01 - Gabarito

CÁLCULO I. Lista Semanal 01 - Gabarito CÁLCULO I Prof. Márcio Nascimento Prof. Marcos Diniz Questão 1. Nos itens abaixo, diga se o problema pode ser resolvido com seus conhecimentos de ensino médio (vamos chamar de pré-cálculo) ou se são necessários

Leia mais

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x =

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x = 88 0) x 0, 5 aplicando a prop. a n m m a n : 88 5 00 x 88 5 0 x 8 5 0 x 80 5 0 x 75 0 x 75x 0 x 0 75 x 5 multiplicando toda inequação por 0: multiplicando toda inequação por x: Porém, x 0, pois x é o denominador.

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 25 DE JUNHO 203 Grupo I Questões 2 3 4 5 6 7 8 Versão B D C A D B C A Versão 2 C A B D D C B B Grupo II...

Leia mais

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ITEM 1 DA ADA No desenho, a seguir, estão representados os pontos M e N que correspondem à localização de dois animais. Atividades relacionadas

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções trigonométricas, eponenciais e logarítmicas Aula 0 Projeto GAMA

Leia mais

OFICINA DE MATEMÁTICA BÁSICA Lista 3

OFICINA DE MATEMÁTICA BÁSICA Lista 3 OFICINA DE MATEMÁTICA BÁSICA Lista 3 Data da lista: 29/06/2017 Preceptora: Natália Cursos atendidos: Todos Coordenador: Francisco 1. Demonstre que cada uma das seguintes igualdades são identidades. (a)

Leia mais

Projeto de Recuperação FINAL 1ª Série EM

Projeto de Recuperação FINAL 1ª Série EM MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para os conteúdos que

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.

Leia mais

MATEMÁTICA PARA TÉCNICOS

MATEMÁTICA PARA TÉCNICOS PETROBRAS INDICADA PARA TODOS CARGOS TÉCNICOS MATEMÁTICA PARA TÉCNICOS QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 ÍNDICE DE QUESTÕES MATEMÁTICA - CARGOS TÉCNICOS

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 30 de novembro de 2009 (versão IVa)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 30 de novembro de 2009 (versão IVa) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G3 30 de novembro de 2009 (versão IVa) Início: 15:00 Término: 16:50 Nome: Matrícula: Turma: Questão Valor Grau Revisão

Leia mais