Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com
Um pouco de História... Babilônia (1.800 a.c) alguns métodos de resolução de equações de 2º grau já eram conhecidos. Egípcios: já trabalhavam com equações lineares e usavam incógnitas em seus problemas (Papiro de Rhind)* Fonte:http://www.navegandodelpasadoalfuturo.net/babilonia * Papiro de Rhind ou Papiro de Ahmes - 1.650 a.c - cópia de um trabalho ainda mais antigo. Detalha a solução de 85 problemas (aritmética, frações, cálculo de áreas, volumes, equações lineares, geometria; dentre outros. 2 Fonte: http://www.matematica.br/historia/prhind.html
Um pouco de História... Europa Século XVI: Del Ferro, Tartaglia, Cardano, Ferrari dentre outros, iniciaram estudos sobre equações de terceiro e quarto graus. Fonte: https://pt.wikipedia.org/wiki/tartaglia Século XIX: Galois resolveu um antigo problema em aberto envolvendo as raízes de um polinômio e cria um novo campo da álgebra abstrata: a teoria dos grupos. Fonte: http://www.mathworks.com/matlabcentral 3
Algumas Aplicações Modelagem matemática: descrever e ajustar curvas. Na economia: Análises de custos. Mercado de ações: prever como os preços podem variar ao longo do tempo. Na Medicina: Concentração de um medicamento no corpo ao longo do tempo. Na Física: Descrever a trajetória de um móvel. Na Matemática: Análise numérica: um dos problemas mais antigos da matemática é determinar as raízes de polinômios ou resolver equações algébricas. Cálculo de Área. 4
http://www.citisystems.com.br/confiabilidade-disponibilidade-maquinas/ Fonte: http://magicnumbers-parussolo.blogspot.com.br Fonte: http://fisicamoderna.blog.uol.com.br5
Definição Denomina-se função quadrática na variável x toda função na forma: f(x) = ax 2 + bx + c = 0 com x R, a 0 a: é sempre o coeficiente de x 2 b: é sempre o coeficiente de x c: é o coeficiente ou termo independente Gráfico da Função Quadrática: sempre é uma parábola. 7
Exercitando... Dadas as funções quadráticas determine os coeficientes a, b e c de cada função. a) f(x) = x 2-6x +8 a = ; b = ; c = b) y = -3x 2 + 4x 4 a = ; b = ; c = c) f(x) = x 2 6 a = ; b = ; c = d) y = -2x 2 + 8x a = ; b = ; c = e) f(x) = x 2 1 a = ; b = ; c =
ZEROS (OU RAÍZES) DE UMA FUNÇÃO DE 2º GRAU São os valores de x que anulam a função: f(x) = 0
Cálculo dos zeros ou raízes de uma função do 2º grau 1º caso: b = 0 Igualar a função a zero Isolar a variável x e o termo independente a) f(x) = x 2 1 b) f(x) = x 2 9 c) f(x) = 2x 2 14 d) f(x) = x 2 + 9 x 2 1= 0 x 2 9 = 0 2x 2 14 = 0 x 2 + 9 = 0 x 2 = 1 x 2 = 9 2x 2 = 14 x 2 = - 9 x = 1 x = 9 x 2 = 14/2 x = -9 x = +/- 1 x = +/- 3 x = 7 Não existe solução
Exercitando... Calcule as raízes das funções quadráticas abaixo: a) f(x) = x 2 16 b) y = -x 2 + 36 c) f(x) = 2x 2 8 d) y = -2x 2 + 10 e) f(x) = 2x 2 6 f) y = x 2 + 10 R : a) 4; b) 6; c) 2; d) 5; e) 3; f) 10
Cálculo dos zeros ou raízes de uma função do 2º grau 2º caso: c = 0 Igualar a função a zero Colocar a variável x em evidência. a) f(x) = x 2 5x b) f(x) = x 2 + 2x c) f(x) = 2x 2 + 6x x 2 5x = 0 x(x 5) = 0 Raízes: x = 0 x = 5 x 2 + 2x = 0 x(x + 2) = 0 Raízes: x = 0 x = -2 2x 2 + 6x = 0 2x(x + 3) = 0 Raízes: x = 0 x = -3
Exercitando... Calcule as raízes das funções quadráticas abaixo: a) f(x) = x 2 + 3x b) y = x 2 + 4x c) f(x) = x 2 4x d) y = x 2-5x e) f(x) = 2x 2 12x f) y = 2x 2 2x R: a) x = 0 e x = -3; b) x = 0 e x = -4; c) x = 0 e x = 4; d) x = 0 e x = 5; e) x = 0 e x = 6; f) x = 0 e x = 1;
Cálculo dos zeros ou raízes de uma função do 2º grau 3º caso: cálculo das raízes da função completa Soma e Produto (Relação de Girard) Exemplo 1: y = x 2-5x + 6 b ( 5) X ' X '' 5 a 1 c 6 X '. X '' 6 a 1 S = (2, 3) Exemplo 2: f(x) = x 2 + 2x - 3 b 2 X ' X '' 2 a 1 c 3 X '. X '' 3 a 1 S = (-3, 1)
Cálculo das Raízes: Fórmula de Bháskara 3º caso: cálculo das raízes da função completa Fórmula de Bháskara
Gráficos da função quadrática
Cálculo dos zeros ou raízes de uma função do 2º grau a) f(x) = x 2 7x + 6 b) f(x) = 9x 2 + 6x + 1 c) f(x) = -2x 2 + 3x - 5 x 2 7x + 6 = 0 9x 2 + 6x + 1 = 0-2x 2 + 3x 5 = 0 b 2 ( 7) 25 4.a.c 2 49 24 4.1.6 ( 7) 25 x 2.1 7 5 x' 6 2 7 5 x'' 1 2 2 b 4. 2 (6) 4.9.1 0 a. c 36 36 6 0 x 2.9 6 0 1 x' 18 3 6 0 1 x'' 18 3 b 2 4.a.c 2 (3) 4.( 2).( 5) 9 40 31 Não existe solução que satisfaça f(x) = 0
Exercitando... Calcule as raízes das funções quadráticas abaixo: a) f(x) = x² + 3x 10 b) f(x) = 4x² 4x + 2 c) y = 2x 2-4x + 5 d) y = -x² - 6x + 5 e) y = -x² + 6x + 5 f) f(x) = -x 2 + 12x + 20 g) f(x) = 2x 2-3x + 5 f(x) = 5x 2 + 10x + 5 18
Cálculo do Vértice de uma Parábola Valor Máximo ou Mínimo da Função Quadrática x y v v b 2a 4a Valor Máximo Valor Mínimo
Exemplos 1) Qual é o vértice da parábola y = x 2 2x + 5? 2) Considere o gráfico a seguir, que representa a função definida por y = 2x 2 5x + 2. As coordenadas do vértice V da parábola são: Letra A
3) Determinar as coordenadas do vértice V da parábola que representa a função f(x) = x 2 2x 3 e diga se é um ponto de máximo ou mínimo da função. a) V (1, -4); ponto de mínimo b) V (2, 4); ponto de máximo c) V (-1,-4); ponto de máximo d) V (2,-4); ponto de mínimo 21
Exercitando... Em cada um dos itens abaixo ache o vértice e classifique como um ponto de máximo ou de mínimo da função dada. a) f(x) = x 2 + 8x + 9 b) f(x) = -x 2 + 4x + 4 c) f(x) = 4x 2 + 8x - 3 d) f(x) = -x 2 + 2x - 1 e) f(x) = -x 2 + 9 f) f(x) = -x 2-9x Gabarito: a) (-4, -7), ponto de mínimo, b) (2, 8), ponto de máximo c) (-1, -7), ponto de mínimo, d) (1, 2), ponto de máximo e) (0, 9), ponto de máximo, f) (0, -9), ponto de máximo 22
Aplicações Exemplo 1: O lucro de uma fábrica na venda de um produto é dado pela função L(x) = 5x 2 + 100x 80, onde x representa o número de produtos vendidos e L(x) é o lucro em reais. Determine: a) Quantos produtos devem ser vendidos para se obter o lucro máximo? b) Qual o lucro máximo obtido pela fábrica na venda desses produtos? 23
Exemplo 2: O custo de produção de um equipamento hospitalar é dado por C(x) = 3x 2 15x + 21. Se a venda de x unidades é dada por V(x) = 2x 2 + x, para que o lucro L(x) = V(x) C(x) seja máximo, devem ser vendidas: a) 20 unidades b) 16 unidades c) 12 unidades d) 8 unidades e) 4 unidades Exemplo 3: Um corpo lançado do solo verticalmente para cima tem posição em função do tempo dada pela função h(t) = 40 t 5t 2 onde a altura h(t) é dada em metros e o tempo t é dado em segundos. Calcule: a) O tempo necessário para o objeto atingir a altura máxima. a) A altura máxima atingida pelo objeto. 24
Exercícios: Máximo e Mínimo (Enem) Um boato tem um público-alvo e alastra-se com determinada rapidez. Em geral, essa rapidez é diretamente proporcional ao número de pessoas desse público que conhecem o boato e diretamente proporcional também ao número de pessoas que não o conhecem. Em outras palavras, sendo R a rapidez de propagação, P o público-alvo e x o número de pessoas que conhecem o boato, tem-se: R(x) = k.x.(p - x), onde k é uma constante positiva característica do boato. Considerando o modelo acima descrito, se o público-alvo é de 44.000 pessoas, então a máxima rapidez de propagação ocorrerá quando o boato for conhecido por um número de pessoas igual a: a) 11.000. b) 22.000. c) 33.000. d) 38.000. e) 44.000. b 44.000k xv 22.000 2a 2k
2. A modelagem matemática que relaciona o consumo de gasolina de um carro para percorrer 100 km com velocidade de x km/h é dado por C(x) = 0,006x 2 0,6x + 25. Para qual velocidade este consumo é mínimo? a) 46 km/h b) 47 km/h c) 48 km/h d) 49 km/h e) 50 km/h x v b ( 0,6) 2a 2.0,006 50 km / h
3. Uma bola, ao ser chutada por um goleiro, teve sua trajetória descrita pela equação h(t) = -2t 2 + 8t, onde t é o tempo medido em segundos e h(t) é a altura em metros da bola no instante t. Calcule: a) O instante (tempo) em que a bola atinge a altura máxima; b) A altura máxima atingida pela bola. a) 2 s b) 8 m
4. Durante o processo de tratamento, uma peça de metal sofre uma variação de temperatura descrita pela função: f(t) = 2 + 4t t 2. Em que instante t a temperatura atinge seu valor máximo? a) 1,0 s d) 2,5 s b) 1,5 s e) 3,0 s c) 2,0 s Letra C 5. Uma indústria que fabrica recipientes plásticos tem sua produção diária P, em recipientes, variando com o número de operadores em serviço n, de acordo com a função P(n) = n 2 + 50n + 6.000. Calcule: a) A produção se o número de operadores for 4. b) A produção máxima diária sem a contratação de novos operadores.
https://www.youtube.com/watch?v=z5avw_zgifk Conceitos iniciais https://www.youtube.com/watch?v=lhgkspayq5w Vértice da Parábola https://www.youtube.com/watch?v=x3fh88dfmpo Máximos e mínimos 29
Referências Bibliográficas DANTE, Luiz Roberto. Matemática: Contexto e Aplicações: Ensino médio: volume único. São Paulo: Ática, 2009. GIOVANNI, José Rui, BONJORNO, José Roberto, GIOVANNI, José Rui Jr. Matemática Fundamental: uma nova abordagem: ensino médio. Volume único. São Paulo: FTD, 2011. Principais sites consultados em 14/09/2017 http://www.navegandodelpasadoalfuturo.net/babilonia http://www.matematica.br/historia/prhind.html http://www.mathworks.com/matlabcentral http://fisicamoderna.blog.uol.com.br 30