Documentos relacionados
Exercícios de Matemática Geometria Analítica Pontos e Plano Cartesiano

Exercícios de Matemática Geometria Analítica - Circunferência

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

GUIA PARA AS PROVAS ( PO, AT E PG) E VESTIBULARES GEOMETRIA ANALÍTICA

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

Aula 10 Triângulo Retângulo

a = 6 m + = a a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Aula 12 Áreas de Superfícies Planas

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROFº. LUIS HENRIQUE MATEMÁTICA

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

Exercícios de Matemática Retas e Planos

Exercícios de Números Complexos com Gabarito

Matemática capítulo 2

PROFESSOR FLABER 2ª SÉRIE Circunferência

- GEOMETRIA ANALÍTICA -

Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em

Aula 5 Quadriláteros Notáveis

Exercícios de Matemática II

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

Geometria Analítica Plana.

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

Exercícios de Geometria Analítica Ponto e Reta

Exercícios de Matemática II 2º ano

GAAL /1 - Simulado - 1 Vetores e Produto Escalar

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31)

Definição de Polígono

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

Exercícios Triângulos (1)

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Objetivas Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Funções Função Composta

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 9

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

115% x + 120% + (100 + p)% = % y + 120% + (100 + p)% = x + y + z = 100

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

Prova Final de Matemática

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

ESCOLA BÁSICA VASCO DA GAMA - SINES

5 LG 1 - CIRCUNFERÊNCIA

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

UFRGS MATEMÁTICA. 01) Considere as desigualdades abaixo III) 3 2. II) Quais são verdadeiras?

NOTAÇÕES a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

Distâncias e Conceitos Básicos

Prof. Jorge. Estudo de Polígonos

Lista 1: Vetores -Turma L

1 COMO ESTUDAR GEOMETRIA

Matemática 4. Capítulo 1. Geometria Analítica


Resolução comentada Lista sobre lei dos senos e lei dos cossenos

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Construções Fundamentais. r P r

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k.

Lista de férias. Orientação de estudos:

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

Atividade 01 Ponto, reta e segmento 01

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( )

CURSO DE GEOMETRIA LISTA

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

Geometria Plana Noções Primitivas

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

QUESTÕES DE MATEMÁTICA

Matemática A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Lista de exercícios sobre triângulos. (Comitê olímpico)

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

FUVEST a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

Nesta aula iremos continuar com os exemplos de revisão.

Geometria Métrica Espacial. Geometria Métrica Espacial

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

Transcrição:

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60, no sentido anti-horário, em torno do ponto A. As coordenadas do ponto C são: a) (2, 2+Ë3). b) (1+Ë3, 5/2). c) (2, 1+Ë3). d) (2, 2-Ë3). e) (1+Ë3, 2+Ë3). 4. (Ita) Três pontos de coordenadas, respectivamente, (0,0), (b,2b) e (5b,0), com b>0, são vértices de um retângulo. As coordenadas do quarto vértice são dadas por: a) (- b, - b) b) b) (2b, - b) c) (4b, - 2b) d) (3b, - 2b) e) (2b, - 2b) 5. (Unesp) Dado um sistema de coordenadas cartesianas no plano, considere os pontos A(2, 2), B(4, -1) e C(m, 0). Para que AC+CB seja mínimo, o valor de m deve ser: a) 7/3. b) 8/3. c) 10/3. d) 3,5. e) 11/3. 6. (Unicamp) Dados três pontos a, b e c em uma reta, como indica a figura seguinte determine o ponto x da reta, tal que a soma das distâncias de x até a, de x até b e de x até c seja a menor possível. Explique seu raciocínio.

7. (Cesgranrio) A área do triângulo, cujo vértices são (1,2), (3,4) e (4,-1), é igual a: a) 6. b) 8. c) 9. d) 10. e) 12. 8. (Fuvest) Considere, no plano cartesiano, os pontos P=(0,-5) e Q=(0,5). Seja X=(x,y) um ponto qualquer com x>0. a) Quais são os coeficientes angulares das retas PX e QX? b) Calcule, em função de x e y, a tangente do ângulo PXQ. c) Descreva o lugar geométrico dos pontos X=(x,y) tais que x>0 e PXQ=( /4) radianos. 9. (Cesgranrio) O ponto Q é o simétrico do ponto P(x,y) em relação ao eixo dos y. O ponto R é o simétrico do ponto Q em relação à reta y=1. As coordenadas de R são: a) (x, 1-y) b) (0, 1) c) (-x, 1-y) d) (-x, 2-y) e) (y, -x) 10. (Fei) O ponto A', simétrico do ponto A= (1,1) em relação à reta r: 2x + 2y - 1 = 0 é: a) (1,1) b) (1/2, -3/2) c) (-1/2, -1/2) d) (-1/2, -3/2) e) (1/2, 3/2) 11. (Ufmg) A reta de equação y = 3x + a tem um único ponto em comum com a parábola de equação y=x +x+2. O valor de a é a) - 2 b) - 1 c) 0 d) 1 e) 2 12. (Ufmg) Os pontos P e Q pertencem à reta de equação y=mx, têm abscissas a e a+1, respectivamente. A distância entre P e Q é Ë10. A ordenada do ponto dessa reta que tem abscissa 5 é negativa. Nessas condições, o valor de m é a) - 3 b) - Ë10 c) 3 d) (Ë10)/10 e) Ë10 13. (Unesp) A distância do vértice da parábola

y = (x-2) (x-6) à reta y = (4/3)x + 5 é: a) 72/25 b) 29/25 c) 43 d) 43/25 e) 43/5 14. (Unesp) A reta r é perpendicular à reta -3x + 4y - 5 = 0 e passa pelo ponto (1, 2). Determine os pontos de r que distam 5 unidades do ponto (1, 2). 15. (Mackenzie) Um segmento de reta de comprimento 8 movimenta-se no plano mantendo suas extremidades P e Q apoiadas nos eixos 0x e 0y, respectivamente. Entre os pontos do lugar geométrico descrito pelo ponto médio de PQ, o de maior ordenada possui abscissa: a) - 2. b) - 1. c) 0. d) 1. e) 2. 16. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 17. (Uel) Seja åè uma diagonal do quadrado ABCD. Se A = (-2, 3) e C = (0, 5), a área de ABCD, em unidades de área, é a) 4 b) 4Ë2 c) 8 d) 8Ë2 e) 16 18. (Mackenzie) Supondo =3, então os pontos (x,y) do plano tais que x +y -16 0, com x+yµ4, definem uma região de área: a) 2 b) 4 c) 6 d) 8 e) 10 19. (Unesp) O tetraedro VABC da figura a seguir é regular e sua base encontra-se sobre um plano cartesiano, em relação ao qual seus vértices têm coordenadas A(-1/2, 0), B(1/2, 0) e C(0, Ë3/2).

Dando-se à face ABV uma rotação em torno da aresta AB, no sentido indicado pela figura, até fazê-la coincidir com o plano ABC da base, quais as coordenadas do ponto P que o vértice V ocupará após a rotação? 20. (Cesgranrio) A distância entre os pontos M(4,-5) e N(-1,7) do plano x0y vale: a) 14. b) 13. c) 12. d) 9. e) 8. 21. (Puccamp) Sabe-se que os pontos A = (0; 0), B = (1; 4) e C = (3; 6) são vértices consecutivos do paralelogramo ABCD. Nessas condições, o comprimento da æî é a) Ë2 b) Ë3 c) 2Ë2 d) Ë5 e) 5 22. (Fgv) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo ABC. 23. (Ita) Seja m Æ Rø* tal que a reta x-3y-m=0 determina, na circunferência (x-1) +(y+3) =25, uma corda de comprimento 6. O valor de m é a) 10 + 4Ë10 b) 2 + Ë3 c) 5 - Ë2 d) 6 + Ë10 e) 3 24. (Uece) Seja (r) a reta que passa pelos pontos P (-1, 0) e P (0, 3). Considere M (n, q) um ponto de (r). Se a distância do ponto O (0, 0) ao ponto M é 3/Ë10cm, então q - n é igual a: a) 4/5 b) 1 c) 6/5

d) 7/5 25. (Ita) Considere o paralelogramo ABCD onde A=(0,0), B=(-1,2) e C=(-3,-4). Os ângulos internos distintos e o vértice D deste paralelogramo são, respectivamente: a) /4, 3 /4 e D = (-2,-5) b) /3, 2 /3 e D = (-1,-5) c) /3, 2 /3 e D = (-2,-6) d) /4, 3 /4 e D = (-2,-6) e) /3, 2 /3 e D = (-2,-5) 26. (Mackenzie) Na figura, a área do triângulo assinalado é 6. Então a distância entre as retas paralelas r e s é: a) 2 b) 3/2 c) 6/5 d) 7/5 e) 8/5 27. (Ufmg) Observe a figura. Nessa figura, ABCD é um paralelogramo, as coordenadas do ponto C são (6,10) e os lados AB e AD estão contidos, respectivamente, nas retas de equações y=(x/2)+14 e y=4x-2.

Nesse caso, as coordenadas do ponto B são a) (7, 35/2) b) (9, 37/2) c) (8,18) d) (10,19) 28. (Ufrj) Sejam A (1, 0) e B (5, 4Ë3) dois vértices de um triângulo equilátero ABC. O vértice C está no 2Ž quadrante. Determine suas coordenadas. 29. (Ufrj) As coordenadas dos vértices do triângulo isósceles T são dadas por A=(-1,1), B=(9,1) e C=(4,6). As coordenadas dos vértices do triângulo isósceles T são dadas por D=(4,2), E=(2,8) e F=(6,8). Determine a área do quadrilátero T º T. 30. (Ufrj) Sejam M = (1, 2), M = (3, 4) e Mƒ = (1,-1) os pontos médios dos lados de um triângulo. Determine as coordenadas dos vértices desse triângulo. 31. (Unirio) Considere um triângulo cujos vértices são A (0,0) B (3, 4) e C (6, 0) e responda às perguntas a seguir. a) Qual a soma das medidas dos lados com a medida da altura relativa ao vértice B? b) Qual a classificação deste triângulo quanto às medidas de seus ângulos internos? 32. (Ufrs) Em um sistema de coordenadas polares, P=(3, /6) e Q=(12,0) são dois vértices adjacentes de um quadrado. O valor numérico da área deste quadrado é a) 81 b) 135 c) 153 d) 153-36Ë2 e) 153-36Ë3 33. (Unicamp) Uma reta intersecciona nos pontos A (3, 4) e B(-4, 3) uma circunferência centrada na origem. a) Qual é o raio dessa circunferência? b) Calcule a área do quadrilátero cujos vértices são os pontos A e B e seus simétricos em relação à origem. 34. (Fatec) As retas r e s interceptam o eixo das abcissas nos pontos A e B e são concorrentes no ponto P. Se suas equações são y=3x+1 e y=-2x+4, então a área do triângulo ABP é a) 7/10 b) 7/3 c) 27/10 d) 49/15 e) 28/5 35. (Puc-rio) O valor de x para que os pontos (1,3), (-2,4), e (x,0) do plano sejam colineares é: a) 8.

b) 9. c) 11. d) 10. e) 5. 36. (Uff) Determine o(s) valor(es) que r deve assumir para que o ponto (r, 2) diste cinco unidades do ponto (0, - 2). 37. (Ufsm) Sejam r: x + qy - 1 = 0 e s: px + 5y + 2 = 0 duas retas perpendiculares entre si. Então, é correto afirmar que a) p/q = -5 b) p/q = 5 c) p/q = 1 d) p. q = -1 e) p. q = 5 38. (Fuvest) Se (m + 2n, m - 4) e (2 - m, 2n) representam o mesmo ponto do plano cartesiano, então m¾ é igual a: a) -2 b) 0 c) Ë2 d) 1 e) 1/2 39. (Fuvest) Considere os pontos A=(-2,0), B=(2,0), C=(0,3) e P=(0, ), com 0< <3. Pelo ponto P, traçamos as três retas paralelas aos lados do triângulo ABC. a) Determine, em função de, a área da região sombreada na figura. b) Para que valor de essa área é máxima? 40. (Ita) A área de um triângulo é de 4 unidades de superfície, sendo dois de seus vértices os pontos A:(2, 1) e B:(3, -2). Sabendo que o terceiro vértice encontra-se sobre o eixo das abcissas, pode-se afirmar que suas coordenadas são a) (-1/2, 0) ou (5, 0).

b) (-1/2, 0) ou (4, 0). c) (-1/3, 0) ou (5, 0). d) (-1/3, 0) ou (4, 0). e) (-1/5, 0) ou (3, 0). 41. (Unirio) Considere a função real definida por f(x)=1+ë(18-2x ) e um ponto A (2,1). Sabe-se que a distância de um ponto P do gráfico de f ao ponto A é Ë10. O ponto P encontra-se no: a) 1 quadrante. b) 2 quadrante. c) 3 quadrante. d) 4 quadrante. e) ponto de origem do sistema x0y. 42. (Unesp) Sejam A = (2, 0) e B = (5, 0) pontos do plano e r a reta de equação y = x/2. a) Represente geometricamente os pontos A e B e esboce o gráfico da reta r. b) Se C = (x, x/2), com x > 0, é um ponto da reta r, tal que o triângulo ABC tem área 6, determine o ponto C. 43. (Unifesp) Um ponto do plano cartesiano é representado pelas coordenadas (x + 3y, - x - y) e também por (4 + y, 2x + y), em relação a um mesmo sistema de coordenadas. Nestas condições, xò é igual a a) -8. b) -6. c) 1. d) 8. e) 9. 44. (Uerj) Duas pessoas A e B decidem se encontrar em um determinado local, no período de tempo entre 0h e 1h. Para cada par ordenado (x³, y³), pertencente à região hachurada do gráfico a seguir, x³ e y³ representam, respectivamente, o instante de chegada de A e B ao local de encontro. Determine as coordenadas dos pontos da região hachurada, os quais indicam:

a) a chegada de ambas as pessoas ao local de encontro exatamente aos 40 minutos; b) que a pessoa B tenha chegado ao local de encontro aos 20 minutos e esperado por A durante 10 minutos. 45. (Uerj) No sistema de coordenadas cartesianas a seguir, está representado o triângulo ABC. Em relação a esse triângulo, a) demonstre que ele é retângulo; b) calcule a sua área. 46. (Fatec) A circunferência que passa pelos pontos O=(0,0), A=(2,0) e B=(0,3) tem raio igual a: a) (Ë11)/4 b) (Ë11)/2 c) (Ë13)/4 d) (Ë13)/2 e) (Ë17)/4 47. (Fgv) No plano cartesiano, o triângulo de vértices A(1,-2), B(m,4) e C(0,6) é retângulo em A. O valor de m é igual a: a) 47 b) 48 c) 49 d) 50 e) 51 48. (Pucsp) Sejam A, B, C, D vértices consecutivos de um quadrado tais que A=(1; 3) e B e D pertencem à reta de equação x-y-4=0. A área desse quadrado, em unidades de superfície, é igual a a) 36Ë2 b) 36 c) 32Ë2 d) 32 e) 24Ë2

49. (Ufpi) A medida do ângulo agudo formado pelas retas 3x+y-10=0 e -2x+y-15=0 é: a) 15 b) 30 c) 45 d) 60 e) 75 50. (Puc-rio) Os pontos (0,8), (3,1) e (1,y) do plano são colineares. O valor de y é igual a: a) 5 b) 6 c) 17/3 d) 11/2 e) 5,3 51. (Ufal) Na figura abaixo tem-se o losango ABCD, com A(1;1) e C(4;4), e cuja diagonal åè forma ângulo de medida 60 com o lado åæ. O perímetro desse losango é a) 3Ë2 b) 6 c) 12Ë2 d) 24Ë2 e) 48 52. (Ufrs) No sistema de coordenadas polares, considere os pontos O=(0,0), A=(1, 0), P=(, š) e Q=(1/, š), onde 0 < š < /2 e > 0. Se a área do triângulo OAP vale o dobro da área do triângulo OAQ, então vale a) 1/2. b) Ë2/2. c) Ë2. d) 2. e) 2Ë2. 53. (Ufsm) Num plano, são dados 4 pontos através de coordenadas: (1,1), (2,4), (6,5) e (5,2). Ligando-se os 4

pontos pela ordem dada e fechando o polígono através da ligação de (1, 1) e (5, 2), por meio de segmentos de reta, obtém-se um a) quadrado de perímetro 4Ë17 b) paralelogramo de perímetro 2Ë17 + 2Ë10 c) losango de perímetro 4Ë17 d) retângulo de perímetro 2Ë17 + 2Ë10 e) trapézio isósceles de perímetro [(Ë17 + Ë10).5]/2 54. (Unifesp) A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A=(1,2), B, C, D, E e F, correspondentes às interseções das retas e do eixo Ox com a circunferência. Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. 55. (Unesp) O triângulo PQR, no plano cartesiano, de vértices P=(0,0), Q=(6,0) e R=(3,5), é a) equilátero. b) isósceles, mas não equilátero. c) escaleno. d) retângulo. e) obtusângulo. 56. (Unesp) Dados dois pontos, A e B, com coordenadas cartesianas (-2, 1) e (1, -2), respectivamente, conforme a figura,

a) calcule a distância entre A e B. b) Sabendo-se que as coordenadas cartesianas do baricentro do triângulo ABC são (xg, yg) = (2/3, 1), calcule as coordenadas (xý, yý) do vértice C do triângulo. 57. (Ufscar) Dados os pontos A(2,0), B(2,3) e C(1,3), vértices de um triângulo, o raio da circunferência circunscrita a esse triângulo é a) (Ë10)/3 b) 10/3 c) (Ë2)/2 d) (Ë10)/2 e) Ë10 58. (Puc-rio) Sejam A e B os pontos (1, 1) e (5, 7) no plano. O ponto médio do segmento AB é: a) (3, 4) b) (4, 6) c) (-4, -6) d) (1, 7) e) (2, 3) 59. (Unifesp) Considere, no plano complexo, conforme a figura, o triângulo de vértices z = 2, z = 5 e zƒ = 6 + 2i.

A área do triângulo de vértices w = iz, w = iz e wƒ = 2izƒ é: a) 8. b) 6. c) 4. d) 3. e) 2. 60. (Unifesp) Considere os gráficos das funções definidas por f(x) = log ³(x) e g(x) = 10Ñ, conforme figura (fora de escala). a) Dê as coordenadas de M, ponto médio do segmento AB. b) Mostre que (fog)(x) = x e (gof)(x) = x, para todo x > 0. 61. (Ufg) Para medir a área de uma fazenda de forma triangular, um agrimensor, utilizando um sistema de localização por satélite, encontrou como vértices desse triângulo os pontos A(2,1), B(3,5) e C(7,4) do plano cartesiano, com as medidas em km. A área dessa fazenda, em km, é de a) 17/2 b) 17 c) 2Ë17

d) 4Ë17 e) (Ë17)/2 62. (Uel) A distância do centro C da circunferência à reta r é a) (Ë2)/2 b) Ë2 c) 2Ë2 d) 3Ë2 e) 4Ë2 63. (Ufv) Considere o retângulo da figura abaixo, onde as diagonais são OP e AB, sendo P=(a,b). Considere as afirmações: I - O ponto médio da diagonal OP é (a/2, b/2). II - As diagonais se cortam ao meio. III - O coeficiente angular da diagonal AB é b/a. IV - Se as diagonais são perpendiculares, o retângulo é um quadrado. Atribuindo V para as afirmações verdadeiras e F para as falsas, assinale a seqüência CORRETA: a) V V V V b) V V V F c) V V F V

d) V V F F e) V F V V 64. (Uerj) Observe o mapa da região Sudeste. (Adaptado de BOCHICCHIO, V. R. Atlas atual: geografia. São Paulo: Atual, 1999.) Considere o Trópico de Capricórnio como o eixo das abscissas e o meridiano de 45 como o eixo das ordenadas. Neste sistema cartesiano, as coordenadas das cidades de São Paulo, Rio de Janeiro, Belo Horizonte e Vitória são, respectivamente, (-3/2,0), (2,1/2), (3/2,4) e (5,7/2), todas medidas em centímetros. a) Calcule, em quilômetros quadrados, a área do quadrilátero cujos vértices estão representados por estas quatro cidades, supondo que a escala do mapa é de 1:10.000.000. b) Determine as coordenadas de uma cidade que fique eqüidistante das cidades de São Paulo, Rio de Janeiro e Belo Horizonte. 65. (G1) Represente na reta numerada os seguintes subconjuntos de IR. a) A = {x Æ R / x > -3/2} b) B = {x Æ R / 2 < x < 5} 66. (G1) Dados A = { -1, 0, 1 } e B = { -2, 2 } determine os conjuntos A x B e B x A e represente geometricamente.

GABARITO 1. x = 2/7 y = 6 2. A x B = ¹; {(1,0)}; {(1,1)}; {(1,2)}; {(1,0) ; (1,1)}; {(1,0) ; (1,2)}; {(1,1) ; (1,2)}; {(1,0) ; (1,1) ; (1,2)} 3. [A] 4. [C] 5. [C] 6. O ponto x coincide com o ponto b. 7. [A] 8. a) O coeficiente angular da reta PX é igual a (y+5)/x e o c.a. da reta QX é igual a (y-5)/x. b) Consideremos tg do ângulo PXQ = œ 1) se œ = /2; não existe Tg œ 2) Tg œ = 10x/(x +y -25) c) Graficamente é o arco da circunferência de centro (5, 0) e raio 5Ë2 contido no semiplano x>0. 9. [D] 10. [C] 11. [D] 12. [A] 13. [E] 14. (-2,6) e (4,-2) 15. [C] 16. 5 17. [A] 18. [B] 19. P (0 ; -Ë3/2)

20. [B] 21. [D] 22. a) (3Ë2)/2 b) 21/2 23. [A] 24. [C] 25. [D] 26. [C] 27. [C] 28. C = (-3, 4Ë3) 29. 4 30. (x, y ) = (-1, -3) (x, y ) = (3, 7) (xƒ, yƒ) = (3, 1) 31. a) 20 b) triângulo acutângulo 32. [E] 33. a) r = 5 b) S = 50 34. [D] 35. [D] 36. r = 3 ou r = -3 37. [A] 38. [E] 39. a) - + 2 + 3 b) A área é máxima para = 1.

40. [C] 41. [A] 42. a) Observe o gráfico a seguir: b) C = (8,4). 43. [A] 44. a) (2/3, 2/3) b) (1/2, 1/3) 45. a) Observe a demonstração a seguir: b) 8 u.a. 46. [D] 47. [C] 48. [B]

49. [C] 50. [C] 51. [C] 52. [C] 53. [B] 54. a) B(-1; 2), C(-Ë5; 0), D(-1; -2), E(1; -2) e F(Ë5; 0) S = 4[(Ë5) + 1] u.a. b) cos (AÔB) = 0,6 55. [B] 56. a) AB = 3Ë2 b) C (3; 4) 57. [D] 58. [A] 59. [B] 60. a) (11/2, 11/2) 61. [A] 62. [B] 63. [C] 64. a) 122.500 km b) (0; 2) 65. Observe a figura a seguir.

66. Observe a figura a seguir.