FUNÇÕES Prof.ª Adriana Massucci
Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo: Angélica vende maravilhosos chup-chup ao preço de R$ 0,80 cada. Para não ter de fazer contas a toda hora, ela montou a seguinte tabela: Note que o preço é função da quantidade a ser comprada. Sendo assim, a fórmula matemática que traduz esta relação de interdependência entre o valor (y) e a quantidade (x) é: y = 0, 8x
NOÇÃO DE FUNÇÃO: Produto Cartesiano: Dados dois conjuntos A e B, não vazios, o produto cartesiano de A por B (AXB), lê-se A cartesiano B, é o conjunto dos pares ordenados (x, y) onde x é elemento do conjunto A e y é elemento do conjunto B. A X B = { (x, y) x A e y B } Exemplo: Sejam os conjuntos A={1,2} e B = { 0, 2, 4 } A X B = {(1;0), (1;2), (1;4), (2;0), (2;2), (2;4)}.
Observações: O produto cartesiano AXA = A 2 ; Se A B, então A X B B X A; O número de elementos de A X B é dado por: n(a X B) = n(a).n(b), onde n(a) e n(b) são, respectivamente, número de elementos do conjunto A e número de elementos do conjunto B.
RELAÇÃO de A em B (R: A B) Dados dois conjuntos A e B, não vazios, uma relação binária de A em B é um subconjunto de A X B formado pelos pares (x, y) que possuem uma relação associando o elemento x de A ao elemento y de B. Exemplo: Sejam os conjuntos A = { 1, 2, 3, 4, 5 } e B = { 1, 2, 3, 4 }, então a relação R = { x e A X B x < y } é dada por : R = {(1; 2), (1; 3), (1; 4), (2; 3), (2; 4), (3; 4)}.
OBSERVAÇÕES: O Domínio de uma relação R, de A em B, é o conjunto formado pelos elementos x dos pares ordenados (x, y); A Imagem de uma relação R, de A em B, é o conjunto formado pelos elementos y dos pares ordenados (x, y). No exemplo acima: D (R) = { 1, 2, 3 }, Im (R) = { 2, 3, 4 }.
EXERCÍCIOS 01. (UFES) Se A = { 0, 1, 2 } e B = { 0, 2, 4, 5 } então o número de elementos distintos do conjunto (AXB) (BXA) é: a) 4 b) 8 c) 12 d) 20 e) 24
02. (U.E. Londrina) sejam os conjuntos A e B tais que A X B = { ( 1; 0), (2; 0), ( 1;2), (2; 2), ( 1;3), (2;3) }. O número de elementos do conjunto A B é: a) 0 b) 1 c) 2 d) 3 e) 4
FUNÇÃO de A em B ( f: A B) Sejam A e B conjuntos não vazios. Uma função f, de A em B, é uma relação que associa a cada elemento de A uma e somente uma imagem em B. Toda função f: A B é uma relação, entretanto, nem toda relação R: A B é uma função.
Abaixo, as figuras ( 1 ) e ( 2 ) são exemplos de relações que são funções de A em B, e as figuras ( 3 ) e ( 4 ) são exemplos de relações, de A em B, que não são funções.
Observações: 1. A figura ( 3 ) não representa uma f: A B, pois existe um elemento do conjunto A que não está associado a nenhum elemento do conjunto B; 2.A figura ( 4 ) não representa uma f: A B, pois um elemento do conjunto A está associado a mais de um elemento do conjunto B.
DOMÍNIO, CONTRADOMÍNIO E CONJUNTO IMAGEM Observe que: Cada elemento do domínio está associado a uma e somente uma imagem no contradomínio. Em outras palavras, considerando os pares ordenados (x,y) da relação-função, de A em B, um elemento x do domínio não pode estar associado a mais de um elemento y do conjunto imagem.
RECONHECIMENTO GRÁFICO DE UMA FUNÇÃO RELAÇÃO OU FUNÇÃO??? POR QUÊ???
É FUNÇÃO No diagrama cartesiano de uma relação, função ou não, a projeção ortogonal do gráfico no eixo horizontal informa seu domínio e a projeção no eixo vertical informa o conjunto imagem relacionado.
FUNÇÃO COMPOSTA Dados os conjuntos A = { 0, 1, 2 }, B = { 0, 1, 2, 3, 4 } e C = { 0, 1, 4, 9, 16 }, vamos considerar as funções: f: A B definida por f(x) = 2x g: B C definida por g(x) = x 2 A função h(x) pode ser obtida aplicando f(x) aos elementos de A; em seguida, essas imagens são transformadas para g(x), ou seja: (A B) C = A C. A função h(x) representa a função g composta com f. Logo: h(x) = gof
Exemplos: 1. (Cesgranrio) Sejam f e g funções definidas em R por f(x) = 2x + 1 e g(x) = x 3. O valor de g ( f(3) ) é: a) 1 b) 1 c) 2 d) 3 e) 4 Resolução: x = 3 f(3) = 2(3) + 1 f(3) = 7 g ( f(3) ) = g ( 7 ) g ( f(3) ) = (7) 3 g ( f(3) ) = 4
2. Sejam as funções f e g de R em R, definidas por f(x) = x + 5 e g(x) = x 5. O conjunto solução da equação ( f o g )(x) = 3 é: a) S = b) S = { 3 } c) S = { 5, 5 } d) S = { 5, 3 } Resolução: f x = x + 5 f g x = g x + 5 3 = x 5 + 5 x = 3
FUNÇÃO INVERSA f (x) Uma função só é inversível se, e somente se, for bijetora. Sendo assim, se f: A B for bijetora (injetora e sobrejetora), sua inversa f 1 : B A terá domínio e contradomínio iguais aos contradomínio e domínio de f.
EXEMPLO: Sejam os conjuntos A = { 0, 2, 4 }, B = { 1, 5, 9 } e as seguintes funções: f: A B, definida por f x = 2x + 1 g: B A definida por g x = x 1 2
REGRA PRÁTICA PARA OBTER A INVERSA f 1 (x) Exemplo: Determine a inversa da função f(x) = 2x 3. f 1 x = x + 3 2
GRÁFICO DA FUNÇÃO INVERSA: Observe que o gráfico de uma função e a sua inversa são simétricos em relação à bissetriz dos quadrantes ímpares.
ISTO QUER DIZER QUE... Por meio de simetria, podemos, a partir do gráfico de uma função inversível dada, construir o gráfico da função inversa correspondente.
EXERCÍCIO A função inversa da função f x a) f 1 x = x + 3 2x 1 = 2x 1 x+3 é: b) f 1 x = 2x 1 x 3 c) f 1 x = 1 2x 3 x d) f 1 x = 3x 1 x 2 e) f 1 x = 3x+1 2 x