SISTEMAS DE EQUAÇÕES LINEARES



Documentos relacionados
MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES

2 Sistemas de Equações Lineares

ÁLGEBRA LINEAR AULA 2

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR

Sistemas de equações lineares

Unesp GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR 2001

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Um sistema linear é um conjunto de n equações lineares do tipo:

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Álgebra Linear e Geometria Analítica

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

x 1 + b a 2 a 2 : declive da recta ;

Avaliação e programa de Álgebra Linear

Interbits SuperPro Web

Inversão de Matrizes

Sistemas de Equações Lineares e Matrizes

Inversão de Matrizes

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Métodos Numéricos - Notas de Aula

Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Sistemas de Equações Lineares

Cálculo Numérico BCC760

Fundamentos de Matemática Curso: Informática Biomédica

Álgebra Linear

Métodos Matemáticos II

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES

Sistemas de equações lineares

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação

ALGA - Eng. Civil e Eng. Topográ ca - ISE /

Unidade 4 - Matrizes elementares, resolução de sistemas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).

Aulas práticas de Álgebra Linear

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Método de Gauss-Jordan e Sistemas Homogêneos

1, , ,

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07

ficha 1 matrizes e sistemas de equações lineares

(1, 6) é também uma solução da equação, pois = 15, isto é, 15 = 15. ( 23,

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

Sistema de Equaçõs Lineares

ÁLGEBRA LINEAR AULA 4

Sistemas Lineares. Marina Andretta/Franklina Toledo ICMC-USP. 4 de março de 2015

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1

LISTA DE EXERCÍCIOS 2017

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1

Revisão: Matrizes e Sistemas lineares. Parte 01

Parte 1 - Matrizes e Sistemas Lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07

Lista 1: sistemas de equações lineares; matrizes.

Lista de Exercícios 05 Álgebra Matricial

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas

ALGA - Eng. Civil e Eng. Topográ ca - ISE / Matrizes 1. Matrizes

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0

Resolução de Sistemas Lineares. Ana Paula

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

UFSC Matrizes. Prof. BAIANO

Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares

Sistemas de Equações lineares

Matrizes e sistemas de equações algébricas lineares

Vetores e Geometria Analítica

CENTRO DE ENSINO SUPERIOR. Avenida João Batista de Souza Soares, Colônia Paraíso - São José dos Campos SP CEP:

MATRIZ FORMAÇÃO E IGUALDADE

Renato Martins Assunção

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

CM005 Algebra Linear Lista 1

Valores e vectores próprios

Sistemas de equações lineares

= o A MATRIZ IDENTIDADE. a(i, :) = (aii, ai2,, ai.) i = 1,, m

Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa

Matemática II /06 - Matrizes 1. Matrizes

Sistemas Lineares e Matrizes

Matriz, Sistema Linear e Determinante

Aulas práticas de Álgebra Linear

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Capítulo 4 - Valores e Vectores Próprios

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Geometria Analítica e Álgebra Linear

Álgebra Linear e Geometria Analítica. 7ª aula

Algumas Aplicações de Álgebra Linear. Análise de Redes (Network) Fluxo de Trânsito. Circuitos Eléctricos. Equilíbrio de Equações Químicas

Algoritmos Numéricos 2 a edição

Álgebra Linear Semana 05

ficha 2 determinantes

Lista de Exercícios 03: Álgebra Linear

ÁLGEBRA LINEAR 1 1 EQUAÇÕES LINEARES. Exemplo de equação linear. Exemplos de equações não-lineares

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

Afiliação. Professor Titular do Departamento de Estatística Faculdade de Matemática da PUCRS

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

Transcrição:

SISTEMAS DE EQUAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga

8.1 DEFINIÇÕES Equação linear é uma equação na forma: a1x 1 a2x2 a3x3... anxn b x1, x2, x3,..., xn a1, a2, a3,..., an na qual são as variáveis e são os respectivos coeficientes da variáveis, e b é o termo independente. Solução de uma equação linear: os valores das variáveis que transformam uma equação linear em identidade, isto é, que satisfazem à equação, constituem sua solução. Esses valores são chamados de raízes da equação linear.

Sistemas de equações lineares: é um conjunto de equações lineares. a11x1 a12x2 a13x3... a1nxn b1 a21x1 a22x2 a23x3... a2nxn b2 a31x1 a32x2 a33x3... a3nxn b3... a x a x a x... a x b m1 1 m2 2 m3 3 mn n m 8.2 SISTEMA COMPATÍVEL Sistema compatível é um sistema que admite solução, isto é, tem raízes.

8.2.1 SISTEMA DETERMINADO Sistema determinado é um sistema compatível que admite apenas uma única solução. Exemplo: 2x3y 18 3x4y 25 é compatível e determinado, pois tem como raízes unicamente. x y 3 4

8.2.2 SISTEMA INDETERMINADO Sistema indeterminado é um sistema compatível que admite mais de uma solução (na verdade infinitas soluções). 4x2y 100 8x4y 200 Sistema incompatível é um sistema que não admite solução. Exemplo: 3x9y 12 3x9y 15 y x 0 2 4 6 8 10 12 14... 25 24 23 22 21 20 19 18... 8.3 SISTEMA INCOMPATÍVEL é incompatível pois 3x+9y não pode ser simultaneamente igual a 12 e igual a 15 para mesmos valores de x e y.

8.4 SISTEMAS EQUIVALENTES Dois sistemas são equivalentes quando admitem a mesma solução. Exemplo: 3x6y 42 2x4y12 e x2y 14 x 2y 6 são equivalentes porque admitem a mesma solução: 8.4.1 OPERAÇÕES ELEMENTARES E SISTEMAS EQUIVALENTES Um sistema de equações lineares se transforma num sistema equivalente quando se efetuam as seguintes operações elementares: x 10 y 2

I)Permutação de duas equações. II)Multiplicação de uma equação por um número real diferente de zero. III)Substituição de uma equação por uma soma com outra equação previamente multiplicada por um número real diferente de zero. 2x 4y 6z 10 I) 4x 2y 2z 16 L 2x 8y 4z 24 2x 4y 6z 10 2x 8y 4z 24 4x 2y 2z 16 23 2x 4y 6z 10 1 II) 2x 8y 4z 24 L L 2 4x 2y 2z 16 1x 2y 3z 5 2x 8y 4z 24 4x 2y 2z 16 1 1

1x 2y 3z 5 III ) 2x 8y 4z 24 L 4x 2y 2z 16 L 2 L 1x 2y 3z 5 0x 4y 2z 14 4x 2y 2z 16 x 2 2 2 1 y 3 mesma solução sistemas equivalentes z 1

8.5 SISTEMAS HOMOGÊNEOS Quando num sistema de equações lineares os termos independentes são todos nulos, o sistema é chamado homogêneo. Exemplo: 2x 5y 3z 0 7x 2y 4z 0 3x 8y 5z 0 9x 3y 8z 0 Todo sistema linear homogêneo tem pelo menos uma solução e essa chamamos de trivial é qualquer que seja o sistema, x i =0.

8.6 ESTUDO E SOLUÇÃO DOS SISTEMA DE EQUAÇÕES LINEARES Será separado em: 8.6.1 Sistema com n equações lineares com igual número de variáveis. 8.6.2 Sistema com m equações com n variáveis (para m n) 8.6.3 Sistema de equações lineares homogêneo (para m=n ou m n) 8.6.1 SISTEMA COM N EQUAÇÕES COM N VARIÁVEIS 8.6.1.1 MÉTODO DE GAUSS-JORDAN Dado o seguinte sistema: 2x4y 22 5x15y 20

1 2x 4y 22 L L 2 5x15y 20 1 1 1x2 y11 5x 15y 20 L L ( 5) L 2 2 1 1x2 y 11 1 0x 25y 75 L L 25 2 2 1x 2y 11 L L ( 2) L 0x1y3 1x0 y 5 0x1y 3 1x 5 1y 3 1 1 2 sistema equivalente x 5 y 3 raízes

2x4y 22 5x15y 20 2 4 22 5 15 20 Matriz ampliada do sistema Matriz-coluna de termos independentes Matriz dos coeficientes das variáveis x e y variáveis Escalonamento de matrizes

8.6.1.2 MÉTODO DA MATRIZ INVERSA Seja o sistema de n equações lineares com n variáveis: a11x1 a12x2 a13x3... a1nxn b1 a x a x a x... a x b a x a x a x... a x b... a x a x a x... a x b fazendo A 21 1 22 2 23 3 2n n 2 31 1 32 2 33 3 3n n 3 n1 1 n2 2 n3 3 nn n n a11 a12 a13 a1 n x1 b1 a a a a x b 21 22 23 2n 2 2 a31 a32 a33 a 3n ;X= x 3 ;B= b 3 an1 an2 an3 a nn x n b n

o sistema pode ser escrito sob a forma matricial: a11 a12 a13 a1 n x1 b1 a a a a x b 21 22 23 2n 2 2 a31 a32 a33 a 3n x 3 = b 3 an1 an2 an3 a nn x n b n ou utilizando a notação abreviada, vem: AX B Admitindo a existência da matriz A -1 e pré-multiplicando ambos os membros pela matriz inversa, vem: A AX A B 1 1 mas: 1 A A I

IX mas: IX 1 A B X logo: X 1 A B Observação: o método de Gauss-Jordan é com certeza mais prático, exige que se transforme a matriz A em uma matriz I, enquanto o método da matriz inversa exige que se transforme a referida matriz A em sua inversa A -1, mas é conveniente no caso em que se tem para resolver um conjunto de sistema em que a matriz dos coeficientes das variáveis em cada sistema seja a mesma. Neste caso, só calculamos uma vez a matriz inversa e resolverá todos os sistemas.

Exemplo: 2x y 7z b1 x 3y 2z b2 5x 3y 4z b 3 1) Para b 1 =16, b 2 =-5, b 3 =11 2) Para b 1 =25, b 2 =-11, b 3 =-5 3) Para b 1 =3, b 2 =5, b 3 =-5 Fazendo: A 2 1 7 x 16 25 3 1 3 2 ;X= y ;B 1= -5 ;B 2= -11 ;B 3= 5 5 3 4 z 11-5 -5 Os 3 sistemas se transformam em: 1) AX B1 2) AX B2 3) AX B 3

e a solução deles é dada por: 1 1) X A B1 1 2) X A B2 3) 1 1 A 1) X A B 3 6 17 19 66 66 66 6 27 3 66 66 66 12 1 5 66 66 66 X 6 17 19 66 66 66 16 3 6 27 3 5 4 66 66 66 11 2 12 1 5 66 66 66

2) 3) X X 6 17 19 66 66 66 25 2 6 27 3 11 7 66 66 66 5 4 12 1 5 66 66 66 6 17 19 66 66 66 3 3 6 27 3 5 2 66 66 66 5 1 12 1 5 66 66 66

8.6.2 SISTEMA COM M EQUAÇÕES COM N VARIÁVEIS (M N) O método é semelhante ao método de Gauss-Jordan, com a diferença de que a matriz dos coeficientes não pode ser transformada em matriz-unidade pois não é quadrada. Exemplos: 1) Resolver o sistema de 3 equações com 2 variáveis: 2x4y 16 5x2y 4 10x4y 3 2 4 16 5 2 4 L 10 4 3 1 L 2 1 1

1 2 8 5 2 4 L L 5 L 10 4 3 2 2 1 1 2 8 0 12 36 L L 10 L 10 4 3 3 3 1 1 2 8 1 0 12 36 L L 12 0 24 77 2 2 1 2 8 0 1 3 L L 24 L 0 24 77 3 3 2 1 2 8 0 1 3 L L 2 L 0 0 5 1 1 2 1 0 2 0 1 3 0 0 5 1x0 y 2 0x1y 3 0x 0y 5 Ora, como não existem valores para x e y que satisfaça a 3ª equação, o sistema é incompatível.

2) Resolver o sistema de 4 equações com 2 variáveis: 2x4y 16 5x2y 4 3x y 9 4x 5y 7 2 4 16 5 2 4 1 L L 3 1 9 2 4 5 7 1 1 1 2 8 5 2 4 L L 5 L 3 1 9 4 5 7 2 2 1 1 2 8 0 12 36 L L 3 L 3 1 9 4 5 7 3 3 1 1 2 8 0 12 36 L L 4 L 0 5 15 4 5 7 4 4 1 1 2 8 0 12 36 1 L L 0 5 15 12 0 13 39 2 2

1 2 8 0 1 3 L L 2 L 0 5 15 0 13 39 1 1 2 1 0 2 0 1 3 L L 5 L 0 5 15 0 13 39 3 3 2 1 0 2 0 1 3 L L 13 L 0 0 0 0 13 39 4 4 2 1 0 2 0 1 3 0 0 0 0 0 0 x 2 y 3

3) Resolver o sistema de 2 equações com 4 variáveis: 2x1 8x2 24x3 18x4 84 4x1 14x2 52x3 42x4 190 2 8 24 18 84 1 L1 L1 4 14 52 42 190 2 1 4 12 9 42 L L 4 L 4 14 52 42 190 1 4 12 9 42 1 L L 0 2 4 6 22 2 2 2 1 2 2 1 4 12 9 42 L1 L1 4 L2 0 1 2 3 11 1 0 20 21 86 x 86 20x 21x 0 1 2 3 11 x2 11 2x3 3x4 1 3 4 Sistema compatível e indeterminado

x 86 20x 21x x2 11 2x3 3x4 1 3 4 x x 3 4 3 1 0 5 2 4... 1 2 0 3 5 4... arbitrários x x 1 2 5 24 86-77 -59-78... 2 3 11-13 -8-9... calculados

8.6.2.1 CARACTERÍSTICAS DE UMA MATRIZ Quando se transforma a matriz ampliada inicial numa unitária, diz-se que ela foi transformada num matriz em forma de escada. A matriz ampliada do sistema será designada por A e a matriz em forma de escada por B. Nos exemplos anteriores obtiveram-se matrizes em forma de escada: Exemplo 1) 1 0 2 B 0 1 3 0 0 5 A 2 4 16 5 2 4 10 4 3 matriz B em forma de escada matriz ampliada do sistema

V 1 0 0 1 0 0 matriz V dos coeficientes das variáveis Examinando as matrizes B e V, verifica-se: a)a matriz B tem 3 linhas com elementos não todos nulos b)a matriz V tem duas linhas com elementos não todos nulos 1 0 2 B 0 1 3 0 0 5 V 1 0 0 1 0 0 Chama-se característica de A, e se representa por Ca, ao números de elementos não todos nulos de B. No exemplo 1, Ca=3 Chama-se característica de V, e se representa por Cv, ao números de elementos não todos nulos de V. No exemplo 1, Cv=2

No exemplo 1, B representa um sistema de 3 equações e 2 variáveis e Ca>Cv. Neste caso, o sistema é incompatível: a última linha de B representa a equação linear 0x+0y=-5 que não é satisfeita por nenhum valor de x e y. No exemplo 2, tem-se: B 1 0 2 1 0 0 1 3 0 1 V 0 0 0 0 0 0 0 0 0 0 Ca=2 Cv=2 Neste caso Ca=Cv, o sistema é compatível e as duas primeiras linhas de B informam as raízes. No exemplo 3, tem-se: 1 0 20 21 86 1 0 20 21 B V= 0 1 2 3 11 0 1 2 3 Ca=2 Cv=2

No exemplo 3, B representa um sistema de 2 equações e 4 variáveis e Ca=Cv. Neste caso, o sistema é compatível: a primeira de B informa que x1 86 20x3 21x4, enquanto a segunda linha de B informa que x2 11 2x3 3x4, e os valores de x 1 e x 2 se obtém atribuindo valores arbitrários a x 3 e x 4. Resumindo: Ca>Cv sistema incompatível Ca=Cv=C sistema compatível C<n indeterminado exemplo 3 n=4 C=n determinado exemplo 2 n=2

8.6.3 SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO (PARA M=N OU M N) Um sistema de equações lineares homogêneo pode ter outras soluções denominadas soluções próprias, além da solução trivial. O método para encontrar essas soluções, se existirem, é o mesmo método utilizado para resolver um sistema de m equações com n variáveis.

8.7 RESUMO Para classificar qualquer sistema de equações lineares (m=n, m n, homogêneo ou não) será sempre a mesma notação e utilizado o mesmo critério: A) A é matriz ampliada do sistema (contém a matriz dos coeficientes das variáveis e a matriz coluna dos termos independentes, ambas separadas por um traço vertical). B)B é a matriz reduzida à forma de escada. C) Ca é a característica da matriz ampliada (número de linhas com elementos não todos nulos de B). D)Cv é a característica da matriz V dos coeficientes das variáveis (número de linhas com elementos não todos nulos dessa matriz dos coeficientes das variáveis, contida em B). E)C (quando Ca=Cv=C, o que nem sempre acontece, pois Ca pode ser maior que Cv) é a característica da matriz B.

F)m é o número de equações. G)n é o número de variáveis. Por outro lado: H)Se Ca>Cv, o sistema é incompatível. I) Se Ca=Cv=C, o sistema é compatível. Neste caso: I1) Se C=n, o sistema é determinado. I2)Se C<n, o sistema é indeterminado.