Estruturas de Cncret ISSN 1519-4086 Númer 4 MODELOS DE PREVISÃO DA FLUÊNCIA E DA RETRAÇÃO DO CONCRETO JOSÉ MILTON DE ARAÚJO Editra DUNAS
Estruturas de Cncret é uma publicaçã seriada cm bjetiv de abrdar diverss temas relativs a prjet e à cnstruçã das estruturas de cncret simples, cncret armad e cncret prtendid. Em cada númer da série, sã analisads aspects específics, visand manter atualizada a bibligrafia nessa área da Engenharia Civil. A publicaçã nã se destina a servir cm text básic para um curs cmplet sbre estruturas de cncret. Pr iss, nã há nenhuma precupaçã cm a seqüência e cm a prfundidade cm que s diverss assunts sã abrdads. Prém, a publicaçã é sugerida cm material didátic cmplementar as estudantes e as prfissinais interessads nessa área. Estruturas de Cncret, Númer 4, Editra Dunas Ri Grande, Abril de 2002
Estruturas de Cncret ISSN 1519-4086 Númer 4 MODELOS DE PREVISÃO DA FLUÊNCIA E DA RETRAÇÃO DO CONCRETO JOSÉ MILTON DE ARAÚJO Prfessr titular da FURG Dutr em Engenharia Editra DUNAS
ESTUTURAS DE CONCRETO Cpyright Editra DUNAS A663c Araúj, Jsé Miltn de Estruturas de cncret : mdels de previsã da fluência e da retraçã d cncret / Jsé Miltn de Araúj. - Ri Grande: Dunas, 2002, Númer 4 Bibligrafia 1. Cncret. I. Títul CDU 624.012.45 CDD 624.1834 ISSN 1519-4086 Editra DUNAS Rua Tiradentes, 105 - Cidade Nva 96211-080 RIO GRANDE - RS - Brasil e-mail: ed.dunas@mikrus.cm.br Númer 4, Abril de 2002
SUMÁRIO 1. O cmprtament relógic d cncret...1 2. Fluência d cncret...2 3. Mdel d CEB/90 para a fluência d cncret...4 4. Mdel d CEB/78 para a fluência d cncret...12 5. Cmparaçã entre s mdels de fluência d CEB/90 e d CEB/78...16 6. Mdels para fluência básica...19 7. Mdel d CEB/90 para a retraçã d cncret...20 8. Mdel d CEB/78 para a retraçã d cncret...22 Referências Bibligráficas...26
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 1 1 - O cmprtament relógic d cncret O cmprtament relógic d cncret, ist é, sua defrmabilidade dependente d temp, tem uma cnsiderável imprtância na análise estrutural. As defrmações diferidas d cncret, u seja, as defrmações dependentes d temp, sã cnvencinalmente separadas em duas: a fluência e a retraçã. A fluência é acréscim cntínu das defrmações que crre mesm para uma tensã cnstante. A retraçã é a reduçã de vlume d material na ausência de uma carga externa. Tant a fluência, quant a retraçã, diminuem cm a reduçã d fatr água-ciment e d cnsum de ciment. Em virtude ds efeits d envelheciment, a fluência d cncret depende, além da duraçã d carregament, da idade de aplicaçã das cargas. O cmprtament d material também é influenciad pela trca de água cm mei ambiente. Quant mais sec fr mei extern, maires serã a fluência e a retraçã. Uma vez que a trca de água é facilitada em um element estrutural esbelt, a fluência e a retraçã serã tant maires, quant menres frem as dimensões d element. A temperatura ambiente é utr fatr que afeta as defrmações d material. A elevaçã da temperatura acelera prcess de envelheciment e também fenômen da fluência. Para temperaturas abaix de 5 C, a fluência praticamente cessa. Dentre s utrs fatres que afetam cmprtament relógic d cncret incluem-se tip de ciment, s aditivs e as prpriedades elásticas ds agregads (5). A fluência e a retraçã apresentam uma série de efeits indesejáveis, cm: aument das flechas de lajes e vigas; perdas de prtensã em estruturas de cncret prtendid; aument da curvatura de pilares devid à fluência, que intrduz mments fletres adicinais; fissuraçã das superfícies externas devid à retraçã; intrduçã de esfrçs indesejáveis em estruturas aprticadas devids à retraçã (e, também, à dilataçã térmica) que exige a adçã de juntas, etc. Pr utr lad, a fluência d cncret cntribui favravelmente para a eliminaçã de cncentrações de tensões (em nós de pórtics, pr exempl) e de tensões impstas pr recalques de apis em estruturas hiperestáticas (6). Diversas frmulações têm sid prpstas para representar esse cmplex fenômen. Algumas dessas frmulações sã apresentadas neste trabalh. A defrmaçã ttal em um instante t, ε c ( t ), de um element de cncret carregad n instante t cm uma tensã cnstante ( t ), pde ser escrita na frma σ c
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 2 ( t) ( t ) ( t) ( t) ( t) ε = ε + ε + ε + ε (1.1) c ci cc cs ct nde ε ci ( t ) = defrmaçã inicial n instante de aplicaçã da carga; ε cc ( t ) = defrmaçã de fluência n instante t ε cs ( t ) = defrmaçã de retraçã; ε ct ( t ) = defrmaçã térmica (dilataçã). > t ; Da equaçã (1.1), bserva-se que uma parcela da defrmaçã ttal depende da tensã aplicada, ε cσ ( t ), e utra parcela é independente da tensã, ε cn ( t ). Essa parcelas sã dadas pr ( t) ( t ) ( t) ε = ε + ε (1.2) cσ ci cc ( t) ( t) ( t) ε = ε + ε (1.3) cn cs ct A defrmaçã ε cn ( t ) é vlumétrica, u seja, só causa expansã u cntraçã d element estrutural. A defrmaçã ( t ) pde intrduzir distrções n element e depende das tensões aplicadas. ε cσ A defrmaçã térmica, ε ct, é dada pr ε ct = α Δ T (1.4) nde α = 10 5 C -1 é ceficiente de dilataçã térmica d cncret e ΔT é a variaçã de temperatura. 2 - Fluência d cncret A fluência d cncret pde ser classificada em fluência básica e fluência pr secagem. A fluência básica é a que se desenvlve sem transferência de água entre cncret e mei ambiente. Ns ensais de labratóri, a fluência básica é determinada em crps de prva
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 3 selads. Para ist, crp de prva é envlvid pr uma tira de brracha que é clada cm resina epóxi. Dessa frma, evita-se a perda de umidade para mei exterir. Em estruturas de grandes dimensões, cm pr exempl as barragens de cncret massa, a fluência básica é predminante. Em estruturas esbeltas, cm as estruturas usuais ds edifícis, a fluência pr secagem trna-se imprtante. Além diss, verifica-se experimentalmente que uma parcela da defrmaçã de fluência é recuperável (a defrmaçã elástica diferida) e utra parcela é irrecuperável (a defrmaçã plástica diferida). Na fig. 2.1, indicam-se as variações da defrmaçã de um crp de prva de cncret carregad n instante t. A tensã aplicada é mantida cnstante até instante t 1, quand crp de prva é descarregad. Cnfrme está indicad na figura, a defrmaçã inicial (imediata a carregament) é ε ci. As defrmações aumentam cm passar d temp devid a fenômen da fluência. Quand crp de prva é descarregad, crre a recuperaçã imediata de uma parcela da defrmaçã. Esta parcela será aprximadamente igual a ε ci se a tensã aplicada fr pequena em relaçã à resistência à cmpressã d cncret. Cm passar d temp, haverá a recuperaçã da parcela ε ed da fluência. Entretant, a parcela ε pd será residual. ε c (t) ε ci ε ci ε ed ε pd t t 1 t Fig. 2.1 - Parcelas da defrmaçã de fluência De acrd cm s mdels de previsã d CEB (2,3), a defrmaçã de fluência é dada pr ε cc ( t) ( t ) σ c = φ( tt, ) (2.1) E c
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 4 nde E c é módul tangente de defrmaçã lngitudinal d cncret as 28 dias de idade e φ( tt, ) é ceficiente de fluência. A linearidade entre a defrmaçã de fluência e a tensã, representada na equaçã (2.1), é válida para as tensões de serviç (cm ( t ) < 04f ( t ) relaçã é nã-linear. A defrmaçã dependente da tensã, ( ) σ c cm ε cσ t, é dada pr, ). Para tensões mais elevadas a ε ( t) σ ( t ) ( tt ) 1 φ, = + Ec( t) E cσ c c = σ ( t ) J( t t ) c, (2.2) nde Ec( t ) é módul tangente de defrmaçã lngitudinal na idade t e Jtt ( ) funçã de fluência., é a A funçã Jtt (, ) representa a defrmaçã ttal dependente da tensã, para uma tensã unitária aplicada em t. 3 - Mdel d CEB/90 para a fluência d cncret De acrd cm CEB/90 (3), módul de defrmaçã tangente E c as 28 dias de idade pde ser btid através da expressã E c = 13 f cm 21500, MPa (3.1) 10 nde f cm = f +8 MPa é a resistência média à cmpressã, estimada a partir da resistência ck característica f ck, ambas as 28 dias de idade. O módul E ( t ) c em uma idade genérica t dias pde ser estimad através da equaçã nde [ ] ( ) = β ( ) 12 c cc c E t t E (3.2)
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 5 ( t ) = 28 12 (3.3) β cc exp s 1 t send s = 020, para ciments de alta resistência inicial, s = 025, para ciments de endureciment nrmal e s = 038, para ciments de endureciment lent. O ceficiente de fluência d mdel d CEB/90 é dad pr φ ( tt ) φ β ( t t ), = (3.4) c cm t e t em dias. O ceficiente φ é escrit na frma nde ( f ) ( t ) φ φ β β = (3.5) RH cm φ RH = 1 + 1 RH 100 046, 100 13 ( h ) (3.6) ( ) β f cm = ( f ) cm 53, 10 05, (3.7) β t ( ) = 1 01, + t 02, (3.8) Nessas expressões, RH é a umidade relativa d ambiente (%), f cm é a resistência média à cmpressã d cncret as 28 dias de idade (em MPa) e h é uma espessura equivalente d element estrutural (em mm). A espessura h é definida pr
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 6 h Ac = 2 (3.9) u nde A c é a área da seçã transversal d element e u é perímetr em cntat cm a atmsfera. pr β c A funçã ( t t ), que representa desenvlviment da fluência cm temp, é dada nde β H β c t t = β + t t ( t t ) H 03, (3.10) RH h = + 18 150 1 1, 2 + 250 1500 (3.11) 100 100 Para levar em cnta s diferentes tips de ciment, a equaçã (3.8) deve ser avaliada cm uma idade mdificada, t c, dada pr t = t 9 2 + t c, 12, α + 1 05, dias (3.12) nde t é a idade de aplicaçã da carga, crrigida de acrd cm a equaçã (3.13) para levar em cnta s efeits da temperatura de cura na maturidade d cncret. O ceficiente α vale -1 para ciments de endureciment lent, 0 para ciments de endureciment nrmal e 1 para ciments de alta resistência inicial. O efeit da temperatura na maturidade d cncret, quand ela é diferente de 20 C, é levad em cnta substituind-se a idade real t pr uma idade equivalente t e, dada pr t e n 4000 = Δti exp 13, 65 273+ T (3.13) i i= 1 nde Δt i é númer de dias em que a temperatura fi igual a T i C.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 7 A idade crrigida dada em (3.12) deve ser usada na equaçã (3.8). A duraçã d carregament t t a ser cnsiderada na equaçã (3.10) é temp real sb carga. Nas figuras 3.1 a 3.3, sã apresentadas as variações d ceficiente de fluência cm a idade para um cncret cm f ck = 20MPa as 28 dias de idade. Nessas figuras, admite-se que a temperatura ambiente é igual a 20 C e ciment é de endureciment nrmal. Assim, nã é necessári fazer nenhuma crreçã na idade t. Na fig. 3.1, mstra-se efeit da idade de aplicaçã da carga, t, n ceficiente de fluência. Nessa figura, fram fixads s valres RH = 70% (umidade relativa) e h = 150mm (espessura da peça). Observa-se que, quant mais jvem fr cncret quand da aplicaçã d carregament, mair será ceficiente final de fluência. Ceficiente de fluência 3.0 2.5 2.0 1.5 1.0 0.5 0.0 t=7 dias t=28 dias t=180 dias RH=70% h=150 mm 0 200 400 600 800 Idade d cncret (dias) Fig. 3.1 - Efeit da idade de aplicaçã da carga n ceficiente de fluência Na fig. 3.2, indica-se a variaçã d ceficiente de fluência cm a espessura d element estrutural. Nessa figura, sã fixads s valres RH = 70% e t = 28dias. Observa-se que, quant mais esbelt fr element estrutural, mair será valr d ceficiente final de fluência. Admitind uma peça de seçã quadrada, s valres h = 50 mm e h = 600mm crrespnderiam a seções de lads iguais a 10cm e 120cm, respectivamente. O ceficiente de fluência para h = 50 mm é cerca de 60% superir a crrespndente a h = 600mm, que mstra a grande influência das dimensões ds elements estruturais n valr desse ceficiente.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 8 3.0 Ceficientedefluência 2.5 2.0 1.5 1.0 0.5 0.0 h=50 mm h=150 mm h=600 mm RH=70% t=28 dias 0 200 400 600 800 Idade d cncret (dias) Fig. 3.2 - Efeit da espessura n ceficiente de fluência Na fig. 3.3, sã mstradas as variações d ceficiente de fluência cm a umidade relativa d ambiente para h = 150mm e t = 28dias. Verifica-se que, quant mais sec fr ambiente, mair será ceficiente de fluência. 3.0 Ceficiente de fluência 2.5 2.0 1.5 1.0 0.5 0.0 RH=50% RH=70% RH=90% h=150 mm t=28 dias 0 200 400 600 800 Idade d cncret (dias) Fig. 3.3 - Efeit da umidade ambiente n ceficiente de fluência Cnfrme se bserva, a frmulaçã d CEB/90 leva em cnta s principais fatres que afetam a fluência d cncret: idade d carregament, espessura d element estrutural, umidade e temperatura ambientes, tip de ciment, resistência d cncret.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 9 O ceficiente final de fluência, φ, pde ser btid da equaçã (3.4), tmand-se um valr muit alt para a idade t. Observa-se que, quand t cresce, valr da funçã ( t t ) tende a 1. Lg, ceficiente final de fluência, φ φ( ) que, para cas em que t = 28dias, resulta a seguinte expressã β c = t, t, é igual a φ. É fácil verificar φ 82 φ RH, f ck + 8, cm f ck em MPa (3.14) Na tabela 3.1, sã apresentads alguns valres de φ para um cncret cm f ck = 20MPa, de acrd cm a equaçã (3.14). Tabela 3.1 - Valres de φ para f ck = 20MPa h (mm) RH = 50% RH = 70% RH = 90% 50 3,7 2,8 2,0 100 3,2 2,6 1,9 150 3,0 2,4 1,8 200 2,9 2,4 1,8 250 2,8 2,3 1,8 300 2,7 2,3 1,8 De acrd cm mdel d CEB/90, efeit de uma temperatura de cura diferente de 20 C na maturidade d cncret é levad em cnta substituind-se a idade real de aplicaçã da carga pela idade equivalente dada na equaçã (3.13). Essa idade equivalente é utilizada apenas na equaçã (3.8), devend-se cnsiderar a duraçã real d carregament t ceficiente de fluência. t na avaliaçã d Para levar em cnta efeit de uma temperatura cnstante diferente de 20 C, enquant cncret está sb carga (ist é, durante ensai), deve-se mdificar s ceficientes β H e φ RH que aparecem na frmulaçã. O ceficiente β H que aparece na equaçã (3.10) é substituíd pr β HT,, nde
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 10 send β β β HT H T, = (3.15) β T = 1500 exp 512, (3.16) 273+ T cm a temperatura T em C e β H btid da equaçã (3.11). O ceficiente φ RH que aparece na equaçã (3.5) é substituíd pr nde ( ), RH, T T RH T φ = φ + φ 1 φ 12 (3.17) φ T [ ( T )] = exp 0015, 20 (3.18) e φ RH é btid da equaçã (3.6). Na fig. 3.4, indicam-se três histórias de temperatura para efeit de análise. Na primeira, cncret é curad a 20 C e essa temperatura é mantida durante td ensai. Na segunda, a temperatura de cura é igual a 40 C e ensai é realizad a uma temperatura de 20 C. Na terceira situaçã, cncret é curad a 20 C e ensai é realizad a uma temperatura de 40 C. Em tds s cass, a idade de aplicaçã da carga é t = 28 dias e f ck = 20MPa. T C T C T C 1 40 2 40 20 20 20 3 28 t(dias) 28 t(dias) 28 t(dias) Fig. 3.4 - Diferentes histórias de temperatura de cura e de realizaçã d ensai de fluência
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 11 Na fig. 3.5, apresenta-se a variaçã d ceficiente de fluência cm a idade para as três situações estudadas. 3.5 3.0 3 Ceficiente de fluência 2.5 2.0 1.5 1.0 0.5 0.0 RH=70% h=150mm 1 2 0 200 400 600 800 Idade d cncret (dias) Fig. 3.5 - Ceficiente de fluência para as três situações da fig. 3.4 Da fig. 3.5, verifica-se que na situaçã 2 ceficiente de fluência é menr d que na situaçã 1 prque a maturidade d cncret n iníci d ensai é mair na situaçã 2. Na situaçã 3, a maturidade n iníci d ensai é a mesma que na situaçã 1. Prém a temperatura mais elevada durante ensai aumenta ceficiente de fluência. O mdel de fluência linear apresentad até aqui é válid para tensões de serviç, ist é, para ( t ) 04f ( t ) σ c cm,. Para tensões mais elevadas, deve-se cnsiderar a nã-linearidade entre a tensã e ceficiente de fluência. De acrd cm CEB/90, para tensões de cmpressã situadas n interval ( ) < ( ) ( ) 04, f t σ t 06, f t, a nã-linearidade pde ser levada em cnta cm c cm substituind-se ceficiente φ que aparece na equaçã (3.4) pel ceficiente φ k, dad pr [ ( )] φ k, = φ exp α σ k σ 04,, para 04, < 06, φk, = φ, para k σ 04 k σ (3.19), (3.20)
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 12 nde k ( t ) f ( t ) = é a relaçã entre a tensã aplicada e a resistência à cmpressã, σ σ c cm α σ = 15, e φ é ceficiente btid cm empreg da equaçã (3.5). Para cncret massa u quand a umidade relativa é muit alta, pde-se adtar α σ = 05,. 4 - Mdel d CEB/78 para a fluência d cncret N mdel de fluência apresentad n Anex e d CEB/78 (2), módul de defrmaçã lngitudinal tangente E ( t ) c é dad pr ( ) = 125 ( ) E t E t c, cm (4.1) nde E ( t ) cm é módul secante dad pr send f ( t ) [ ] ( ) = 9500 ( ) E t f t cm cm 13, MPa (4.2) cm a resistência média à cmpressã d cncret na idade t dias. A idade t é crrigida para levar em cnta s efeits da temperatura de cura, cnfrme a equaçã (4.9). Definind a funçã de envelheciment ( t ) ( t ) cm β c = f cm verifica-se que a resistência média f ( t ) f cm na idade t (4.3) dias é crrelacinada cm a resistência média f cm as 28 dias de idade na frma f cm ( t ) c ( t) ( ) = β β 28 c f cm (4.4)
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 13 A resistência média f cm pde ser estimada a partir da resistência característica f ck as 28 dias usand a relaçã fcm = fck +8 MPa. t é dada em frma de um gráfic. β c A funçã ( ) O ceficiente de fluência φ( tt, ) é dad pr [ ] ( tt, ) = ( t) +, ( t t) + ( t) ( t) φ β β φ β β 04 (4.5) a d f f f Observa-se que CEB/78 adta uma frmulaçã d tip sma, enquant CEB/90 adta uma frmulaçã d tip prdut. β a O ceficiente ( ) t cnsidera a defrmaçã de fluência rápida que se desenvlve ns primeirs instantes após a aplicaçã d carregament. Esse ceficiente é dad pr β c send ( ) β [ ] ( t ) = 081 β ( t ), (4.6) a c t a funçã de envelheciment definida na equaçã (4.3). O ceficiente φ f crrespnde à defrmaçã plástica diferida e é dad pr nde, φ f 1 : depende d mei ambiente (cluna 3 da tabela 4.1); φ f = φ f1φ f 2 (4.7) φ f 2 : depende da espessura fictícia da peça (dad em frma de um gráfic). A espessura fictícia h 1 é dada pr h 1 2Ac = u λ (4.8) nde A c é a área da seçã transversal, u é perímetr em cntat cm a atmsfera e λ é ceficiente frnecid na tabela 4.1. Observa-se que h equaçã (3.9). h 1 = λ, nde h é a espessura fictícia d mdel d CEB/90, dada na
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 14 Tabela 4.1 - Ceficientes d mdel de fluência d CEB/78 1 2 3 4 Mei ambiente Umidade relativa Ceficiente φ f 1 Ceficiente λ na água 0,8 30 atmsfera muit úmida 90% 1,0 5 exterir, em geral 70% 2,0 1,5 atmsfera muit seca 40% 3,0 1 A funçã β d ( t t ) representa desenvlviment da defrmaçã elástica diferida a lng d temp. A funçã β f () t representa desenvlviment da defrmaçã plástica diferida e depende da espessura fictícia h 1. Ambas as funções sã dadas em frma de gráfics. Na avaliaçã de β f () t e ( t ) β f, ambas as idades t e t sã crrigidas para levar em cnta a influência da temperatura n envelheciment d cncret. Entretant, na avaliaçã da funçã ( t t ) β d, deve-se adtar a duraçã real d carregament t t. Para levar em cnta s efeits d tip de ciment e da temperatura ambiente a lng d endureciment d cncret, se ela é sensivelmente diferente de 20 C, adta-se a idade equivalente t e, dada pr n α t = ( T + 10) t 30 e i i i= 1 Δ (4.9) nde Δt i é númer de dias em que a temperatura fi igual a T i C e α é um ceficiente que leva em cnta tip de ciment, send: α = 1, para ciments de endureciment nrmal e lent; α = 2, para ciments de endureciment rápid; α = 3, para ciments de endureciment rápid e alta resistência. Observa-se que CEB/78 apresenta uma descriçã gráfica para a determinaçã d ceficiente de fluência.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 15 N Apêndice D da referência [4] sã apresentadas expressões analíticas para as funções d mdel de fluência, as quais sã indicadas a seguir. dada pr A funçã ( t ) β c, representand a variaçã da resistência à cmpressã cm a idade, é ( t ) β c = t + t 47 1245, (4.10) cm t em dias. A funçã ( t t ) β d é dada pr t t = t t + 328 ( t t ) β d 142, (4.11) cm t e t em dias. A funçã β f () t é dada pr ( ) k h t β f () t = t + k1( h1) 2 1 (4.12) nde k 502 125 ( h ) = exp,, + ln ( 695, h1 ) 1 1 h 1 (4.13) 11, ( ) = 000144 ( 1005h1 0, exp, ln, 2954 ) k h h 2 1 1 h 1 (4.14) send t a idade em dias e h 1 a espessura fictícia em centímetrs. Os ceficientes φ f 1 e φ f2 sã dads pr
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 16 φ f 1 = 445, 0035, RH (4.15) 5 0357 h1 0 1667 φ f 2 = 44x10 h 1, h1, exp, ln 26, (4.16) nde h 1 é a espessura fictícia em centímetrs e RH % é a umidade relativa d ambiente. O ceficiente λ pde ser interplad na frma λ = 1+ RH 40 60, se 40% 70% RH (4.17) RH 70 λ = 15, + 35, 20, se 70% < RH 90% (4.18) 5 - Cmparaçã entre s mdels de fluência d CEB/90 e d CEB/78 Cnfrme se bserva, s mdels d CEB/90 e d CEB/78 diferem em váris aspects. N mdel d CEB/90, adta-se uma frmulaçã d tip prdut em que ceficiente de fluência é btid pel prdut de diversas parcelas que levam em cnta s principais parâmetrs envlvids n prblema. N mdel d CEB/78, esse ceficiente é btid através de uma sma de diversas parcelas. O mdel d CEB/90 leva em cnta a nã-linearidade da fluência para altas tensões, que nã é cnsiderad n mdel d CEB/78. Além diss, s móduls de defrmaçã lngitudinal para cálcul da funçã de fluência sã diferentes ns dis mdels. Nas figuras 5.1 a 5.3, cmparam-se s ceficientes de fluência φ( tt, ) btids cm s dis mdels. Em tds s cass, cnsidera-se um cncret cm f ck = 20 MPa e ciment de endureciment nrmal. Admite-se, ainda, que a temperatura ambiente é igual a 20 C, nã send feita nenhuma crreçã na idade d cncret. N mdel d CEB/90, cnsidera-se apenas cas linear. A espessura fictícia especificada é h, cnfrme definid n mdel d CEB/90. A espessura fictícia para mdel d CEB/78 é h h 1 = λ.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 17 Na fig. 5.1, admite-se uma umidade relativa RH = 70% e uma espessura fictícia h = 150mm. Na fig. 5.2, cnsidera-se RH = 70% e a idade d carregament t = 28 dias. Na fig. 5.3, sã fixads s valres h = 150mm e t = 28 dias. 3.0 Ceficiente de fluência 2.5 2.0 1.5 1.0 0.5 0.0 t=7 dias t=28 dias t=180 dias CEB/90 CEB/78 0 200 400 600 800 Idade d cncret (dias) Fig. 5.1 - Efeit da idade de aplicaçã da carga n ceficiente de fluência Analisand a fig. 5.1, verifica-se que s dis mdels frnecem praticamente s mesms ceficientes de fluência quand cncret é carregad ainda jvem. O mdel d CEB/78 frnece um menr ceficiente de fluência para idades de carregament avançadas.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 18 3.0 Ceficiente de fluência 2.5 2.0 1.5 1.0 0.5 0.0 h=50 mm h=600 mm CEB/90 CEB/78 0 200 400 600 800 Idade d cncret (dias) Fig. 5.2 - Efeit da espessura da peça n ceficiente de fluência 3.0 Ceficiente de fluência 2.5 2.0 1.5 1.0 0.5 0.0 RH=50% RH=70% RH=90% CEB/90 CEB/78 0 200 400 600 800 Idade d cncret (dias) Fig. 5.3 - Efeit da umidade ambiente n ceficiente de fluência Analisand a fig. 5.2, cnstata-se que s dis mdels frnecem praticamente s mesms ceficientes de fluência para diferentes espessuras da peça. O mesm crre em relaçã à umidade ambiente, cm se verifica pela fig. 5.3.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 19 6 - Mdels para fluência básica Bazant e Panula (1) apresentam um mdel para fluência básica, u seja, a fluência que crre sem perda de umidade. Esse mdel pde ser usad para a previsã da fluência em cncret massa. A funçã de fluência d mdel de Bazant e Panula é tmada na frma (, ) = + ( + )( ) Jtt 1 ϕ1 E E t m t t n α (6.1) nde E, ϕ 1, α, m e n sã parâmetrs d mdel. O módul E é denminad módul assintótic e nã representa módul de defrmaçã lngitudinal d cncret. Os ceficientes α, m e n sã dads em funçã da cmpsiçã d cncret. Os seus valres médis sã α = 005, ; m = 13 ; n = 18 (6.2) Os demais parâmetrs d mdel sã dads pr ϕ = 1 10 3n m ( + α) 228 (6.3) E = 6895f 2 cm 2 cm 009, f + 2226,, MPa (6.4) send f cm (MPa) a resistência média à cmpressã d cncret as 28 dias de idade. dada pr Uma expressã bastante usada para representar a funçã de fluência básica d cncret é 1 Jtt (, ) = + Ft ln t t + Et ( ) ( ) ( ) 1 (6.5)
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 20 nde Et ( ) e Ft ( ) sã btids pr regressã a partir ds resultads experimentais. A expressã (6.5) fi empregada para determinar a funçã de fluência ds cncrets de diversas barragens brasileiras. Os valres de Et ( ) e ( ) encntrads na referência [5]. Ft para esses cncrets pdem ser Tds s mdels de previsã apresentads frnecem apenas uma estimativa das defrmações de fluência d cncret. Em muits cass, err cmetid cm essas estimativas pde ser bastante elevad. Ist se deve à cmplexidade d fenômen e as diverss parâmetrs que cntribuem para cmprtament d material. Esses parâmetrs estã relacinads cm as cndições ambientais e cm as características da dsagem d cncret. Em relaçã à dsagem d cncret, verifica-se que a fluência é muit dependente d ter de pasta, d fatr água-ciment e das prpriedades elásticas d agregad graúd. Assim, trna-se muit difícil estabelecer um mdel precis basead em pucs parâmetrs de cmpsiçã, cm s mdels apresentads anterirmente. De qualquer md, s mdels apresentads pdem ser empregads para a estimativa das defrmações de fluência para as estruturas de cncret usuais. N cas ds edifícis de cncret armad, pr exempl, pde-se empregar mdel d CEB/90. Para estruturas de grande imprtância, cm as barragens, deve-se realizar ensais cm cncret a ser empregad na bra, para determinar as prpriedades d material. 7 - Mdel d CEB/90 para a retraçã d cncret Retraçã é a reduçã de vlume d cncret durante prcess de endureciment, devid à diminuiçã d vlume de água ds prs. Usualmente, a retraçã é dividida em retraçã autógena e retraçã pr secagem (u retraçã hidráulica). A retraçã autógena crre sem perda de água para exterir e é cnseqüência da remçã da água ds prs capilares pela hidrataçã d ciment (7). A retraçã hidráulica é influenciada pelas cndições ambientais (umidade relativa, temperatura, vent, etc.). Na prática, a retraçã hidráulica inclui, também, a variaçã autógena de vlume. Uma cura prlngada retarda iníci da retraçã, permitind que cncret alcance uma resistência à traçã satisfatória. Cm iss, pde-se evitar uma fissuraçã prematura. As armaduras também sã eficientes para a limitaçã das aberturas das fissuras decrrentes da retraçã.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 21 Quand cncret é clcad dentr d água, crre um aument de vlume pela absrçã de água. Entretant, valr abslut da expansã dentr d água é bem menr d que a retraçã a ar (cerca de 6 vezes menr para umidade relativa d ar igual a 70%) (7). De acrd cm CEB/90 (3), a defrmaçã de retraçã, ε cs ( t ), pde ser calculada pr ( t) ( t t ) ε = ε β (7.1) cs cs s s nde t é a idade d cncret e t s é a idade a final da cura (t O ceficiente ε cs é dad pr > t s ). ( f ) ε ε β cs = s cm RH (7.2) nde f cm (em MPa) é a resistência média à cmpressã d cncret as 28 dias de idade e ε ( f ) = 160 + 10β 9 s cm sc fcm 10 x 10 6 (7.3) O ceficiente β sc depende d tip de ciment e vale β sc = 4 para ciments de endureciment lent, β sc = 5 para ciments de endureciment nrmal e β sc = 8 para ciments de alta resistência inicial. O ceficiente β RH leva em cnta a umidade ambiente e é dad pr β RH RH = 3 155, 1 se 40% < 99% 100 RH (7.4) β RH = +025, se RH 99% (7.5) Cnfrme se bserva na equaçã (7.4), até uma umidade relativa d ambiente próxima de 99%, crre retraçã ( β RH < 0 ). Após esse valr, que crre é um aument de vlume d cncret, cm é indicad na equaçã (7.5).
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 22 A funçã ( t t ) β s s, que define desenvlviment da retraçã cm temp, é dada pr ( t t ) t t h + t t s β s s = 350( 100) 2 s 05, (7.6) nde h é a espessura equivalente d element estrutural, definida na equaçã (3.9). Quand temp t tende a infinit, a defrmaçã de retraçã ε ε ( ) cs = cs t tende a valr ε cs. Cnsiderand um cncret cm f ck = 20MPa e β sc = 5 (ciment de endureciment nrmal), resulta ε cs = 63x10 5 para RH = 50% ; ε cs = 48 x10 5 para RH = 70% ; ε cs = 20 x10 5 para RH = 90%. 8 - Mdel d CEB/78 para a retraçã d cncret De acrd cm Anex e d CEB/78 (2), a defrmaçã específica de retraçã ( tt) que se desenvlve n interval ( t ) t s, é dada pr [ ] ( tt) ( t) ( t) ε cs, s, ε, = ε β β (8.1) cs s s s s s nde ε s : ceficiente básic de retraçã; β s : funçã que define desenvlviment da retraçã a lng d temp; t : idade d cncret n instante cnsiderad, crrigida segund a equaçã (4.9), cm α = 1 em tds s cass;
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 23 t s : idade d cncret a final da cura, crrigida segund a equaçã (4.9), cm α = 1 em tds s cass. O ceficiente básic de retraçã é dad pr ε s ε s ε s = 1 2, nde ε s1 depende d mei ambiente e ε s2 depende da espessura fictícia h 1, definida na equaçã (4.8). O ceficiente ε s1 é dad na tabela 8.1. Tabela 8.1 - Ceficiente ε s1 d mdel de retraçã d CEB/78 1 2 3 Mei ambiente Umidade relativa Ceficiente ε s1 x10-5 na água +10 atmsfera muit úmida 90% -13 exterir, em geral 70% -32 atmsfera muit seca 40% -52 O ceficiente ε s2 e a funçã β s sã dads em frma de gráfic, em funçã da espessura fictícia h 1. N Apêndice D da referência [4] sã apresentadas expressões analíticas para as funções d mdel de fluência, as quais sã indicadas a seguir. O ceficiente ε s1 pde ser btid pr ( ) ε s = 0, 000775RH 0, 1565RH + 11, 0325RH 303, 25 x10 (8.2) 1 3 2 5 nde RH (%) representa a umidade relativa d ambiente. O ceficiente ε s2 é dad pr 032 h1 0251 = 0 00174h,, h1 exp, ln 19, ε s 2 1 (8,3) cm a espessura fictícia h 1 em centímetrs.
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 24 A funçã β s () t é dada pr ( ) K h t β s () t = t + K3( h1) 4 1 (8.4) ( ) K h = 11 8h + 16 3 1, 1 (8.5) 032, ( ) = exp 0, 00257 + + ( 022h1 04, ln, ) K h h 4 1 1 h 1 (8.6) cm t em dias e h 1 em centímetrs. As seguintes diferenças sã bservadas entre s mdels d CEB/78 e d CEB/90 para cálcul da defrmaçã de retraçã: - mdel d CEB/90 leva em cnta a resistência d cncret e tip de ciment, u seja, a influência da cmpsiçã d cncret; n mdel d CEB/78, a defrmaçã específica de retraçã independe das características d cncret; β s - n mdel d CEB/90, desenvlviment da retraçã a lng d temp é dad pela ( t t ), que depende da duraçã d prcess de secagem ( t ) s cnsidera-se a diferença β () t β ( t ) s s s t s ; n mdel d CEB/78, ; as funções β s nã sã as mesmas ns dis mdels. Nas tabelas 8.2 a 8.4, cmparam-se s valres da defrmaçã específica de retraçã ε cs btids cm mdel d CEB/78 e cm mdel d CEB/90. Em tds s cass, cnsidera-se a idade final t = 10. 000 dias e a idade inicial t s = 7 dias. Para us d mdel d CEB/90, cnsidera-se ciment de endureciment nrmal (ceficiente β sc = 5). As espessuras fictícias h indicadas nas tabelas crrespndem à definiçã dada na expressã (3.9), cnfrme CEB/90. Analisand as tabelas, verifica-se que s dis mdels smente frnecem valres parecids para a defrmaçã de retraçã para cncrets de elevada resistência à cmpressã,
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 25 cm f ck 60MPa. Para cncrets de menr resistência, CEB/90 frnece s maires valres para a defrmaçã específica de retraçã. Tabela 8.2 - Defrmaçã de retraçã - cncret f ck = 20 MPa h (mm) RH = 50% RH = 70% RH = 90% CEB/90 CEB/78 CEB/90 CEB/78 CEB/90 CEB/78 50-63x10-5 -37x10-5 -48x10-5 -27 x10-5 -20x10-5 -10 x10-5 200-60x10-5 -37 x10-5 -45x10-5 -25 x10-5 -18x10-5 -8 x10-5 400-51x10-5 -33 x10-5 -38x10-5 -22 x10-5 -16x10-5 -7 x10-5 Tabela 8.3 - Defrmaçã de retraçã - cncret f ck = 40 MPa h (mm) RH = 50% RH = 70% RH = 90% CEB/90 CEB/78 CEB/90 CEB/78 CEB/90 CEB/78 50-50x10-5 -37x10-5 -38x10-5 -27 x10-5 -15x10-5 -10 x10-5 200-47x10-5 -37 x10-5 -35x10-5 -25 x10-5 -15x10-5 -8 x10-5 400-40x10-5 -33 x10-5 -30x10-5 -22 x10-5 -12x10-5 -7 x10-5 Tabela 8.4 - Defrmaçã de retraçã - cncret f ck = 60 MPa h (mm) RH = 50% RH = 70% RH = 90% CEB/90 CEB/78 CEB/90 CEB/78 CEB/90 CEB/78 50-36x10-5 -37x10-5 -27x10-5 -27 x10-5 -11x10-5 -10 x10-5 200-34x10-5 -37 x10-5 -26x10-5 -25 x10-5 -11x10-5 -8 x10-5 400-29x10-5 -33 x10-5 -22x10-5 -22 x10-5 -9x10-5 -7 x10-5
Estruturas de Cncret, Númer 4, Abril de 2002 - Jsé Miltn de Araúj 26 REFERÊNCIAS BIBLIOGRÁFICAS 1. Bazant, Z. P.; Panula, L. - Practical predictin f time-dependent defrmatins f cncrete. Matériaux et Cnstructins, V.11, N.65, p.307-328, 1978. 2. Cmité Eur-Internatinal du Bétn. Cde-mdèle CEB/FIP pur les Structures en Bétn. Paris, 1978 (Bulletin d'infrmatin 124/125). 3. Cmité Eur-Internatinal du Bétn. CEB-FIP Mdel Cde 1990. Lausanne, 1993. 4. Cmité Eur-Internatinal du Bétn. CEB Design Manual n Structural Effects f Time- Dependent Behaviur f Cncrete. Switzerland, 1984. 5. Equipe de FURNAS, Labratóri de Cncret. Cncrets - Ensais e Prpriedades. Editr: Waltn Pacelli de Andrade. Sã Paul, PINI, 1997. 6. Lenhardt, F,; Mönnig, E. - Cnstruções de Cncret. V.1, Interciência, Ri de Janeir, 1977. 7. Neville, A. M. - Prpriedades d Cncret. Traduçã de Salvadr E. Giammuss, PINI, Sã Paul, 1997.