INSTITUTO POLITÉCNICO DE BRAGANÇA Estática
|
|
|
- Ísis Estrela Dinis
- 7 Há anos
- Visualizações:
Transcrição
1 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ nalise a estatia interior das estruturas planas seguintes. a) b) c) d) 2 - Usando o método dos nós, determine as forças em todas as barras da treliça ilustrada na figura. Indique se as barras estão traccionadas ou comprimidas k k k 1/15
2 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ Utilize o método dos nós para determinar as forças nas barras e. H I K J 4 - Utilize o método dos nós para determinar as forças nas barras e k 1000 k 53.13º 900 k J H 2400 k 2/15
3 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ Uma força vertical de 800 é aplicada numa consola como se representa na figura. etermine o momento dessa força em relação ao ponto. 6 - Uma viga com 4 m de comprimento está sujeita a vários carregamentos. Substitua cada um dos carregamentos por um sistema força-binário equivalente na extremidade da viga e indique quais dos carregamentos indicados são equivalente entre si..m.m.m.m.m.m.m.m.m.m.m.m 7 - treliça representada na figura suporta o carregamento indicado. etermine a força única equivalente ao carregamento que actua na treliça, e o ponto de intersecção da sua linha de acção com o eixo x representado. 3/15
4 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ alcule as reacções nas estruturas seguintes. a) b) 20 k 10 k m m m m m m c) d) H 1000 k 53.13º I K J H J 9 - nalise a estatia exterior das seguintes figuras planas. a) b) 4/15
5 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/2007 c) d) e) f) g) h) 5/15
6 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ onsidere o seguinte Sistema rticulado Plano. a) alcule as reacções nos apoios. b) Usando o método dos nós, determine as forças nas barras e e indique se as barras estão traccionadas ou comprimidas. c) Usando o método das secções, determine as forças nas barras e e indique se as barras estão traccionadas ou comprimidas k 36.87º H 11 - figura seguinte representa uma estrutura articulada. m função das cargas aplicadas determine os esforços axiais nas barras, e e indique se essas barras estão comprimidas ou traccionadas. 6/15
7 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ Localize o centróide das superfícies planas representadas a) b) c) y c) y x x ormulário d f i k y g c h e b1 b2 h g j 4r y g = 3π 1 Ic = Id = π r 8 4 I e b bh = 12 3 I I g i 3 ( b + b ) h 1 2 = ( b1 + b2) h = 12 I j 1 = π r 4 4 n b r h 5 3 Im = π bh In = π b h 4 = π b h h m Perfil H Área (cm 2 ) b h (mm) b (mm) q I q (cm 4 ) I r (cm 4 ) H H H H H /15
8 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ etermine os momentos de inércia e raios de giração relativamente aos eixos X e Y para as superfícies representadas. a) b) c) d) y O perfil representado é do tipo H- x e) 25 y 10 f) 60 y x x x 8/15
9 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ alcule para as vigas e para os carregamentos representados, a intensidade e a localização da resultante da carga distribuída e as reacções nos apoios. a) b) 400 /m 1600 /m 6 m 15 - etermine as reacções nos apoios do esquema estrutural representado na figura seguinte. 100 k 36.87º K J 9/15
10 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ etermine as reacções nos apoios do esquema estrutural representado na figura seguinte. H I J 17 - etermine as reacções nos apoios do esquema estrutural representado na figura seguinte. I H J K 10/15
11 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ Para as estruturas representadas nas figuras, trace os diagramas de momentos flectores, esforços transversos e esforços normais, indicando as expressões analíticas que definem os diagramas. onsidere L = 3 m, w = 10 k/m. a) b) c) d) w L 19 - Observe o esquema estrutural seguinte: 30 k/m 10 k/m 5 k/m 10 k/m M 45º k 100 km H V V onsidere V = 235k ; V = 107.5k ; H = 40k e M = km a) esenhe o diagrama de esforço normal. b) esenhe o diagrama de esforço transverso e indique o grau das funções que definem o esforço transverso em cada tramo. c) etermine o valor do momento flector nos pontos,,,,,, (identifique e caracterize os pontos de descontinuidade da função momento). d) esenhe o diagrama de momento flector e indique o grau das funções que definem o momento flector em cada tramo. e) etermine as equações de variação dos esforços internos no troço. 11/15
12 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ k/m 10 k/m 5 k/m 10 k/m M 45º k 100 km H V V 12/15
13 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/ Observe o esquema estrutural seguinte: M H V V onsidere V = k ; H = 30k ; M = km e V = k a) esenhe o diagrama de esforço normal. b) esenhe o diagrama de esforço transverso e indique o grau das funções que definem o esforço transverso em cada tramo. c) etermine o valor do momento flector nos pontos,,,,, e. (identifique e caracterize os pontos de descontinuidade da função momento) d) esenhe o diagrama de momento flector e indique o grau das funções que definem o momento flector em cada tramo. e) etermine as equações de variação dos esforços internos no troço. aracterize, caso seja necessário, os máximos ou mínimos locais Observe o esquema estrutural seguinte: onsidere V = k ; H = 60k ; M = km e V = k a) esenhe o diagrama de esforço normal. b) esenhe o diagrama de esforço transverso e indique o grau das funções que definem o esforço transverso em cada tramo. c) etermine o valor do momento flector nos pontos,,,,, e. (identifique e caracterize os pontos de descontinuidade da função momento) d) esenhe o diagrama de momento flector e indique o grau das funções que definem o momento flector em cada tramo. e) etermine as equações de variação dos esforços internos no troço. aracterize, caso seja necessário, os máximos ou mínimos locais. 13/15
14 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/2007 M H V V 14/15
15 ISTITUTO POLITÉIO RÇ stática scola Superior de Tecnologia e de estão epartamento de Mecânica plicada no lectivo: 2006/2007 V V M H 15/15
Exercícios Aulas Práticas 2005/2006
Exercícios Aulas Práticas 2005/2006 Manuel Teixeira Brás César Mário Nuno Moreira Matos Valente 3 1/17 2/17 Tema: Corpos Rígidos: Sistemas Equivalentes de Forças 7 - Uma força de 150 N é aplicada à alavanca
Exercícios Aulas Práticas 2004/2005
Exercícios Aulas Práticas 2004/2005 Manuel Teixeira Brás César Mário Nuno Moreira Matos Valente 1/17 2/17 Tema: Corpos Rígidos: Sistemas Equivalentes de Forças 7 - Uma força de 150 N é aplicada à alavanca
INSTITUTO POLITÉCNICO DE BRAGANÇA MECÂNICA APLICADA I. Departamento de Mecânica Aplicada Ano lectivo: 2006/2007
INSTITUTO POLITÉCNICO DE BRNÇ MECÂNIC PLICD I Escola Superior de Tecnologia e de estão Curso: Engenaria Civil Departamento de Mecânica plicada no lectivo: 2006/2007 Enunciados Exames 2002/2003 Enunciados
Enunciados Exames 2002/2003 Enunciados Exames 2003/2004 Enunciados Trabalhos 2003/2004 Enunciados Exames 2004/2005 Enunciados Mini-testes 2004/2005
INSTITUTO POLITÉCNICO DE BRAANÇA MECÂNICA APLICADA I Escola Superior de Tecnologia e de estão Curso: Engenharia Civil Departamento de Mecânica Aplicada Ano lectivo: 2005/2006 Enunciados Exames 2002/2003
Enunciados Exames 2002/2003 Enunciados Exames 2003/2004 Enunciados Trabalhos 2003/2004
INSTITUTO POLITÉCNICO E BRAGANÇA MECÂNICA APLICAA I Escola Superior de Tecnologia e de Gestão Curso: Engenharia Civil epartamento de Mecânica Aplicada Ano lectivo: 200/2005 Enunciados Eames 2002/2003 Enunciados
DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS
ivil Secção de Mecânica strutural e struturas MÂNI I NUNIOS PROLMS evereiro de 2008 PÍTULO 3 PROLM 3.1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício,
ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL. Curso de ENGENHARIA CIVIL 1º Ciclo Diurno FOLHAS DE PROBLEMAS AULAS PRÁTICAS ESTÁTICA
UNIVERSIE O LGRVE ESOL SUPERIOR E TENOLOGI ÁRE EPRTMENTL E ENGENHRI IVIL urso de ENGENHRI IVIL 1º iclo iurno FOLHS E PROLEMS ULS PRÁTIS E ESTÁTI N SOFI SILV RREIR FRO 2008 / 09 Problema 1 barra de 1,00m
ESTÁTICA ENUNCIADOS DE PROBLEMAS PARA AS AULAS PRÁTICAS
ivil Secção de Mecânica strutural e struturas STÁTI NUNIOS PROLMS PR S ULS PRÁTIS PROLM 1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício, e que está sujeita
ESTÁTICA (2012/2013) REVISÕES FICHA 1
PRTMNTO NNHRI IVIL STÁTI (2012/2013) RVISÕS IH 1 1- etermine o comprimento de todas as barras, as cotas e os ângulos representados nas figuras seguintes. a) igura 1 b) igura 2 a α 4.0 m β δ 2.0 5.0 m 5.0
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2015/2016 2º Semestre
Exercício - Método das Forças NÁLISE DE ESTRUTURS I no lectivo de 05/06 º Semestre Problema (5 de Novembro de 000) onsidere a estrutura representada na figura. ssuma que todas as barras apresentam a mesma
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2014/2015 2º Semestre
Exercício - Método das Forças NÁLISE DE ESTRUTURS I no lectivo de 20/205 2º Semestre Problema (28 de Janeiro de 999) onsidere a estrutura representada na figura. a) Indique qual o grau de indeterminação
PROBLEMA 1. Considere a estrutura plana representada na figura submetida ao carregamento indicado.
PROBLEMA 1 Considere a estrutura plana representada na figura submetida ao carregamento indicado. E=00GPa a) Determine os esforços instalados na estrutura, indicando todos os valores necessários à sua
Exercícios de Resistência dos Materiais A - Área 1
1) Calcular as reações de apoios da estrutura da figura para P1 = 15 kn, P2 = 10 kn; P3 = 2*P1 e q = 5kN/m H A = 30 kn; V A = 31,25 kn; V B = 3,5 kn 2) A prancha de Madeira apoiada entre dois prédios suporta
FICHAS DE EXERCÍCIOS
I EPRTMENTO E ENGENHRI IVIL LIENITUR EM ENGENHRI IVIL TEORI E ESTRUTURS FIHS E EXERÍIOS FIH 1 - REVISÕES TEOREM OS TRLHOS VIRTUIS FIH 2 - ESTRUTURS RTIULS ISOSTÁTIS FIH 3 - ESTRUTURS ONTÍNUS ISOSTÁTIS
Sumário: Flexão Combinada com Torção
Sumário e Objectivos Sumário: Flexão Combinada com Torção Objectivos da Aula: Apreensão da Sobreposição de Efeitos nas vigas, no caso vertente apreensão da combinação de Flexão com Torção 1 Estruturas
Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial.
Sumário e Objectivos Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial. Objectivos da Aula: Apreensão da forma de Cálculo das Tensões Axiais
CORPOS RÍGIDOS E SISTEMAS EQUIVALENTES
Capítulo 4 CORPOS RÍGIDOS E SISTEMAS EQUIVALENTES DE FORÇAS DISCIPLINA DE FÍSICA 4.1 Determine o momento da força em relação a B: 4.1.1 Sem decompor a força. 4.1.2 Decompondo a força em componente horizontal
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Engenharia Civil Estática Curso Engenharia Civil 1º Semestre 1º Folha n.º 2 Forças concorrentes; Redução de Sistemas de Forças 1.ª PRTE: FORÇS CONCORRENTES 1 Decomponha, justificando, a força
Sumário e Objectivos. Mecânica dos Sólidos 10ª Aula. Lúcia M.J.S. Dinis 2007/2008
Sumário e Objectivos Sumário: onceito de viga. Vigas Isostáticas. Equações de Equilíbrio de Forças e Momentos. Reacções de poio. Esforços Transversos e Momentos Flectores. Esforço ial. Diagramas de Esforços.
RESISTÊNCIA DE MATERIAIS I
SÇÃO STRUTURS RTMNTO NGNHRI IVI FU IÊNIS TNOOGI UNIVRSI NOV ISO RSISTÊNI MTRIIS I roblemas 1. omplementos de stática 2. ascas Finas xissimétricas 3. abos 4. sforço xial em eças ineares 5. Flexão em eças
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2018/2019 2º Semestre
Exercício 6 - Método dos Deslocamentos ANÁLISE DE ESTRUTURAS I Ano lectivo de 018/019 º Semestre Problema 1 (1 de Janeiro de 000) Considere o pórtico e a acção representados na figura 1. 1.a) Indique o
Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções
Curso de Mestrado em Engenharia de Estruturas 1. a Edição (014/015) Elementos Finitos 014/015 Colectânea de trabalhos, exames e resoluções Lista dos trabalhos e exames incluídos: Ano lectivo 014/015 Trabalho
Resistência de Materiais I
Resistência de Materiais I no ectivo 00/004 º exame de Janeiro de 004 uração: horas Oservações: Não podem ser consultados quaisquer elementos de estudo para além do formulário fornecido. Resolver os prolemas
Tecnologia em Automação Industrial Mecânica Aplicada 1 Lista 06 página 1/6
urso de Tecnologia em utomação Industrial Disciplina de Mecânica plicada 1 prof. Lin Lista de exercícios nº 6 (Equilíbrio de um corpo rígido) 0,5 m 1,0 m orma 1. figura ao lado ilustra uma prensa para
RESISTÊNCIA DE MATERIAIS II
RESISTÊNCIA DE MATERIAIS II - 2014-2015 PROBLEMAS DE CORTE Problema 1 (problema 50(b) da colectânea) Considere a viga em consola submetida a uma carga concentrada e constituída por duas peças de madeira,
Elementos de Engenharia Civil Módulo de Mecânica Estrutural (1º módulo) Apontamentos das aulas (T/P)
DEPARTAMENTO DE ENGENHARIA CIVIL, ARQUITECTURA E GEORRECURSOS SECÇÃO DE MECÂNICA ESTRUTURAL E ESTRUTURAS Elementos de Engenharia Civil Módulo de Mecânica Estrutural (1º módulo) Apontamentos das aulas (T/P)
Mecânica Técnica. Aula 14 Sistemas Equivalentes de Cargas Distribuídas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 14 Sistemas Equivalentes de Cargas Distribuídas Tópicos Abordados Nesta Aula Sistemas Equivalentes de Cargas Distribuídas. Sistema de Cargas Distribuidas A intensidade da força resultante é equivalente
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
RESISTÊNCIA DE MATERIAIS II
INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Civil e Arquitectura Secção de Mecânica Estrutural, Estruturas e Construção Ano lectivo de 2003/2004 2 o teste e o exame Lisboa, 23 de Junho de 2004
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2015/2016 2º Semestre
NÁISE DE ESTRUTURS I no lectivo de 015/016 º Semestre Exercício 5 - Simetria Problema 1 (7 de Janeiro de 1997) Trace os diagramas de esforços da estrutura reresentada na figura 1.a, com base nos esforços
MÉTODO DAS FORÇAS EXAME 13 / SETEMBRO / 2011
PRTMNTO NGNHRI IVIL LINITUR M NGNHRI IVIL TORI TRUTUR MÉTOO FORÇ XM 3 / TMRO / 20 T -20 2 kn/m T 20 TRUTUR ONTÍNU HIPRTÁTI IL LVIM TL TORI TRUTUR PRTMNTO NGNHRI IVIL IL LVIM TL XRÍIO onsidere a estrutura
Sumário. Estática das Partículas... 1 CAPÍTULO 1
Sumário CAPÍTULO 1 Estática das Partículas... 1 1.1 Fundamentos... 1 1.1.1 Introdução.... 1 1.1.2 Princípios da Estática... 5 1.1.3 Vínculos e suas Reações... 9 1.2 Estática das Partículas Forças Coplanares....
Engenharia Civil Hiperestática Lista 1 Método da Carga Unitária
, m Engenharia ivil Hiperestática Lista étodo da arga Unitária ) alcule o deslocamento vertical do nó da treliça vista na figura abaio. onsidere os nós como rótulas perfeitas e as barras com inércia E
CAPÍTULO 3 PROBLEMA 3.1
PÍTULO 3 PROLM 3.1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício, e que está sujeita às cargas indicadas. etermine o módulo, a direcção, o sentido e o
RESISTÊNCIA DE MATERIAIS II
RESISTÊNCIA DE MATERIAIS II - 2014-2015 PROBLEMAS DE VERIFICAÇÃO DA SEGURANÇA Problema 1 (Problema 100 da colectânea, modificado) Considere a estrutura representada na figura, a qual está contida no plano
Capítulo 9 Vigas sujeitas às cargas transversais, tensão de corte
Capítulo 9 Vigas sujeitas às cargas transversais, tensão de corte Problema A viga da figura ao lado está sujeita à carga indicada. Calcule: a) A tensão normal máxima b) A tensão de corte máxima c) As tensões
RESISTÊNCIA DOS MATERIAIS II
SEÇÃO DE ESTRUTURS DERTMENTO DE ENGENHRI IVI FUDDE DE IÊNIS E TENOOGI UNIVERSIDDE NOV DE ISO RESISTÊNI DOS MTERIIS II roblemas 1. Flexão lástica 2. orte 3. Torção 4. Solicitações ompostas e Verificação
Disciplina de Estruturas Metálicas
Disciplina de Estruturas Metálicas Aulas de Problemas Francisco Virtuoso, Eduardo Pereira e Ricardo Vieira 2013/2014 Versão actualizada a partir de Aulas de problemas capítulo 4 versão de 2009/2010 Capítulo
PROBLEMAS DE PROVA. EXERCÍCIOS DA 3 a. ÁREA. UFRGS - ESCOLA DE ENGENHARIA ENG Mecânica. Atualizada em 11/11/2008
UFRS - ESOL E ENENHRI EN 01156 - Mecânica epartamento de Engenharia ivil tualizada em 11/11/2008 EXERÍIOS 3 a. ÁRE Prof. Inácio envegnu Morsch PROLEMS E PROV 1) alcule para o instante representado na figura
Disciplina de Estruturas Metálicas
Disciplina de Estruturas Metálicas Aulas de Problemas Prof. Francisco Virtuoso Prof. Eduardo Pereira Prof. Ricardo Vieira 2013/2014 Versão actualizada a partir de Aulas de problemas capítulo 2 versão de
3ª Ficha de Trabalho
SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado
1 Introdução 3. 2 Estática de partículas 17 SUMÁRIO. Forças no plano 18. Forças no espaço 47
SUMÁRIO 1 Introdução 3 1.1 O que é mecânica? 4 1.2 Conceitos e princípios fundamentais 4 1.3 Sistemas de unidades 7 1.4 Conversão de um sistema de unidades para outro 12 1.5 Método de resolução de problemas
Resistência dos Materiais
- Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
scola Secundária com 3º ciclo. inis 10º no de Matemática Geometria no Plano e no spaço I º Teste de avaliação Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Licenciatura em Engenharia Civil MECÂNICA I
Licenciatura em Engenharia Civil MECÂNC Exame de Época de Recurso 25/07/2003 NOME: Não esqueça de escrever o nome 1) (3 L.) Tempo estimado de resolução 20 minutos a) Considere o cabo representado na igura,
Introdução cargas externas cargas internas deformações estabilidade
TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também
Sumário: Equação da Deformada. Obtenção da Deformada por Integração directa da equação da Deformada.
Sumário e Objectivos Sumário: Equação da Deformada. Obtenção da Deformada por Integração directa da equação da Deformada. Objectivos da Aula: Apreensão da forma de cálculo dos deslocamentos transversais
Engenharia de Telecomunicações Projeto Final de Mecânica dos Sólidos
Engenharia de Telecomunicações Projeto Final de Mecânica dos Sólidos Para todas as questões, utilize os valores de F1 e F2 indicados. Sugerimos uso do programa FTOOL para realização dos cálculos intermediários.
Licenciatura em Engenharia Civil MECÂNICA I
NOME: B 1) (3 Val.). estrutura de cobertura representada na figura está submetida à acção do vento, caracterizada pelos dois conjuntos de forças paralelas indicados, normais à superfície da cobertura.
Capítulo CORPOS RÍGIDOS E SISTEMAS EQUIVALENTES DE FORÇAS
Capítulo 3 CORPOS RÍGIDOS E SISTEMAS EQUIVALENTES DE FORÇAS 3.1 Determine o momento da força em relação a B: 3.1.1 Sem decompor a força. 3.1.2 Decompondo a força em componente horizontal e vertical. 3.2
SISTEMAS EQUIVALENTES DE FORÇAS EXERCÍCIOS
SISTEMAS EQUIVALENTES DE FORÇAS EXERCÍCIOS 1. Uma força P é aplicada ao pedal do freio em A. Sabendo que P = 450 N e = 30, determine o momento de P em relação a B. 2. Uma força P de 400 N é aplicada ao
Aula 06 Introdução e Equilíbrio de um corpo deformável
Aula 06 Introdução e Equilíbrio de um corpo deformável Prof. Wanderson S. Paris, M.Eng. [email protected] Resistência dos Materiais Definição: É um ramo da mecânica que estuda as relações entre
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
Departamento de Engenharia Civil e Arquitectura MECÂNICA I
Departamento de Engenharia Civil e rquitectura Secção de Mecânica Estrutural e Estruturas Mestrado em Engenharia Civil MECÂNIC I pontamentos sobre centros de gravidade Luís uerreiro 21/211 CENTROS DE RIDDE
Estruturas de Betão Armado II 12 Método das Escores e Tirantes
Estruturas de Betão Armado II 12 Método das Escores e Tirantes 1 INTRODUÇÃO Método de análise de zonas de descontinuidade, baseado no Teorema Estático da Teoria da Plasticidade. Este método permite obter
Resposta: F AB = 1738,7 N F AC = 1272,8 N
Trabalho 1 (Cap. 1 a Cap. 4) Mecânica Aplicada - Estática Prof. André Luis Christoforo, e-mail: [email protected] Departamento de Engenharia Civil - DECiv/UFSCar Cap. 1 Vetores de Força 1) A força
CAPÍTULO VI ANÁLISE COMPORTAMENTAL GLOBAL ELÁSTICA DE CONTENTORES
CAPÍTULO VI ANÁLISE COMPORTAMENTAL GLOBAL ELÁSTICA DE CONTENTORES 6.1 Modelação dos contentores com elementos finitos 6.1.1 - Introdução A modelação dos contentores visa o estudo comportamental dos contentores
Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial
1/11 Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 13ª Aula Duração - 2 Horas Data - 12 de Novemro de 2003 Sumário: Tensões Axiais e Deformações Axiais numa viga com Secção
SUMÁRIO. 1 Introdução Vetores: Força e Posição Engenharia e Estática...1
SUMÁRIO 1 Introdução... 1 1.1 Engenharia e Estática...1 1.2 Uma Breve História da Estática...3 Galileu Galilei (1564-1642)... 4 Isaac Newton (1643-1727)... 4 1.3 Princípios Fundamentais...5 Leis do movimento
Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme
MAC de outubro de 2009
MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em
6. Esforço normal, tensão normal e extensão
6. Esforço normal, tensão normal e etensão 1. Mecânica dos materiais Restrição dos conceitos da Mecânica dos sólidos para peças lineares Peça linear (ou elemento unidimensional): elemento estrutural que
Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008
Sumário e Objectivos Sumário: Método da Viga Conjugada. Objectivos da Aula: Ser capaz de determinar a flecha e a inclinação num ponto fazendo uso do Método da Viga Conjugada 1 Viga Flectida Estrutura de
Resistência dos Materiais, MA, IST,
11ª Aula Flexão Flexão elástica recta Define-se barra ou peça linear como todo o corpo cujo material se confina à vizinhança de uma linha do espaço a que se chama eixo. Segundo o Vocabulário de Teoria
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
scola Secundária com º ciclo. inis 10º no de Matemática Geometria no Plano e no spaço I º Teste de avaliação Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas
Esforços Elementares em Peças Lineares
CAPÍTULO III Esforços Elementares em Peças Lineares SEMESTRE VERÃO 2004/2005 Maria Idália Gomes 1/13 Capitulo III Esforços Elementares em Peças Lineares 3.1 Definição dos esforços elementares Uma estrutura
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
Sumário: Flexão Combinada com Esforço Axial. Flexão combinada com torção.
Sumário e Objectivos Sumário: Flexão Combinada com Esforço Axial. Flexão combinada com torção. Objectivos da Aula: Ser Capaz de calcular as Tensões tangenciais e normais quando existem combinação de esforços.
Aula 04 Sistemas Equivalentes
Aula 04 Sistemas Equivalentes Prof. Wanderson S. Paris, M.Eng. [email protected] Sistema Equivalente Representa um sistema no qual a força e o momento resultantes produzam na estrutura, o mesmo
ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.
ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para
REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.
MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL
(atualizado em 12/07/2014)
ENG285 4ª Unidade 1 (atualizado em 12/07/2014) Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para
ESTRUTURAS ESPECIAIS Mestrado em Engenharia Civil 5º Ano 2º Semestre 6 de Junho de 2011 Responsável: Prof. José Oliveira Pedro
ESTRUTURAS ESPECIAIS Mestrado em Engenharia Civil 5º Ano º Semestre 6 de Junho de 0 Responsável: Prof. José Oliveira Pedro Identifique todas as folhas com o número e nome. Justifique adequadamente todas
xdv ydv zdv Mecânica Geral II Lista de Exercícios 2 Prof. Dr. Cláudio S. Sartori
Use 1lb = 4,448 N 1 in = 0,0254 m 1 ft = 0,3048 m Baricentro de corpos em 2D e 3D Carregamentos xdl ydl x = ; y = L L x = N x i i= 1 N i= 1 A A i i y = N y i i= 1 N i= 1 A xdv ydv zdv x = y z V = V = V
Carregamentos Combinados
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Carregamentos Combinados
A B. P/l. l l l. a a a B 2P. Articulação ideal A B. a/2 a/2
ESOL OLITÉNI D UNIVERSIDDE DE SÃO ULO Departamento de Engenharia Mecânica ME-3210 MEÂNI DOS SÓLIDOS I rofs.: lóvis. Martins e R. Ramos Jr. 3 a rova 21/06/2016 Duração: 100 minutos 1 a Questão (4,0 pontos):
Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori.
Bibliografia Básica: BEER, F. P.; JOHNSTON JUNIOR, E. R. Mecânica vetorial para engenheiros: cinemática e dinâmica 5ª ed. 2v. São Paulo: Makron, 1994. HIBBELER, R. C. Dinâmica: Mecânica para Engenharia.
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Grupo I
scola Secundária com º ciclo. inis 10º no de Matemática eometria no lano e no spaço I 1º Teste de avaliação rupo I s cinco questões deste grupo são de escolha múltipla. ara cada uma delas são indicadas
Capítulo MECÂNICA DOS FLUÍDOS
Capítulo 7 MECÂNICA DOS FLUÍDOS DISCIPLINA DE FÍSICA CAPÍTULO 7 - MECÂNICA DOS FLUÍDOS 7.1 Considere dois corpos ligados por um cabo com massa e volume desprezáveis que são colocados no interior de vaso
Lista de Exercícios de Estática / Resistência dos Materiais Fonte: ESTATICA: Mecânica para engenharia. 10ª edição. R.C.Hibbeler.
Lista de Exercícios de Estática / Resistência dos Materiais Fonte: ESTATICA: Mecânica para engenharia. 10ª edição. R.C.Hibbeler. MOMENTO DE UMA FORÇA 2D E 3D 01) A chave de boca é usada para soltar o parafuso.
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 03: Estruturas Submetidas à Flexão e Cisalhamento
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões
