B equação de Maxwell-Faraday E t lei de Gauss magnética B 0. equação de Maxwell-Ampère

Tamanho: px
Começar a partir da página:

Download "B equação de Maxwell-Faraday E t lei de Gauss magnética B 0. equação de Maxwell-Ampère"

Transcrição

1 ula de Problemas Problema Considere as equações de Maxwell Conservação do fluxo magnético B equação de Maxwell-Faraday E t lei de Gauss magnética B Conservação da carga eléctrica equação de Maxwell-mpère lei de Gauss eléctrica D H J t D e analise, em termos de dimensões (SI), todas as grandezas intervenientes Recorde que grandezas de intensidade intensidade do campo eléctrico E V m intensidade do campo magnético B T Wb m grandezas de extensão excitação eléctrica excitação magnética D H C m m fontes (livres) do campo densidade volúmica de carga (eléctrica) densidade (superficial) de corrente J C m m Nota Muitos autores, contra a versão (correcta) relativista do electromagnetismo, designam o campo H por campo magnético e o campo B por indução magnética Não sendo fundamental o problema da nomenclatura, a versão aqui apresentada é a versão correcta Frequentemente, também nesta UC, se irá designar o campo H por «campo magnético» Não é correcto mas é aceitável É, no entanto, fundamental que se saiba o seguinte: em termos da teoria da relatividade (que governa o campo electromagnético), os campos vectoriais tridimensionais EB, constituem uma única entidade quadridimensional (conhecida por tensor de Faraday F ), enquanto os campos vectoriais tridimensionais DH, constituem por sua vez uma entidade quadridimensional distinta (conhecida por tensor de Maxwell G ) Em termos de álgebra geométrica do espaço-tempo de Minkowski, definem-se os bivectores Propagação & ntenas Página

2 bivector de Faraday bivector de Maxwell F E I B c G D I H c Veja-se, eg, o seguinte artigo: Carlos R Paiva and Sérgio Matos, Minkowskian isotropic media and the perfect electromagnetic conductor, IEEE Trans ntennas Propagat, Vol 6, Issue 7, pp - 45, July Note que a terminologia que aqui se critica tem, matematicamente, alguma lógica: os campos E V m e H m são formas-, ie, são sempre integrados ao longo de uma linha; os campos D C m e B T Wb m são fluxos ou formas-, ie, são sempre integrados em superfície Mas o problema que aqui se coloca não é matemático é um problema de interpretação física Para regiões sem fontes, em que J as equações de Maxwell escrevem-se, então, na forma B E t B D H t D Mostre, neste caso, que para ondas planas e monocromáticas, t exp i t, exp i, t exp i t, exp i, t exp i t, exp i, t exp i t, exp i E r E r E r E k r D r D r D r D k r B r B r B r B k r H r H r H r H k r em que Propagação & ntenas Página

3 e e e i kx e ky e kz e i k, i, x y z t as equações de Maxwell se reduzem à forma algébrica k E B kb k H D kd Nota importante Existe, aqui, uma distinção importante que deve ser sublinhada Os vectores reais, que pertencem a, têm uma natureza radicalmente distinta dos vectores complexos, que pertencem a Nomeadamente, do ponto de vista da representação geométrica, os vectores reais são representados por setas, enquanto os vectores complexos são representados por elipses orientadas Por exemplo: Er,t, Er, E um dado vector complexo pode fazer-se corresponder uma «polarização»: a sua representação geométrica, através de uma elipse orientada, pode degenerar em dois casos extremos: i) numa circunferência, quando os dois eixos maior e menor se tornam iguais (polarização circular); ii) num segmento de recta, quando o eixo menor se anula (polarização linear) Porém, mesmo no caso da polarização linear, o segmento de recta tem um duplo sentido sobre uma mesma direcção rectilínea ao contrário de uma seta que é caracterizada por um único sentido bem determinado ssim, para um meio isotrópico caracterizado pelas relações constitutivas D B E H é, ainda, possível escrever: k E H kh k H E ke Nota importante Como, neste caso, o vector de onda k é, simultaneamente, perpendicular a E e a H, a onda diz-se TEM (ie, quer o campo E quer o campo H residem no plano transversal ou perpendicular à direcção de propagação k ) Note que velocidade da luz no vácuo c m/s valor exacto (por definição) Propagação & ntenas Página

4 7 4 H m valor exacto, por definição permeabilidade magnética do vácuo c F m permitividade eléctrica do vácuo permitividade dieléctrica relativa (adimensional) permeabilidade magnética relativa (adimensional) impedância do vácuo c k c ssim, definindo o índice de refracção do meio isotrópico como sendo número de onda no vácuo rad/m n índice de refracção do meio (adimensional) mostre, a partir das equações de Maxwell, que se tem k k E nk E nk k k H H gora, usando a regra fundamental do produto externo (bac-cab) ab c b a c c a b a c b a b c tem-se k k E k E k k k E k E k k k H k H k k k H H pelo que se pode, finalmente, concluir k n k k nk k ˆ Designa-se por ˆk o vector unitário correspondente ao vector de onda ˆ k n ˆ, k, ˆ k k k k k k c k Qual é a superfície que corresponde a k nk? Propagação & ntenas Página 4

5 Para calcular a velocidade de fase desta onda, comece por definir a fase r,t k r t Note, então, que pode definir a distância à frente de onda, tal que, ˆ cos ˆ cos k r k r r k r k k r k r k Nestas condições, vem,t k t velocidade de fase é a velocidade dos planos de fase constante, ie,, d d t k t k vp d t d t k respectiva direcção é dada por ˆk Portanto, ˆ v ˆ p vpk k k Logo, introduzindo nesta última equação k nk, obtém-se c c c v v ˆ p k k k nk n n p Se, ao definir uma direcção ˆk, se considerar uma onda progressiva tal que k k kˆ r, t k r t k t, Propagação & ntenas Página 5

6 isto apenas significa que a onda, de facto, se propaga no sentido diametralmente oposto a ˆk ssim, vem sucessivamente, d d t k t ˆ k vp vp k d t d t k k Explique por que razão se define o comprimento de onda de, t exp i t E r E k r como sendo, t k t t, t t k Explique por que razão se define o período (temporal) dessa mesma onda como sendo t t T, t k t k t, t k T T Notando, então, que a frequência f é o inverso do período, ie, f Hz T tem-se, obviamente, f frequência angular rad/s T fase da onda pode, portanto, ser reescrita na forma t f, t k t vp vp f T k ssim, também t, t vp t t T T v p Só no caso do vácuo (ou do ar, aproximadamente) é que se tem n vp c f Propagação & ntenas Página 6

7 8 Fazendo c m/s, determine (mentalmente) o comprimento de onda para as seguintes frequências: i) f 5 Hz ; ii) f khz ; iii) f MHz ; iv) f GHz ; v) f PHz Deve, também, verificar como é que se pode obter o «campo magnético» em termos do campo eléctrico Note que, da equação k E H vem imediatamente nk H k E kˆ E H kˆ E ou, introduzindo a impedância da onda w impedância da onda H kˆ E w nalogamente, de k H E, obtém-se nk E k H kˆ H E kˆ H Propagação & ntenas Página 7

8 E H k ˆ w Considera-se, na figura anexa, que se tem uma polarização linear E, além disso, considera-se um meio sem perdas ssim, com efeito, pode considerar-se E H,, w Problema O campo eléctrico de uma onda electromagnética que se propaga no ar, ao longo do sentido positivo do eixo z, é caracterizado pelo vector complexo E E i E em que se indica na figura anexa Determine E z, t e z, t E E tal como, H para 4 Como classifica a polarização? Calcule o vector de Poynting bem como o vector de Poynting complexo Qual é a relação entre eles? Solução O campo eléctrico é dado por z, t exp i k z t E E, em que E e E e e E E E donde se infere que Propagação & ntenas Página 8

9 z, t i exp i k z t E e e e e e e cos sin e e e sin i k z t i k z t cos k z t k z t Portanto, tem-se: z, t sint cost E e e e ssim, vem sucessivamente: t t E e T t t E e e 4 T t t E e T t t E e e 4 t T t E e Esta evolução temporal corresponde a uma polarização elíptica esquerda como se indica na figura anexa da página seguinte Note-se, com efeito, que polarização kˆ e, kˆ E E kˆ E E esquerda Por outro lado, tem-se e e e ˆ H k E e i i e e e e e e e e e pelo que H e H e e E H H H Note-se que se tem: i E H E H E H E H E H Propagação & ntenas Página 9

10 E H E H E H E H E H H z, t e i e e exp i k z t e i e e cosk z t i sink z t Note-se, ainda, que: z t z t E, H, cosk z t sink z t e e e Logo, para z, obtém-se: H z, t sin t cost e e e Propagação & ntenas Página

11 ssim, vem sucessivamente: t t H e T t t H e e 4 T t t H e T t t H e e 4 t T t H e a que corresponde, também, uma polarização elíptica esquerda como se mostra na figura anterior: Propagação & ntenas Página

12 ˆ ˆ polarização k e, k H H kˆ H H esquerda O vector de Poynting (instantâneo) é dado por S z, t sin k z t sin k z t e Com efeito, tem-se k z t : z, t z, t z, t S E H sin sin cos sin cos sin e e e e e sin sin cos e sin sin Logo, atendendo a que sin, sin, infere-se que e E S zt, O vector de Poynting complexo, por sua vez, é dado por Sc EH e ie e e ie e i e Propagação & ntenas Página

13 S c E assim se confirmando a regra geral segundo a qual se tem (sempre) zt S S, c De facto, vem sucessivamente:, t, t, t S r E r H r i i E e H e i i i i E e E e H e H e 4 4 i E H E H e i i E H E H E H e E H e, t exp i t S r E H E H k r daqui se concluindo, então, que S zt, E H S c (QED) Nota final sobre a classificação da polarização Em geral a polarização do campo eléctrico z, t exp i k z t E E é completamente determinada através do vector complexo E E i E em que E e Com efeito, como E são dois vectores reais: E E ; i i i E E E E E E E E E E Propagação & ntenas Página

14 e ainda i i E E E E E E E, tem-se o seguinte quadro geral de classificação das polarizações E E i E POLRIZÇÃO E E Polarização Linear E E & E Polarização Elíptica E Polarização Circular No caso da polarização não ser linear, é (ainda) possível uma classificação em termos da sua orientação esquerda ou direita ssim, eg, no caso do vector E E i E, a polarização dizse: Polarização direita kˆ E E Polarização esquerda kˆ E E Uma forma prática de classificar a orientação (esquerda ou direita) da polarização é a seguinte: a polarização diz-se esquerda (resp, direita) se o vector do campo descreve a elipse (ou circunferência, no caso particular de polarização circular) no sentido retrógrado ou do movimento dos ponteiros do relógio (resp, no sentido directo ou contrário ao movimento dos ponteiros do relógio) quando o vector ˆk aponta na nossa direcção Exercício Classifique as seguintes polarizações (incluindo a respectiva orientação no caso de não ser uma polarização linear) para uma onda em que k ˆ e : E R e e ; [] ˆ i E L e e ; [] ˆ i E e e ; [] Propagação & ntenas Página 4

15 E e e ; [4] [5] E i e ; E e e 5 [6] i Problema Uma onda plana é uniforme se a sua amplitude é constante sobre um plano de fase constante Mostre, então, que para uma vector de onda complexo, com (i) uniforme, se kk ; (ii) não-uniforme, se kk Sugestão: Note que se tem i (ii) não-uniforme, caso kk k k i k a onda plana é: k k k k ssim, a onda é: (i) uniforme, caso kk ; DEND Considerem-se dois vectores reais: a ax e ay e az e ; b bx e by e bz e Propagação & ntenas Página 5

16 Define-se o respectivo produto interno como sendo o número real ab a b a b a b x x y y z z Note-se que, sendo o ângulo entre esses dois vectores, se tem ab abcos, em que se fez a a e b b Dois vectores são ortogonais desde que ab Define-se o produto externo como sendo o novo vector e e e c a b a a a a b a b e a b a b e a b a b e x y z y z z y z x x z x y y x b b b x y z Propagação & ntenas Página 6

17 Tem-se c c ab ab sin cujo valor corresponde à área do paralelogramo formado com base em a e b Trata-se de um vector perpendicular ao plano definido pelos dois vectores a e b O sentido (ou orientação) é a definida pela regra da mão direita Propagação & ntenas Página 7

18 Dois vectores (não-nulos) a e b são paralelos desde que ab Note-se que o produto interno é comutativo enquanto que o produto externo é anti-comutativo: simetria anti-simetria a b b a a b b a Define-se o produto misto de três vectores como sendo o escalar a a a x y z bx by bz ax by cz bz cy ay bz cx bx cz az bx cy by cx a b c c c c x y z Os três vectores constituem um paralelepípedo cujo volume (orientado) é precisamente Note-se que, deste modo, os três vectores são linearmente independentes se (e só se) Tem-se a simetria cíclica a b c b ca c ab Propagação & ntenas Página 8

19 Prove que: [] a a a a ˆ ; a a a [] ab a b a b ab ; [] ab c a c b a b c ; [4] ab c b ca c ab ; [5] ab c abc b c a a b c ; [6] a b c b ca c ab ; [7] abcd a c b d a d b c ; ab cd a b d c a bc d [8] Propagação & ntenas Página 9

Problemas sobre Ondas Electromagnéticas

Problemas sobre Ondas Electromagnéticas Problemas sobre Ondas Electromagnéticas Parte I ÓPTICA E ELECTROMAGNETISMO MIB Maria Inês Barbosa de Carvalho Setembro de 2007 CONCEITOS FUNDAMENTAIS PROBLEMAS PROPOSTOS 1. Determine os fasores das seguintes

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Electromagnetismo Aula Teórica nº 24

Electromagnetismo Aula Teórica nº 24 Electromagnetismo Aula Teórica nº 24 Departamento de Engenharia Física Faculdade de Engenharia Universidade do Porto PJVG, LMM 1 Breve revisão da última aula Energia magnética Corrente de deslocamento

Leia mais

Antenas e Propagação. Artur Andrade Moura.

Antenas e Propagação. Artur Andrade Moura. 1 Antenas e Propagação Artur Andrade Moura amoura@fe.up.pt 2 Equações de Maxwell e Relações Constitutivas Forma diferencial no domínio do tempo Lei de Faraday Equações de Maxwell Lei de Ampére Lei de Gauss

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho Revisão Analise Vetorial e Sist. de Coord. Revisão básica álgebra vetorial e Sist. de Coordenadas (Páginas 1 a 22 no Livro texto) Objetivo: Introduzir notação que será usada neste e nos próximos

Leia mais

Revisão: Ondas Eletromagnéticas (EM) Capítulo 2 do Battan.

Revisão: Ondas Eletromagnéticas (EM) Capítulo 2 do Battan. Revisão: Ondas Eletromagnéticas (EM) Capítulo 2 do Battan. Campo Elétrico - E O campo elétrico E - é um conceito definido pela força que uma carga (usualmente uma carga de teste) experimentaria se fosse

Leia mais

SEL413 Telecomunicações. 1. Notação fasorial

SEL413 Telecomunicações. 1. Notação fasorial LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE

ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Electromagnetismo A 009/010 ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE 1. O campo magnético no interior dum solenóide

Leia mais

GRADUAÇÃO EM ENGENHARIA ELETRÔNICA. FÍSICA IV Óptica e Física Moderna. Prof. Dr. Cesar Vanderlei Deimling

GRADUAÇÃO EM ENGENHARIA ELETRÔNICA. FÍSICA IV Óptica e Física Moderna. Prof. Dr. Cesar Vanderlei Deimling GRADUAÇÃO EM ENGENHARIA ELETRÔNICA FÍSICA IV Óptica e Física Moderna Prof. Dr. Cesar Vanderlei Deimling O plano de ensino Bibliografia: Geração de ondas eletromagnéticas Propriedades das ondas eletromagnéticas

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade 1 DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade GRANDEZAS ESCALARES São grandezas que se caracterizam apenas por um valor acompanhado uma unidade

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

Resolução de exercícios. 31/Out/2012 Aula 11

Resolução de exercícios. 31/Out/2012 Aula 11 24/Out/2012 Aula 10 Resolução de exercícios 31/Out/2012 Aula 11 11. Campo magnético B 11.1 Ímanes permanentes 11.2 Fontes do campo magnético 11.3 Definições e convenções 11.4 Cargas eléctricas como fontes

Leia mais

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência Sumário: Betão armado armadura aplicações Equilíbrio estático de um ponto material Momento

Leia mais

, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2.

, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2. Escola Secundária de lberto Sampaio Ficha Formativa de Matemática Geometria I Inclinação e declive de uma reta no plano; ângulo de duas retas; retas perpendiculares. º no Equação vetorial da reta: Dado

Leia mais

Física e Química 11.º ano /12.º ano

Física e Química 11.º ano /12.º ano ísica e Química.º ano /.º ano Proposta de Resolução icha n.º 5 Comunicação a Curtas Distâncias... Uma onda é uma propagação de uma perturbação de uma região para outra do espaço, sem que exista transporte

Leia mais

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 APSA Nº11 11º Ano de Escolaridade 1- Classifique como verdadeiras ou falsas cada uma das seguintes afirmações, corrigindo estas últimas sem recorrer

Leia mais

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com

Leia mais

Vectores. Figura Vector PQ

Vectores. Figura Vector PQ Vectores 1 Introdução Neste tutorial vou falar sobre vectores. Os vectores são muito importantes em muitas ciências quer para a matemática, quer para alguns tipos de programação (especialmente programação

Leia mais

Isometrias ESCOLA SECUNDÁRIA ANSELMO DE ANDRADE

Isometrias ESCOLA SECUNDÁRIA ANSELMO DE ANDRADE Isometrias Isometria: do grego ισο + μέτρο (ισο = iso = igual; μέτρο = metria = medida) Uma isometria é uma transformação geométrica que preserva as distâncias entre pontos e consequentemente as amplitudes

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENO OSCILAÓRIO Força proporcional ao deslocamento Movimento periódico ou oscilatório Conservação da energia mecânica Movimento harmónico simples MOVIMENO HARMÓNICO SIMPLES (MHS) Um movimento diz-se

Leia mais

ESTUDO DA LUZ POLARIZADA

ESTUDO DA LUZ POLARIZADA ESTUDO DA LUZ POLARIZADA 1. Objectivo Estudar eperimentalmente luz monocromática colimada e polarizada linearmente, em particular a dependência da potência transmitida através de um analisador de polarização

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais.

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais. CAPÍTULO CÁLCULO VECTORIAL.1. Grandeas escalares e vectoriais. Noção de Vector. As grandeas físicas podem ser escalares ou vectoriais. As grandeas massa, comprimento, tempo ficam completamente definidas

Leia mais

Ficha de Exercícios nº 1

Ficha de Exercícios nº 1 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 1 Espaços Vectoriais 1 Qual das seguintes afirmações é verdadeira? a) Um espaço vectorial pode ter um número ímpar de elementos.

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

INDUÇÃO MAGNÉTICA. Indução Magnética

INDUÇÃO MAGNÉTICA. Indução Magnética INDUÇÃO MAGNÉTIA Prof. ergio Turano de ouza Lei de Faraday Força eletromotriz Lei de Lenz Origem da força magnética e a conservação de energia.. 1 Uma corrente produz campo magnético Um campo magnético

Leia mais

Sistemas eléctricos e magnéticos

Sistemas eléctricos e magnéticos Sistemas eléctricos e magnéticos Indução electromagnética Prof. Luís Perna 2010/11 Origens do campo magnético O fenómeno do magnetismo era conhecido dos Gregos já no ano 800 a. C. Os Gregos descobriram

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas

Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas Eletromagnetismo Aplicado Propagação de Ondas Eletromagnéticas (Revisão) Heric Dênis Farias hericdf@gmail.com PROPAGAÇÃO DE ONDAS ELETROMAGNÉTICAS Ondas Eletromagnéticas são uma forma de transportar energia

Leia mais

Vetores. Grandeza Escalar precisa somente de um número e sua unidade.

Vetores. Grandeza Escalar precisa somente de um número e sua unidade. Vetores Grandeza Escalar precisa somente de um número e sua unidade. Grandeza Vetorial precisa de módulo, direção e sentido para ficar perfeitamente representado. VETOR É o ente matemático que nos ajuda

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Multimédia Informação Prova da Disciplina de Física - Módulo: 1 Forças e Movimentos; Estática Modalidade da Prova: Escrita Ano

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico.

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. Grandezas Vetores É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. GRANDEZA ESCALAR São aquelas medidas que precisam

Leia mais

Mecânica Quântica. Estados quânticos: a polarização do fóton. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro

Mecânica Quântica. Estados quânticos: a polarização do fóton. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro Mecânica Quântica Estados quânticos: a polarização do fóton A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 11 de Abril de 2012 A luz é polarizada! (a)

Leia mais

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto

Leia mais

4* 2* ; o mesmo se passa para 4* 1. no exterior, iremos considerar de valor desprezável os integrais dos percursos 2* 3, 3 4 e 4 4*.

4* 2* ; o mesmo se passa para 4* 1. no exterior, iremos considerar de valor desprezável os integrais dos percursos 2* 3, 3 4 e 4 4*. As "Referências" são relativas ao livro : "Electromagnetismo Alfredo arbosa Henriques, Jorge Crispim Romão, IST Press, Colecção Ensino da Ciência e da Tecnologia, nº18. 3ª semana: 5 a 7 Março 014 Objectivo

Leia mais

INDUÇÃO MAGNÉTICA (2)

INDUÇÃO MAGNÉTICA (2) INDUÇÃO MAGNÉTICA Material Utilizado: - uma bobina de campo (l = 750 mm, n = 485 espiras / mm) (PHYWE 11006.00) - um conjunto de bobinas de indução com número de espiras N e diâmetro D diversos (N = 300

Leia mais

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Hidrocinemática 1.1 Conceitos básicos: A hidrocinemática

Hidrocinemática 1.1 Conceitos básicos: A hidrocinemática Hidrocinemática 1.1 Conceitos básicos: A hidrocinemática estuda o movimento dos fluidos desde o ponto de vista meramente descritivo, isto e, sem considerar as causas que o originam. Consideram-se unicamente

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 9 (entregar em 11-03-011)

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Introdução à Magneto-hidrodinâmica

Introdução à Magneto-hidrodinâmica Introdução à Magneto-hidrodinâmica Gilson Ronchi November, 013 1 Introdução A magneto-hidrodinâmica é o estudo das equações hidrodinâmicas em uidos condutores, em particular, em plasmas. Entre os principais

Leia mais

Indução Electromagnética. Força Electromotriz

Indução Electromagnética. Força Electromotriz Indução Electromagnética Força Electromotriz Escola Secundária Anselmo de Andrade 2011/2012 Fluxo Magnético B A cos N B B : Fluxo Magnético (Wb) : Vector Campo Magnética (T) A A: Área da espira (m 2 )

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado

Leia mais

2ª Lista de exercícios de Fenômenos Ondulatórios

2ª Lista de exercícios de Fenômenos Ondulatórios 2ª Lista de exercícios de Fenômenos Ondulatórios Prof. Renato 1. Dada uma onda em uma corda como função de x e t. No tempo igual a zero essa onda é representada na figura seguir (y em função de x): 0,6

Leia mais

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação 3º Período 2º Período 1º Período AGRUPAMENTO DE ESCOLAS DE CASTRO DAIRE Escola Secundária de Castro Daire Grupo de Recrutamento 500 MATEMÁTICA Ano lectivo 2012/2013 Planificação Anual Disciplina: Matemática

Leia mais

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9 Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta

Leia mais

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3 VETORES E R3 Ultra-Fast Prof.: Fábio Rodrigues fabio.miranda@engenharia.ufjf.br Obs.: A maioria das figuras deste texto foram copiadas do livro virtual álgebra vetorial e geometria analítica, 9ª edição,

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Produto interno no espaço vectorial R n

Produto interno no espaço vectorial R n ALGA - 008/09 - Produto interno 8 Produto interno no espaço vectorial R n A noção de produto interno de vectores foi introduzida no ensino secundário, para vectores de R e R : Neste capítulo generaliza-se

Leia mais

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62 Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

EXERCÍCIOS RESOLVIDOS - AXONOMETRIA - Ano lectivo 2010/2011

EXERCÍCIOS RESOLVIDOS - AXONOMETRIA - Ano lectivo 2010/2011 EXERCÍCIOS RESOLVIDOS - AXONOMETRIA - Ano lectivo 2010/2011 Este documento contém 12 exercícios sobre o tema da representação axonométrica. A resolução dos dois primeiros exercícios está comentada. Os

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Chamada Caderno 1: 7 Páginas Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos. Tolerância: 30 minutos.

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 011 Assunto: Preparação para o Exame Nacional 1. Copia o triângulo [ ABC ] para o teu caderno. Desenha o triângulo [ A '

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

INTRODUÇÃO À ONDULATÓRIA

INTRODUÇÃO À ONDULATÓRIA INTRODUÇÃO À ONDULATÓRIA Considerações Iniciais Considerações Iniciais: O que é ONDA??? Perturbação produzida: PULSO O PULSO se movimenta a partir da região onde foi gerado: ONDA A onda se movimenta transferindo

Leia mais

3. Algumas classes especiais de superfícies

3. Algumas classes especiais de superfícies 3. ALGUMAS CLASSES ESPECIAIS DE SUPERFÍCIES 77 3. Algumas classes especiais de superfícies Nesta secção descrevemos algumas das classes de superfícies mais simples. Superfícies quádricas As superfícies

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 3 Vetores, Retas e lanos roduto interno em R n [3 01] Dados os vetores X =

Leia mais

Grandezas Escalares e Vetoriais

Grandezas Escalares e Vetoriais VETORES Grandezas Escalares e Vetoriais Uma grandeza física é um escalar quando pode ser caracterizada apenas por um número, sem necessidade de associar-lhe alguma orientação. Exemplos: Massa de uma bola:

Leia mais

A figura abaixo mostra a variação de direção do vetor velocidade em alguns pontos.

A figura abaixo mostra a variação de direção do vetor velocidade em alguns pontos. EDUCANDO: Nº: TURMA: DATA: / / LIVRES PARA PENSAR EDUCADOR: Rosiméri dos Santos ESTUDOS DE RECUPERAÇÃO - MOVIMENTO CIRCULAR UNIFORME Introdução Dizemos que uma partícula está em movimento circular quando

Leia mais

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores.

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. Capítulo 2 Plano Cartesiano / Vetores: Plano Cartesiano Foi criado pelo matemático René Descartes, associando a geometria à álgebra. Desse modo, ele pôde

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff.

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Sumário e Objectivos Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Objectivos da Aula: Apreensão das diferenças entre as grandes deformações e as pequenas deformações no contexto da análise

Leia mais

NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO VETORES

NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO VETORES NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO VETORES 01 INTRODUÇÃO Em Física, há duas categorias de grandezas: as escalares e as vetoriais. As primeiras caracterizam-se apenas pelo valor numérico, acompanhado

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA

EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA Em 1819, Oersted ao aproximar uma bússola de um fio percorrido por corrente, observou que a agulha se movia, até se posicionar num plano perpendicular ao fio. Esta

Leia mais

Matemática A. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos º Ano de Escolaridade

Matemática A. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos º Ano de Escolaridade Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 29.01.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

GERAIS. Para além dos objectivos do domínio dos valores e atitudes, Desenvolver a capacidade de comunicar; Usar Noções de lógica.

GERAIS. Para além dos objectivos do domínio dos valores e atitudes, Desenvolver a capacidade de comunicar; Usar Noções de lógica. TEMA I GEOMETRIA NO PLANO E NO ESPAÇO Unidade 1: Lógica e Raciocínio Matemático (Programa pags 36 e 37) LÓGICA GERAIS. Noções de Termo e de Proposição;. Conectivos Lógicos:Negação, Disjunção e Conjunção;.

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Física 3 aulas 19 e 20 Introdução à Óptica

Física 3 aulas 19 e 20 Introdução à Óptica www.fisicanaveia.com.br Física 3 aulas 19 e 20 Introdução à Óptica www.fisicanaveia.com.br/cei 1 De acordo com o Eletromagnetismo, particularmente das equações de James Clerk Maxwell (1831-1879), ao final

Leia mais

Escola Secundária com 3º Ciclo D. Dinis. Ficha de Apoio nº2

Escola Secundária com 3º Ciclo D. Dinis. Ficha de Apoio nº2 Escola Secundária com 3º Ciclo D. Dinis Ano Lectivo 2008 /2009 Matemática B Ano 10º Turma D 1. Observe a figura. 1.1.Indique as coordenadas dos pontos A, B, C, A, B e C. 1.2. Descreva a transformação geométrica

Leia mais

Electromagnetismo Aula Teórica nº 22

Electromagnetismo Aula Teórica nº 22 Electromagnetismo Aula Teórica nº 22 Departamento de Engenharia Física Faculdade de Engenharia Universidade do Porto PJVG, LMM 1 Breve revisão da última aula O motor de corrente contínua Inductâncias A

Leia mais

INDUÇÃO MAGNÉTICA. 1 Resumo. 2 Fundamento Teórico

INDUÇÃO MAGNÉTICA. 1 Resumo. 2 Fundamento Teórico Protocolos das Aulas Práticas 6/7 INDUÇÃO MAGNÉTICA 1 Resumo Um campo magnético de intensidade e frequência variáveis é produzido num solenóide longo. Dentro deste último são introduzidos enrolamentos

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Curso de Engenharia Civil Física Geral e Experimental I Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para representar

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo

Leia mais