2. Deformação - conceitos básicos e guia de estudo (versão 08/03/2013)
|
|
|
- Bruno Lisboa de Almada
- 8 Há anos
- Visualizações:
Transcrição
1 AGG.0305 Teoria de Ondas Sísmicas e Estrutura da Terra 2. Deformação - conceitos básicos e guia de estudo (versão 08/03/2013) Recomenda- se estudar o Turcotte & Schubert: partes 2.7 (principalmente) e 2.8 (se tiver tempo). Bom entendimento do conceito físico e matemático de deformação é essencial não apenas em propagação de ondas (uma vez que a onda sísmica provoca deformações ao se propagar) mas também em tectônica e geodinâmica (para se entender as forças que movem as placas), etc. Um exemplo pode ser visto na Fig. 2.1 que mostra as velocidades de vários pontos do Chile antes do terremoto de Maule de 2010, M=8.8 (Ruegg et al., 2009). Estas velocidades foram medidas por GPS, entre 1996 e 2002, e são relativas ao interior estável da Placa Sul- Americana. Pode- se ver que as localidades da costa vinham se movimentando a uma taxa de 35 a 40 mm/ano ao passo que pontos na Cordilheira, mais afastados da costa, tinham velocidades bem menores. Isto significa que a crosta nesta região estava diminuindo de tamanho, i.e., estava sendo apertada ou deformada. Ou seja, pode- se perceber que a deformação está relacionada à variação espacial dos deslocamentos. Fig Velocidades na parte central e sul do Chile com relação à parte estável da placa Sul- Americana. Pontos pretos são as posições das estações de GPS. Números ao lado das setas são as velocidades (mm/ano). Fonte: Ruegg et al.(2009). 1
2 2.1 Deformação Linear AGG.0305 Teoria de Ondas Sísmicas e Estrutura da Terra É a medida do esticamento ou encurtamento ( stretching/shortening ). Um paralelepípedo de comprimento inicial lo (sem deformação) aumentando de Δl terá uma deformação linear definida por: ε = Δl l 0 [eq. 2.1] Fig. 2.2 Por exemplo, durante a passagem de uma onda P as partículas do meio têm deslocamentos (u) que variam conforme a posição (x) da partícula. Ou seja, u = f (x). Fig Partículas A, B, C, etc., com deslocamentos devido a uma onda P. No exemplo acima, temos u(1 km) = 5 mm (i.e., a partícula que está na posição x=1 km tem um deslocamento de 5 mm. Da mesma forma u(2) = 10mm; u(3) = 5mm; u(4) = 0; u(5) = - 5mm. A deformação linear entre os pontos A e B será, pela definição da eq. (2.1): ε = Δl l 0 = u(b) u(a) x(b) x(a) = 5 10 (mm) 3 2 (km) = (deformação é adimensional, por definição!) Exercício 2.1. a) Qual a deformação linear entre os pontos E e F da Fig. 2.3? b) entre os pontos C e G? Na Fig. 2.1, qual a deformação linear anual entre os pontos CLM (na costa) e CT8 (na cordilheira)? Nos exemplos acima, definimos a deformação entre dois pontos. Mas podemos definir a deformação num ponto fazendo o limite B - > A Δu ε = lim B A Δx = u Note que nesta definição de deformação linear, ε > 0 significa alongamento e ε < 0 encurtamento! Esta definição dos sinais é importante! Outro ponto importante da definição acima, é que se usa derivada parcial, ou seja, a deformação linear na direção x deve ser medida sem mudar a posição nas outras direções. 2
3 No caso geral de deslocamentos com componentes nas três direções, define- se uma deformação linear para cada direção. Chamamos de (x,y,z) a posição de uma partícula qualquer e d o seu deslocamento (Fig. 2.4). Cada partícula tem um deslocamento diferente e portanto d = f(x,y,z). O deslocamento de cada partícula terá componentes d = (u,v,w) nas direções x, y, e z, respectivamente. As deformações lineares nas três direções são definidas como Fig. 2.4 ε xx = u ε yy = v y ε zz = w [eq. 2.2] Para deformações bem pequenas (infinitesimais), a variação volumétrica, θ, também chamada de dilatação, pode ser expressa por θ = ΔV V o = ε xx +ε yy +ε zz = u + v y + w z = div. d =. d [eq. 2.3] Quando vários pontos se deslocam no espaço, d = f(x,y,z), o divergente mede a variação relativa de volume, em torno de um certo ponto. Isto é, quando os pontos se afastam um dos outros (divergem), há uma dilatação e o volume aumenta, θ > 0. As deformações lineares então medem variações de comprimentos (nas direções x, y, z), variações de áreas e de volumes. Exercício 2.2. A Fig. 2.5 abaixo mostra cinco instantes de uma onda P harmônica propagando- se da esquerda para a direita. Determine o período (T), a velocidade de propagação (Vp) e o comprimento de onda (λ) da onda P. Numa onda harmônica o deslocamento das partículas pode ser expresso por u(x) = A cos (kx - ωt), onde k = 2π/λ e ω = 2π/T, e x é a direção de propagação. Mostre que Vp=ω/k. Sabendo- se que a deformação linear máxima é εmax= , qual o deslocamento máximo (A) das partículas? Qual a velocidade máxima das partículas?? Neste caso de onda P plana (deslocamentos apenas na direção x), qual a dilatação θ? 3
4 Fig Esq) bloco sem ondas e sem deformações. Centro) onda P harmônica. Direita) onda S. As setas indicam a propagação de uma fase (uma compressão no caso da onda P e um deslocamento máximo no caso da S). 2.2 Deformação de Cisalhamento (Shear Strain) Um corpo pode se deformar (i.e., mudar a sua forma, como na Fig. 2.6) sem variar seu volume. A Fig. 2.6 mostra um corpo com uma deformação dita de cisalhamento simples, onde não há variação de volume, apenas dos ângulos. A deformação de cisalhamento mede a variação dos ângulo retos. No caso da Fig. 2.6, chamamos de ângulo de cisalhamento = α = diminuição do ângulo reto ABC para A BC. Fig Cisalhamento simples 4
5 Como exemplo, podemos ver que na passagem de um onda S propagando- se na direção x com deslocamentos (v) na direção y, ocorrem deformações de cisalhamento (Figs. 2.5 e 2.7). Os deslocamentos v variam com a posição, v = f(x). Na Fig. 2.7, v(x=0 km)= 7mm; v(x=1) = 10; v(2) = 7mm; v(3) = 0, etc. Fig. 2.7 O ângulo reto ABC diminuiu para A B C. A diferença (ângulo de cisalhamento) pode ser dada por α tanα = C'C B'B CB = v(c) v(b) x(c) x(b) = 10 7 (mm) 1 0 (km) = O ângulo de cisalhamento num ponto poderia ser definido tomando- se o limite Δx - > 0. Δv α = lim Δx 0 Δx = v Esta definição acima, porém, só vale para o caso de cisalhamento simples da Fig Fig. 2.8 (a) Rotação (b) Rotação (φ) junto com deformação α Um corpo pode ter deslocamentos v(x) que variam com a posição x sem que haja deformação, como no caso de uma rotação mostrada na Fig. 2.8a. Para distinguir entre rotação e deformação real (Fig. 2.8b), é preciso definir as deformações de cisalhamento como: deformação de cisalhamento rotação ω = rot (d) = x d ε xy = 1 2 ( v + u y ) ε xz = 1 2 ( w + u ε yz = 1 2 ( w y + v [eq. 2.4] ω z = 1 2 ( v u y ) ω y = 1 2 ( w u ω x = 1 2 ( w y v [eq. 2.5] 5
6 Por definição, a deformação εxy mede a diminuição do ângulo reto x-y (mais exatamente, a metade da diminuição). Se o ângulo reto x-y diminui, εxy>0; se o ângulo aumenta, εxy<0. A definição acima de deformação de cisalhamento é consistente com a de deformação linear, tornando cada elemento εij uma componente do tensor de deformação εxx εxy εxz Ε = εyx εyy εyz [eq. 2.6 ] εzx εzy εzz Este conjunto de nove componentes chama- se tensor de deformação ( strain tensor ). Conhecendo- se as deformações nas direções x, y e z, pode- se determinar as deformações medidas em quaisquer outras orientações. Também é um tensor simétrico (por definição, εij = εji). Note que o traço do tensor (εxx + εyy + εzz) é um invariante (propriedade de todo tensor de 2a. ordem), como deveria de ser no caso da deformação! Exercício 2.3 A onda S mostrada na Fig. 2.5 propaga- se na direção +x e as partículas se deslocam na direção y. Chamando o deslocamento de v, expresse a função harmônica v(x,t). O deslocamento máximo desta onda S é de 1 mm. Qual a máxima deformação de cisalhamento? (use as eqs. 2.5). Nesta onda S, há rotação? (use as eq. 2.5 se necessário). Qual a máxima velocidade de partícula? Qual a dilatação θ? Exercício 2.4 (problema de geometria) Um quadrado de lados orientados nas direções x e y alonga- se na direção x com εxx = ε, mas não se deforma na direção y. O quadrado tem lados de comprimento 1 (AB=AD=1). Calcule a deformação εx x (i.e., o alongamento na direção x, a 45 o do eixo x); use a definição da eq. 2.1 para medir o alongamento da linha BD para BD ). Tratamos sempre de deformações muito pequenas (ε 10-6 ), pelo que podemos considerar BD e BD aproximadamente paralelos. Mostre que o traço do tensor é invariante: exx + eyy = ex x + ey y. Qual a deformação de cisalhamento ex y? (i.e., a diminuição do ângulo reto definido pelas linhas AC e BD para o ângulo entre as linhas AC e BD ). No caso de uma onda plana P que se propaga como na Fig. 2.5, é possível dizer que há deformações de cisalhamento? Há deformações lineares numa onda S? Fig Deformação correspondente a uma onda P plana (exerc. 2.4). 6
5. Coeficientes de Reflexão e Transmissão Incidência normal
Propagação de Ondas Sísmicas, AGG 0305, coefs_rt.doc 5. Coeficientes de Reflexão e Transmissão Incidência normal 5.1 Introdução Quando uma onda sísmica (com amplitude A o ) incide numa interface, parte
AGG0232 Sísmica I Lista 1 Ondas P e S Universidade de São Paulo / IAG - 1/5. Ondas P e S
AGG0232 Sísmica I Lista 1 Ondas P e S Universidade de São Paulo / IAG - 1/5 Ondas P e S A Figura 1 mostra como se propagam as ondas sísmicas P e S. Neste exemplo as ondas se propagam na direção x. Cada
Capítulo 2 Deformação
Capítulo 2 Deformação 2.1 O conceito de deformação Sob a ação de cargas externas, um corpo sofre mudanças de forma e de volume que são chamadas de deformação. Note as posições antes e depois de três segmentos
DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO
DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO 1) A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento de 10 mm para baixo na extremidade
Aula 06 - Estudo de Deformações, Normal e por Cisalhamento.
Aula 06 - Estudo de Deformações, Normal e por Cisalhamento. Prof. Wanderson S. Paris, M.Eng. [email protected] Deformação Quando uma força é aplicada a um corpo, tende a mudar a forma e o tamanho
MECÂNICA APLICADA II
Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a
Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II
Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2011 Flávia
Unidade 1 de Física do 11º ano FQA 1 V I A G E N S C O M G P S
Unidade 1 de Física do 11º ano FQA 1 V I A G E N S C O M G P S 1. O sistema GPS Para indicar a posição de um lugar na superfície da Terra um modelo esférico da Terra e imaginam-se linhas: os paralelos:
Ondas Eletromagnéticas
Capítulo 11 Ondas Eletromagnéticas 11.1 Equação de Onda Mecânica: Corda Considere um pulso de onda que se propaga em uma corda esticada com extremidades fixas. Podemos obter a equação de ondas nesse caso
Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*
ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Física Módulo 2 Ondas
Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,
Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço.
16 ONDAS 1 16.3 Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. Onda transversal: a deformação é transversal à direção de propagação. Deformação Propagação 2 Onda longitudinal:
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
ONDAS SONORAS. Nesta aula estudaremos ondas sonoras e nos concentraremos nos seguintes tópicos:
ONDAS SONORAS Nesta aula estudaremos ondas sonoras e nos concentraremos nos seguintes tópicos: Velocidade das ondas sonoras. Relação entre a amplitude do deslocamento e a pressão. Interferência de ondas
Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período
UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor:
UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.
UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Sétima Lista de Exercícios Prof. Dr. Wesley Góis CECS Prof. Dr. Cesar Freire - CECS Estudo das Deformações 1. Segundo as direções a,b
Transformação da deformação
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Transformação da deformação
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
Equação Geral do Segundo Grau em R 2
8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
Problemas de Duas Partículas
Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
Física para Engenharia II - Prova P2-2012
430196 Física para Engenharia II - Prova P - 01 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos responsáveis
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais
MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2
Ondas Eletromagnéticas. Física Geral IV FIS503
Ondas Eletromagnéticas Física Geral IV FIS53 1 Questão 1 A fig. mostra duas fotografias tiradas em instantes de tempo diferentes de uma corda na qual se propaga, no sentido positivo do eixo x, uma onda
MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO
MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO INTRODUÇÃO ESTUDO DE CASO À medida que o caminhão da figura ao lado se retira da obra, o trabalhador na plataforma no topo do braço gira o braço para baixo e em
Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos 7ª Aula
Sumário e Objectivos Sumário: Torção de Veios de Secção Circular Objectivos da Aula: Apreensão dos conceitos Fundamentais associados à torção de veios de Secção Circular. 1 2 Torção 3 Vigas 4 Torção de
Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais
MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do
Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica
Mecânica Quântica Química Quântica Prof a. Dr a. Carla Dalmolin A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Clássica O movimento de uma partícula é governado pela Segunda Lei de Newton:
Ondas (Aula 1) Prof. Ettore Baldini-Neto
Ondas (Aula 1) Prof. Ettore Baldini-Neto Tipos de ondas: Ondas mecânicas: Ondas sonoras, sísmicas, na água. São governadas pelas leis da mecânica e propagam-se em meios materiais: rochas, cordas, ar, água.
Halliday Fundamentos de Física Volume 1
Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
Prof. Oscar 2º. Semestre de 2013
Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando
28/Set/ Movimento a uma dimensão Aceleração constante Queda livre 3.2 Movimento 2 e 3-D Vetor deslocamento 3.2.
28/Set/2016 3.1 Movimento a uma dimensão 3.1.1 Aceleração constante 3.1.2 Queda livre 3.2 Movimento 2 e 3-D 3.2.1 Vetor deslocamento 3.2.2 Vetor velocidade 3.2.3 Vetor aceleração 3.3 Movimento relativo
Problemas sobre Ondas Electromagnéticas
Problemas sobre Ondas Electromagnéticas Parte I ÓPTICA E ELECTROMAGNETISMO MIB Maria Inês Barbosa de Carvalho Setembro de 2007 CONCEITOS FUNDAMENTAIS PROBLEMAS PROPOSTOS 1. Determine os fasores das seguintes
Funções de duas (ou mais)
Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)
Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2
Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:
ONDAS. é solução da equação de propagação de onda
ONDAS 1. Uma estação de rádio emite a uma frequência de 760 khz. A velocidade das ondas de rádio é igual a 3 10 8 m/s. Determine o respectivo comprimento de onda (c.d.o.). 2. Um diapasão oscila com a frequência
13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:
1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano
Física 3. Cap 20: Ondas Progressivas
Física 3 Cap 20: Ondas Progressivas Ondas Progressivas O que são: Perturbações organizadas que se propagam com velocidade bem-definida Podem se propagar em um meio material (ex: ondas mecânicas, ondas
Corpos Rígidos CORPOS RÍGIDOS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá
CORPOS RÍGIDOS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 2 Roteiro 1 2 Algarismos significativos 0,333 3 alg. sign. 3,155 4 alg. sign. 3 1 alg. sign. 3,0
Transformações Geométricas Grafos de Cena
Transformações Geométricas Grafos de Cena Edward Angel, Cap. 4 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Na última aula... Transformações Geométricas Translação Escala Rotação Espaço Homogéneo
Dinâmica da partícula fluida
Dinâmica da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Dinâmica da partícula fluida 1 / 14 Sumário 1 Tipo de forças 2 Dinâmica da partícula
INTRODUÇÃO À RELATIVIDADE GERAL - Aula 2 p. 1
INTRODUÇÃO À RELATIVIDADE GERAL - Aula 2 Victor O. Rivelles Instituto de Física Universidade de São Paulo [email protected] http://www.fma.if.usp.br/ rivelles/ XXI Jornada de Física Teórica 2006 INTRODUÇÃO
Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.
Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 Aproximações
Along. (50mm) 25% Custo (aço + Frete + impostos) R$ 1450,00/ton
1. Qual o valor das tensões principais para os tensores de tensão dados, segundo a simbologia utilizada na disciplina (vide matrizes abaixo)? Estados Valores de tensões em MPa Tensões Genéricas Tensões
Ondas e oscilações. 1. As equações de onda
Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico
Ondas e oscilações. 1. As equações de onda
Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico
1) Qual propriedade de um material reproduz a lei de Hooke? Escrever a expressão que traduz a lei. 2) Um cilindro de 90,0 cm de comprimento (figura) está submetido a uma força de tração de 120 kn. Uma
[Pot] = = = M L 2 T 3
1 e No Sistema Internacional, a unidade de potência é watt (W). Usando apenas unidades das grandezas fundamentais, o watt equivale a a) kg m/s b) kg m 2 /s c) kg m/s 2 d) kg m 2 /s 2 e) kg m 2 /s 3 A equação
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008
1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos
Exercícios de Geometria Analítica - CM045
Exercícios de Geometria Analítica - CM045 Prof. José Carlos Corrêa Eidam DMAT/UFPR Disponível no sítio people.ufpr.br/ eidam/index.htm 1o. semestre de 2011 Parte 1 Soma e produto escalar 1. Seja OABC um
Sistemas de coordenadas
Sistemas de coordenadas Cartografia Profa. Ligia UTFPR Introdução Coordenadas Geográficas: latitude e longitude As suas bases utilizadas são a geometria esférica e o eixo de rotação da Terra. Os pólos
Cap 03: Dilatação térmica de sólidos e líquidos
Cap 03: Dilatação térmica de sólidos e líquidos A mudança nas dimensões dos corpos, quando sofrem variações de temperatura, é um fenômeno que pode ser facilmente observado em situações do cotidiano. Quando
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Correntes e Tensões Alternadas Senoidais Prof. Clóvis Antônio Petry. Florianópolis, julho de 2007. Bibliografia
Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva
Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo
Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA
Ano lectivo 1-11 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 8 Movimento Vibratório e Ondulatório Capítulo 5 Conhecimentos e capacidades a adquirir pelo aluno Aplicação dos conceitos
III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1
Lista de Exercícios de SMA000 - Geometria Analítica 1) Indique qual das seguintes afirmações é falsa: a) Os vetores (m, 0, 0); (1, m, 0); (1, m, m 2 ) são L.I. se, somente se, m 0. b) Se u, v 0, então
FÍSICA DA TERRA E DO UNIVERSO PARA LICENCITURA EM GEOCIÊNCIAS SISMOLOGIA ONDAS SÍSMICAS E O INTERIOR DA TERRA
1400200 - FÍSICA DA TERRA E DO UNIVERSO PARA LICENCITURA EM GEOCIÊNCIAS SISMOLOGIA ONDAS SÍSMICAS E O INTERIOR DA TERRA Professor Manoel Souza D Agrella Filho SISMOLOGIA ELASTICIDADE Quando uma força (F)
Gabarito do GE3 Movimento Ondulatório
3.2) Tipos de Ondas Gabarito do GE3 Movimento Ondulatório 3.2.1) Ao enviar uma mensagem por carta, há também transporte de matéria. Entretanto enviando uma mensagem por e-mail não tem transporte de matéria
Resistência dos Materiais
Capítulo 3: Tensões em Vasos de Pressão de Paredes Finas Coeficiente de Dilatação Térmica Professor Fernando Porto Resistência dos Materiais Tensões em Vasos de Pressão de Paredes Finas Vasos de pressão
Capítulo 4 O Oscilador Amortecido
Capítulo 4 O Oscilador Amortecido Vamos supor que um oscilador harmônico tenha amortecimento, isto é, sofre uma resistência ao seu movimento e que esta resistência, para simplificar seja linearmente proporcional
Física 3. Cap 21 Superposição
Física 3 Cap 21 Superposição Interferência entre ondas Duas ou mais ondas se combinam formando uma única onda resultante cujo deslocamento é dado pelo princípio da superposição: Dres = D1 + D2 + = Σi Di
1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1
Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que
Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013
Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um
Universidade Federal de Uberlândia Faculdade de Matemática
Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais
3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.
1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada
1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em
REVISÃO DE ANÁLISE TENSORIAL
REVISÃO DE ANÁLISE TENSORIAL 1.1- Vetores Espaciais Def.: Para cada par de pontos (a,b) do espaço E, existe um segmento de linha ab, caracterizado por um comprimento e uma direção. -Conjunto de vetores
Figura 1: Hipóteses básicas.
2 FLEXÃO NORMAL SIMPLES Nesta seção descreve-se as hipóteses básica de dimensionamento, de forma sucinta, mas atendendo a última revisão da norma ABNT NBR6118:2014, permitindo-se os concretos até 50 MPa,
Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II
Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 010 Flávia Bastos
Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.
Lista de exercícios 4 Potencial Elétrico Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. Boa parte do material dos anéis de Saturno está na forma de pequenos grãos de
Lista de Exercícios cap. 4
Lista de Exercícios cap. 4 1) Consideremos a transformação, linear T: IR² IR² definida por T(x, y) = (3x 2y, x + 4y). Utilizar os vetores u = (1,2) e v = (3, 1) para mostrar que T(3u + 4v) = 3T(u) + 4T(v).
Aula do cap. 16 MHS e Oscilações
Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de
Campo Elétrico [N/C] Campo produzido por uma carga pontual
Campo Elétrico Ao tentar explicar, ou entender, a interação elétrica entre duas cargas elétricas, que se manifesta através da força elétrica de atração ou repulsão, foi criado o conceito de campo elétrico,
INDUÇÃO MAGNÉTICA. Indução Magnética
INDUÇÃO MAGNÉTIA Prof. ergio Turano de ouza Lei de Faraday Força eletromotriz Lei de Lenz Origem da força magnética e a conservação de energia.. 1 Uma corrente produz campo magnético Um campo magnético
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 04 Teoria das deformações Eng. Civil Augusto Romanini
Olimpíadas de Física Selecção para as provas internacionais. Prova Teórica
Olimpíadas de Física 006 Selecção para as provas internacionais Prova Teórica Sociedade Portuguesa de Física 6/Maio/006 Olimpíadas Internacionais de Física 006 Selecção para as provas internacionais Prova
Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução
Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,
Solução Comentada da Prova de Física
Solução Comentada da Prova de Física 01. Uma partícula parte do repouso, no instante t = 0, na direção positiva do eixo x. O gráfico da aceleração da partícula ao longo eixo x, em função do tempo, é mostrado
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Perguntas: 1. A figura 1a mostra um instantâneo de uma onda que se propaga no sentido
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
3º TRIMESTRE DE 2016
COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS
SISMOLOGIA. Figura 1- Movimento das partículas do terreno durante a passagem das ondas de volume P e S.
1 1. INTRODUÇÃO SISMOLOGIA Apresentamos os conceitos básicos de Sismologia, a ciência que estuda os sismos. Sismologia é o ramo da geofísica que estuda os terremotos (ou sismos): suas causas e efeitos,
LISTA DE EXERCÍCIOS Nº 2
LISTA DE EXERCÍCIOS Nº 2 Questões 1) A Figura 1a apresenta o retrato de uma onda propagante ao longo do sentido positivo do eixo x em uma corda sob tensão. Quatro elementos da corda são designados por
A integral definida Problema:
A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y
ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula
ENG1200 Mecânica Geral 2013.2 Lista de Exercícios 1 Equilíbrio da Partícula Questão 1 - Prova P1 2013.1 Determine o máximo valor da força P que pode ser aplicada na estrutura abaixo, sabendo que no tripé
