Solução Comentada da Prova de Física
|
|
|
- Ana Tavares Chaves
- 8 Há anos
- Visualizações:
Transcrição
1 Solução Comentada da Prova de Física 01. Uma partícula parte do repouso, no instante t = 0, na direção positiva do eixo x. O gráfico da aceleração da partícula ao longo eixo x, em função do tempo, é mostrado na figura abaixo. Determine a velocidade da partícula nos instantes de tempo t 1, t, t 3, t 4 e t 5. Solução: A questão aborda o conteúdo da cinemática. Entre os intervalos de tempo 0 t t e t3 < t t5 o movimento da partícula é uniformemente acelerado com acelerações ae 1 a, respectivamente. No intervalo t < t t3, o movimento é uniforme, visto que a aceleração da partícula é nula. Dessa forma, as velocidades da partícula nos instantes t 1, t, t 3, t 4 e t 5 são, respectivamente: v = v = v = 1 a1t1 a1t 3 a1t 4 = a1t + a 4 t 5 = a1t + at5 t v v ( t 3) ( 3 ) 0. Uma cunha de massa m = kg é empurrada sobre um plano inclinado por uma força horizontal F, de intensidade igual a 0 N, conforme figura abaixo. Dados: g = 10 m/s sen 30 o = 1/ cos 30 o = 3 / tan 30 o = 3 /3 Solução Comentada Física Pág. 1 de 8
2 Sabendo que a velocidade com que a cunha sobe o plano é constante, determine: A) a intensidade da força exercida pelo plano inclinado sobre a cunha. B) o coeficiente de atrito cinético entre a cunha e o plano inclinado. Solução: A questão envolve a utilização das leis de Newton. Para sua solução, o diagrama de corpo isolado da cunha deve ser construído, conforme figura abaixo. Como é dito explicitamente que a cunha tem velocidade constante, a resultante das forças sobre ela é nula. Assim, tomando o sistema de eixos Por outro lado, F x = 0 Fcos 30 o Psen 30 o f c = 0 () Como a força de atrito cinético é dada por f c = µ c F N, onde µ c é o coeficiente de atrito cinético, segue de (1) e (), ou seja, x e y mostrado na figura ao lado, teremos F y = 0 F N Pcos 30 o Fsen 30 o = 0 (1) Como P = mg, o peso da cunha, segue da equação (1) que a intensidade da força aplicada pelo plano sobre a cunha vale (A) F N = mgcos 30 o + Fsen 30 o = 10( 3 + 1) N µ c F N = Fcos 30 o Psen 30 o µ c = (Fcos 30 o mgsen 30 o )/( Fsen 30 o + mgcos 30 o ) (B) µ c = (F mgtan 30 o )/ (Ftan 30 o + mg ) = (1 3 /3)/( /3) = 3 Solução Comentada Física Pág. de 8
3 03. Três corpos de massas M, m e m encontram-se suspensos, verticalmente, através de uma mola ideal de constante elástica k, conforme figura abaixo. Os corpos M e m estão ligados por uma barra rígida e de massa desprezível. O sistema como um todo está em repouso. O fio que prende o corpo de massa m é cortado no ponto P, gerando assim uma oscilação no restante do sistema. Determine: A) a amplitude A e o período T do movimento resultante do sistema formado pelos corpos M e m. B) o módulo da velocidade máxima atingida pelos corpos M e m. Solução Comentada Física Pág. 3 de 8
4 Solução: A questão envolve o estudo do movimento harmônico simples. Antes de o fio ser cortado, podemos pensar na seguinte situação: o corpo de massa m gera uma força, igual ao seu peso, sobre o conjunto das massas M e m. Estando o sistema em equilíbrio, pode-se, então, afirmar que a força elástica que equilibra o peso do corpo de massa m é mg kx = mg x = (1) k Quando o fio é cortado, o sistema de massas M e m passa a oscilar em movimento harmônico simples. A amplitude A desse movimento é igual ao deslocamento provocado na mola, quando o corpo de massa m estava ligado às massas M e m. Portanto, mg A =. () k O período do movimento oscilatório das massas M e m é dado por T = π ( m + M). (3) k A velocidade máxima atingida pelo conjunto de massas M e m ocorre, quando a energia potencial elástica inicial for totalmente convertida em energia cinética, ou seja, 1 ( M + m) v = 1 mg k k v = ( mg ) k( M + m) 04. Uma onda que se propaga ao longo do eixo x pode ser descrita pela equação de onda y = Acos( px qt), onde p e q são constantes. Determine: A) o comprimento de onda. B) o período. C) a velocidade de propagação da onda. Considere agora um carro que se move ao longo do eixo x, em sentido contrário à propagação da onda anteriormente descrita, com velocidade constante V = q p. D) Determine a freqüência da onda observada pelo motorista do carro. Solução Comentada Física Pág. 4 de 8
5 Solução: A questão envolve o estudo das ondas. A equação geral de uma onda que se propaga para a direita, ao longo do eixo x é π π y = Acos x t + ϕ0. (1) λ T Comparando a equação de onda dada no problema com a equação (1), tem-se que: onde λé o comprimento de onda; π p = π λ = (item A) λ p π π q = T = (item B) T q onde T é o período. Sendo o período igual ao inverso da freqüência, obtém-se, então, a seguinte relação: 1 q f = =. T π A velocidade de propagação da onda é, portanto, obtida pela equação v = λf. Logo, π q v = = p π q p. (item C) 3q A velocidade na qual o motorista percebe a aproximação da onda é v = V + v =. Assim, desde que o p comprimento de onda não se altera, a freqüência da onda observada pelo motorista do carro é 3q v p 3q f = = f = (item D) λ π π p 05. Um corpo A de massa m encontra-se inicialmente em repouso, suspenso por fio de massa desprezível e comprimento L, que forma um ângulo de 60 o com a vertical, de acordo com a figura abaixo. Um outro corpo B, em repouso sobre uma superfície plana e sem atrito, é também mostrado na figura. O corpo A é liberado do repouso e passa a movimentar-se de acordo com a trajetória indicada (linha tracejada) na figura. Considere que, no choque entre A e B, toda a energia mecânica de A é transferida para B, da seguinte forma: 50 % na forma de energia cinética e 50 % na forma de calor. Determine a variação de temperatura do corpo B, sabendo que seu calor específico vale c. Considere que a aceleração da gravidade é constante e de módulo g, e que nenhuma transformação de fase é observada no sistema. Solução Comentada Física Pág. 5 de 8
6 Solução: A questão aborda a conservação da energia total entre processos mecânicos e térmicos. A energia mecânica total do corpo A corresponde à sua energia potencial gravitacional inicial. Logo, E ma = mgh onde h é a altura inicial do corpo A em relação à altura do corpo B, que consideraremos como o nível de altura zero. Portanto, E ma o 1 = mgl( 1 cos60 ) = mgl. Como 50% da energia mecânica de A é transferida ao corpo B, na forma de calor, então, a quantidade de 1 calor Q transferida ao corpo B é Q = E. Portanto, ma 1 1 gl Q = mc T EmA = mc T mgl = mc T T =. 4 4c 06. Considere um gás ideal monoatômico, encerrado num recipiente de volume V e submetido a uma temperatura absoluta T. Se este gás for submetido a um processo adiabático qualquer (expansão ou compressão), mantendo seu número de moles constante, determine: A) a razão entre os calores molares a pressão e volume constantes do gás. B) a relação entre T e V ao longo deste processo, em termos do valor obtido em (A). Solução Comentada Física Pág. 6 de 8
7 Solução: A questão envolve o estudo dos gases ideais. Para sua solução, devem ser utilizadas as equações de estado de um gás ideal, pv = nrt, (1) onde p é a pressão do gás, V o seu volume, n é o número de moles, T sua temperatura absoluta e R é a chamada constante universal dos gases, juntamente com a relação pv γ = constante, () válida para um gás submetido a um processo adiabático qualquer. Na equação () utilizamos a constante γ = C p / C V, a razão entre os calores molares a pressão e volume constantes, respectivamente. Reunindo as equações (1) e (), teremos, nrt V γ / V = constante T V γ-1 = constante (3) onde n e R foram embutidos na constante, já que não variam durante o processo. Para determinar o valor da razão γ para um gás ideal monoatômico, precisamos da equação que determina a energia interna de um gás ideal monoatômico, U = (3/)nRT, (4) onde o fator de 3/ se deve ao teorema da equipartição da energia. Por outro lado, podemos usar a primeira lei da termodinâmica para um processo a volume constante, para relacionar a variação da energia interna U com o calor Q = nc V T envolvido no processo, U = Q (5) Fazendo uma variação U na equação (4), teremos (3/)nR T = nc V T C V = (3/)R (6) Mas o calor molar a pressão constante C p se escreve como C p = C V + R C p = (5/)R Como a razão γ (também chamada de expoente de Poisson) se escreve como γ = C p / C V (A) γ = 5/3 tal que (B) T V /3 = constante 07. Considere o circuito mostrado na figura abaixo. Considere a chave s aberta. A) Determine a diferença de potencial entre os pontos b e c. Considere agora a chave s fechada. Determine: B) a corrente no circuito. C) a diferença de potencial entre os pontos a e b. Solução Comentada Física Pág. 7 de 8
8 Solução: A questão aborda o conteúdo de circuitos elétricos. Quando a chave s está aberta nenhuma corrente circula no circuito. Assim, a diferença de potencial entre os pontos b e c será a igual à força eletromotriz da bateria de 1 V. Logo, Vb Vc = 1V. (item A) Quando a chave s é fechada, uma corrente passa a existir no circuito. Seu valor é determinado pela lei das malhas de Kirchhoff, ou seja, 36 1 i = = 1A. (item B) 0,5 + 0,5 + 6,0 + 8,0 + 9,0 A diferença de potencial entre os pontos a e b é dada simplesmente pelo produto da resistência elétrica entre os pontos e a corrente. Assim, Va b 0 V = ( 6,0Ω) (1,0A) = 6, V. (item C) 08. Max Planck acreditava que a energia eletromagnética, como é o caso da luz, uma vez irradiada, se espalharia pelo espaço como uma onda produzida na água. Em 1905, Albert Einstein abandonou esta abordagem ondulatória, propondo que a energia radiante estaria quantizada em pacotes concentrados, ou fótons, de energia hf, onde f é a freqüência da radiação e h é a constante de Planck. Quando luz incide sobre uma superfície metálica, podemos ter o aparecimento de elétrons ejetados da superfície. Einstein explicou este fenômeno dizendo que, durante este processo, chamado de efeito fotoelétrico, um fóton é completamente absorvido por um elétron do metal. A energia cinética máxima K máx com que um elétron na superfície será ejetado depende da energia incidente do fóton e da energia mínima necessária para que o elétron vença as forças atrativas que o mantêm preso ao metal, chamadas de função trabalho φ do material. Considere, então, duas superfícies metálicas P 1 e P, de materiais diferentes. Incidindo-se luz de freqüência f sobre estas superfícies, o seguinte gráfico é produzido (em escala arbitrária). Calcule a diferença φ - φ 1 entre as funções trabalho das duas superfícies. Solução: A questão aborda o efeito fotoelétrico. Para sua solução, é necessário o uso da equação para a energia cinética máxima dos elétrons ejetados do metal, K máx = hf - φ (1) Do gráfico proposto, vemos que, se a freqüência da luz incidente sobre as superfícies P 1 e P for f 0 e 3f 0 /, respectivamente, a energia cinética máxima dos elétrons ejetados é a mesma, ou seja, K máx = K 1. Com isto, podemos usar a equação (1), tal que Placa P 1 : K 1 = hf 0 - φ 1 () Placa P : K 1 = h3f 0/ - φ (3) Resolvendo o sistema acima, teremos φ - φ 1 = hf 0 / Solução Comentada Física Pág. 8 de 8
FÍSICA. A) 2 J B) 6 J C) 8 J D) 10 J E) Zero. A) 6,2x10 6 metros. B) 4,8x10 1 metros. C) 2,4x10 3 metros. D) 2,1x10 9 metros. E) 4,3x10 6 metros.
FÍSICA 16) Numa tempestade, ouve-se o trovão 7,0 segundos após a visualização do relâmpago. Sabendo que a velocidade da luz é de 3,0x10 8 m/s e que a velocidade do som é de 3,4x10 2 m/s, é possível afirmar
Resolução Comentada Unesp - 2013-1
Resolução Comentada Unesp - 2013-1 01 - Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t0 = 0 s. A bola atinge, no instante t4, um
Lista de Exercícios - Força e Movimento I
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica I Lista de Exercícios - Força e Movimento I Perguntas: 1. Na figura 1 as forças F 1 e F
FÍSICA. Questões de 01 a 04
GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com
TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27
1 FÍSICA Dado: Aceleração da gravidade: 10 m/s 01. Considere que cerca de 70% da massa do corpo humano é constituída de água. Seja 10 N, a ordem de grandeza do número de moléculas de água no corpo de um
PLANO INCLINADO. a. a aceleração com que o bloco desce o plano; b. a intensidade da reação normal sobre o bloco;
PLANO INCLINADO 1. Um corpo de massa m = 10kg está apoiado num plano inclinado de 30 em relação à horizontal, sem atrito, e é abandonado no ponto A, distante 20m do solo. Supondo a aceleração da gravidade
XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA)
XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) 1) Na Figura 1, uma esfera lisa pode ser lançada por três escorregadores polidos. Ordene os escorregadores de acordo com o trabalho que a força gravitacional
Corrente elétrica, potência, resistores e leis de Ohm
Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de
FÍSICA. Dados: Velocidade da luz no vácuo: 3,0 x 10 8 m/s Aceleração da gravidade: 10 m/s 2 1 4πε. Nm 2 /C 2
Dados: FÍSICA Velocidade da luz no vácuo: 3,0 x 10 8 m/s Aceleração da gravidade: 10 m/s 1 4πε 0 = 9,0 10 9 Nm /C Calor específico da água: 1,0 cal/g o C Calor latente de evaporação da água: 540 cal/g
SÓ ABRA QUANDO AUTORIZADO.
UNIVERSIDADE FEDERAL DE MINAS GERAIS FÍSICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Provas contém seis questões, constituídas de itens e subitens,
Questão 46. Questão 47. Questão 48. alternativa E. alternativa C
Questão 46 O movimento de uma partícula é caracterizado por ter vetor velocidade e vetor aceleração não nulo de mesma direção. Nessas condições, podemos afirmar que esse movimento é a) uniforme. b) uniformemente
EQUILÍBRIO DA PARTÍCULA
Questão 1 - As cordas A, B e C mostradas na figura a seguir têm massa desprezível e são inextensíveis. As cordas A e B estão presas no teto horizontal e se unem à corda C no ponto P. A corda C tem preso
p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4
Q1 (,5) Um pistão é constituído por um disco ao qual se ajusta um tubo oco cilíndrico de diâmetro d. O pistão está adaptado a um recipiente cilíndrico de diâmetro D. massa do pistão com o tubo é M e ele
RESOLUÇÃO DA PROVA DA UFPR (2015) FÍSICA A (PROF. HAUSER)
DA PROVA DA UFPR (2015) FÍSICA A (PROF. HAUSER) 01)Um veículo está se movendo ao longo de uma estrada plana e retilínea. Sua velocidade em função do tempo, para um trecho do percurso, foi registrada e
Lista de Exercícios 3ª Série Trabalho, Potência e Energia
1) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em,0 min, ela realizaria um trabalho a) duas vezes
COMPORTAMENTO TÉRMICO DOS GASES
COMPORTAMENTO TÉRMICO DOS GASES 1 T.1 (CESCEM/66) Em uma transformação isobárica, o diagrama de pressão volume de um gás perfeito: a) é uma reta paralela ao eixo das pressões; b) é uma hipérbole equilátera;
FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO
FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO Fixação 1) O bloco da figura, de peso P = 50N, é arrastado ao longo do plano horizontal pela força F de intensidade F = 100N. A força de
Lista Extra de Física -------------3ºano--------------Professora Eliane Korn. Dilatação, Temperatura, Impulso e Quantidade de movimento
Lista Extra de Física -------------3ºano--------------Professora Eliane Korn Dilatação, Temperatura, Impulso e Quantidade de movimento 1) Qual temperatura na escala Celsius é equivalente a 86o F? a) 186,8
UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA
UFJF CONCURSO VESTIBULAR GABARITO DA PROVA DE FÍSICA Na solução da prova, use quando necessário: Aceleração da gravidade g = m / s ; Densidade da água ρ =, g / cm = kg/m 8 Velocidade da luz no vácuo c
XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (IMPULSO E QUANTIDADE DE MOVIMENTO)
XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (IMPULSO E QUANTIDADE DE MOVIMENTO) 1) Uma bola de 0,70 kg está se movendo horizontalmente com uma velocidade de 5,0 m/s quando se choca com uma parede vertical e
Resolução Comentada Fuvest - 1ª fase 2014
Resolução Comentada Fuvest - 1ª fase 2014 01 - Em uma competição de salto em distância, um atleta de 70kg tem, imediatamente antes do salto, uma velocidade na direção horizontal de módulo 10m/s. Ao saltar,
Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem:
46 c FÍSICA Um corpo de 250 g de massa encontra-se em equilíbrio, preso a uma mola helicoidal de massa desprezível e constante elástica k igual a 100 N/m, como mostra a figura abaixo. O atrito entre as
grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?
Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução
Recursos para Estudo / Atividades
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 3ª Etapa 2014 Disciplina: Física Série: 1ª Professor (a): Marcos Vinicius Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.
TIPO-A FÍSICA. x v média. t t. x x
12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos
UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA
UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA Disciplina: Física Básica III Prof. Dr. Robert R.
FÍSICA - Grupos H e I - GABARITO
1 a QUESTÃO: (,0 pontos) Avaliador Revisor Um sistema básico de aquecimento de água por energia solar está esquematizado na figura abaixo. A água flui do reservatório térmico para as tubulações de cobre
NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues.
Lista 12: Equilíbrio do Corpo Rígido NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii.
Avaliação Teórica II Seleção Final 2015 Olimpíadas Internacionais de Física 16 de Abril 2015
Caderno de Questões Teoria II Instruções 1. Este caderno de questões contém NOVE folhas, incluindo esta com as instruções. Confira antes de começar a resolver a prova. 2. A prova é composta por QUATRO
CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA
CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA Problemas deste tipo têm aparecido nas provas do ITA nos últimos dez anos. E por ser um assunto simples e rápido de ser abrodado, não vale apena para o aluno deiar
1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos.
Física 0. Duas pessoas pegam simultaneamente escadas rolantes, paralelas, de mesmo comprimento l, em uma loja, sendo que uma delas desce e a outra sobe. escada que desce tem velocidade V = m/s e a que
FÍSICA 3. k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 tan 17 = 0,30. a (m/s 2 ) 30 20 10 1,0 2,0 3,0 4,0 5,0.
FÍSIC 3 Valores de algumas grandezas físicas celeração da gravidade: 1 m/s Carga do elétron: 1,6 x 1-19 C Constante de Planck: 6,6 x 1-34 J Velocidade da luz: 3 x 1 8 m/s k = 1/4πε = 9, 1 9 N.m /c 1 atm
MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS
1 MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS 1. (Ufrj) Dois blocos de massa igual a 4kg e 2kg, respectivamente, estão presos entre si por um fio inextensível e de massa desprezível. Deseja-se
s t 2) V m s = V m . t = 35. 2240 (km) s 7,9. 10 5 km
14 A foto, tirada da Terra, mostra uma seqüência de 12 instantâneos do trânsito de Vênus em frente ao Sol, ocorrido no dia 8 de junho de 2004. O intervalo entre esses instantâneos foi, aproximadamente,
LISTA UERJ 2014 LEIS DE NEWTON
1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal
PROVA UPE 2012 TRADICIONAL(RESOLVIDA)
PROVA UPE 2012 TRADICIONAL(RESOLVIDA) 33 - Sete bilhões de habitantes, aproximadamente, é a população da Terra hoje. Assim considere a Terra uma esfera carregada positivamente, em que cada habitante seja
Ondas EM no Espaço Livre (Vácuo)
Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM
1 a QUESTÃO Valor 1,0
1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,
Capítulo 5. Sensores Digitais
Sensores Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson Capítulo 5 Sensores Digitais Capítulo 5 Codificador Incremental de Posição Capítulo 5 Codificador Incremental
( ) ( ) ( ( ) ( )) ( )
Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )
Aula de Exercícios Recuperação Paralela (Leis de Newton)
Aula de Exercícios Recuperação Paralela (Leis de Newton) Exercício 1. (TAUBATÉ) Um automóvel viaja com velocidade constante de 72km/h em trecho retilíneo de estrada. Pode-se afirmar que a resultante das
Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx
Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está
A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.
Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua
1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.
FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem
LEIS DE NEWTON. a) Qual é a tensão no fio? b) Qual é a velocidade angular da massa? Se for necessário, use: sen 60 = 0,87, cos 60 = 0,5.
LEIS DE NEWTON 1. Um pêndulo cônico é formado por um fio de massa desprezível e comprimento L = 1,25 m, que suporta uma massa m = 0,5 kg na sua extremidade inferior. A extremidade superior do fio é presa
A velocidade escalar constante do caminhão é dada por:
46 c Da carroceria de um caminhão carregado com areia, pinga água à razão constante de 90 gotas por minuto. Observando que a distância entre as marcas dessas gotas na superfície plana da rua é constante
Teorema do Impulso com ângulo
Teorema do Impulso com ângulo 1. (Pucpr 2015) A figura a seguir ilustra uma visão superior de uma mesa de sinuca, onde uma bola de massa 400 g atinge a tabela com um ângulo de 60 com a normal e ricocheteia
1 a QUESTÃO: (1,5 ponto) Avaliador Revisor
1 a QUESTÃO: (1,5 ponto) Avaliador Revisor Um mol de um gás ideal é levado do estado A para o estado B, de acordo com o processo representado no diagrama pressão versus volume conforme figura abaixo: a)
Dependência 1ª série 2016. Conteúdo programático. 1- Cinemática. Cronograma de Avaliação
Dependência 1ª série 2016 Conteúdo programático 1- Cinemática 1.1 Movimento Uniforme 1.2 - Movimento Uniformemente Variado 1.3 Cinemática Vetorial 2 Dinâmica 2.1 Princípios Fundamentais da dinâmica 2.2
2ª série LISTA: Ensino Médio. Aluno(a): Professor(a): Jean Jaspion DIA: MÊS: 02 RESISTORES 01. Segmento temático: Turma: A ( ) / B ( )
LISTA: 05 2ª série Ensino Médio Professor(a): Jean Jaspion Turma: A ( ) / B ( ) Aluno(a): Segmento temático: QUESTÃO 01 (FM Petrópolis RJ/2015) Três resistores estão associados em paralelo entre os terminais
Questão 1. Questão 2. Resposta
aceleração da gravidade na Terra, g = 10 m/s densidade da água, a qualquer temperatura, ρ = 1000 kg/m 3 = 1 g/cm 3 velocidade da luz no vácuo = 3,0 10 8 m/s calor específico da água 4 J/( o C g) 1 caloria
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical
Lista Prova - Gás Ideal
Lista Prova - Gás Ideal 1) Se 2 mols de um gás, à temperatura de 27ºC, ocupam um volume igual a 57,4 litros, qual é a pressão aproximada deste gás? Considere R=0,082 atm.l/mol.k (Constante dos Gases) a)
FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.
FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza
Capítulo 13. Quantidade de movimento e impulso
Capítulo 13 Quantidade de movimento e impulso Quantidade de movimento e impulso Introdução Neste capítulo, definiremos duas grandezas importantes no estudo do movimento de um corpo: uma caracterizada pela
Questão 46. Questão 48. Questão 47. alternativa A. alternativa E. alternativa B. Tássia, estudando o movimento retilíneo uniformemente
Questão 46 Tássia, estudando o movimento retilíneo uniformemente variado, deseja determinar a posição de um móvel no instante em que ele muda o sentido de seu movimento. Sendo a função horária da posição
ONDULATÓRIA. Neste capítulo vamos definir e classificar as ondas quanto à sua natureza e estudar alguns fenômenos ondulatórios.
AULA 19 ONDULATÓRIA 1- INTRODUÇÃO Neste capítulo vamos definir e classificar as ondas quanto à sua natureza e estudar alguns fenômenos ondulatórios. 2- DEFINIÇÃO Onda é qualquer perturbação que se propaga
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes
Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.
Vestibular Comentado - UVA/2011.1
Vestibular Comentado - UVA/011.1 FÍSICA Comentários: Profs.... 11. Um atirador ouve o ruído de uma bala atingindo seu alvo 3s após o disparo da arma. A velocidade de disparo da bala é 680 m/s e a do som
a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B.
Prof. Renato SESI Carrão Física 1º. ano 2011 Lista de exercícios 1 (Aulas 13 a 24) *** Formulário *** v = Δx/Δt Δx = x f x i Δt = t f t i a = Δv/Δt Δv = v f v i F R = m.a g = 10 m/s 2 P = m.g F at = μ.n
Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0
46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,
γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2
OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s 2 ; para a massa específica
ENSINO SECUNDÁRIO PROVA ESCRITA DE FISICA
ENSINO SECUNDÁRIO 12." ANO DE ESCOLARIDADE - VIA DE ENSINO (1.O e 5.O CURSOS) PONTO 1712 Págs. Duração da prova: lh e 30min 1992 1.' FASE 1.' CHAMADA PROVA ESCRITA DE FISICA g = 10 R = 8,3 J mol-i K-1
16/Nov/2012 Aula 16 16. Circuitos RL (CC). Corrente alternada 16.1 Circuitos RL em corrente
16/Nov/01 Aula 16 16. Circuitos RL (CC). Corrente alternada 16.1 Circuitos RL em corrente contínua. 16. Corrente alternada (CA). 16..1 Numa resistência 1/Nov/01 Aula 17 17. Continuação - Corrente alternada
Física e Química A. Teste Intermédio de Física e Química A. Teste B. Teste Intermédio. Versão 1
Teste Intermédio de Física e Química A Teste B Teste Intermédio Física e Química A Versão 1 Duração do Teste: 90 minutos 17.03.2009 11.º ou 12.º Anos de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março
Física. Resolução. Q uestão 01 - A
Q uestão 01 - A Uma forma de observarmos a velocidade de um móvel em um gráfico d t é analisarmos a inclinação da curva como no exemplo abaixo: A inclinação do gráfico do móvel A é maior do que a inclinação
MOMENTO LINEAR - IMPULSO - COLISÕES
ESQ - EXERCÍCIOS DE FISICA I 2 011 MOMENTO LINEAR - IMPULSO - COLISÕES EX - 01 ) Determinar a variação do momento linear de um caminhão entre um instante inicial nulo e o instante t = 5,0 s. O caminhão
IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um pequeno refrigerador para estocar vacinas está inicialmente desconectado da rede elétrica e o ar em seu interior encontra-se
Equilíbrio de uma Partícula
Apostila de Resistência dos Materiais I Parte 2 Profª Eliane Alves Pereira Turma: Engenharia Civil Equilíbrio de uma Partícula Condição de Equilíbrio do Ponto Material Um ponto material encontra-se em
Questão 46. Questão 48. Questão 47. alternativa E. alternativa C. alternativa D. Características Amostra 1 Amostra 2. Pressão (atm) 1,0 0,5
Questão 46 Um corpo de 50 g de massa encontra-se em equilíbrio, preso a uma mola helicoidal de massa desprezíel e constante elástica k igual a 100 N/m, como mostra a figura a seguir. O atrito entre as
Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de
OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s ; para a massa específica
Figura 4.1: Diagrama de representação de uma função de 2 variáveis
1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia
Pelo princípio da independência dos movimentos, na horizontal, temos: V. = 0, o corpo se comporta como em queda livre, por isso: F g.
Questão 01 008 Um astronauta, de pé sobre a superfície da Lua, arremessa uma pedra, horizontalmente, a partir de uma altura de 1,5 m, e verifica que ela atinge o solo a uma distância de 15 m. Considere
http://aprendendofisica.net/rede - @apfisica - http://www.cp2centro.net/
COLÉGIO PEDRO II - CAMPUS CENTRO Lista de Exercícios de Dinâmica 2 a. Série 2015 d.c Coordenador: Prof. Marcos Gonçalves Professor: Sérgio F. Lima 1) Determine as trações nas cordas 1 e 2 da figura abaixo.
E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2.
FÍSICA 1 É conhecido e experimentalmente comprovado que cargas elétricas aceleradas emitem radiação eletromagnética. Este efeito é utilizado na geração de ondas de rádio, telefonia celular, nas transmissões
b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC.
Questão 1 A pressão P no interior de um fluido em equilíbrio varia com a profundidade h como P = P 0 + ρgh. A equação dos gases ideais relaciona a pressão, o volume e a temperatura do gás como PV = nrt,
Questão 46. Questão 48. Questão 47. alternativa D. alternativa E
Questão 46 Correndo com uma bicicleta, ao longo de um trecho retilíneo de uma ciclovia, uma criança mantém a velocidade constante de módulo igual a,50 m/s. O diagrama horário da posição para esse movimento
CIÊNCIAS PROVA 4º BIMESTRE 9º ANO PROJETO CIENTISTAS DO AMANHÃ
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO CIÊNCIAS PROVA 4º BIMESTRE 9º ANO PROJETO CIENTISTAS DO AMANHÃ 2010 01. Paulo e
PROVA DE FÍSICA 1998 Segunda Etapa
PROVA DE FÍSICA 1998 Segunda Etapa QUESTÃO 01 Um cano de irrigação, enterrado no solo, ejeta água a uma taxa de 15 litros por minuto com uma velocidade de 10 m/s. A saída do cano é apontada para cima fazendo
Revisão de Física Vestibular ITA 2011
Vestibular ITA 011 Questão 1 Um cilindro oco, feito de material isolante, é fechado em uma das extremidades por uma placa metálica fixa e na outra por um pistão metálico bem ajustado livre para se mover.
Capítulo1 Tensão Normal
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:
2ª Série do Ensino Médio
2ª Série do Ensino Médio 16. O módulo da força resultante necessária para manter um objeto em movimento retilíneo e uniforme é: (A) zero. (B) proporcional à sua massa. (C) inversamente proporcional à sua
Lista de Exercícios (Profº Ito) Blocos
TEXTO PARA A PRÓXIMA QUESTÃO Constantes físicas necessárias para a solução dos problemas: Aceleração da gravidade: 10 m/s 1. Dois blocos, de massas M e M, estão ligados através de um fio inextensível de
e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2
FÍSICA 1 Uma pista de skate, para esporte radical, é montada a partir de duas rampas R 1 e R 2, separadas entre A e B por uma distância D, com as alturas e ângulos indicados na figura. A pista foi projetada
1 Circuitos Pneumáticos
1 Circuitos Pneumáticos Os circuitos pneumáticos são divididos em várias partes distintas e, em cada uma destas divisões, elementos pneumáticos específicos estão posicionados. Estes elementos estão agrupados
Desafio em Física 2015 PUC-Rio 03/10/2015
Desafio em Física 2015 PUC-Rio 03/10/2015 Nome: GABARITO Identidade: Número de inscrição no Vestibular: Questão Nota 1 2 3 4 5 6 7 8 9 Nota Final Questão 1 No circuito elétrico mostrado na figura abaixo
Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo
1 a Questão: Valor : 1,0 Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo retilíneo está animado de translaç ã o horizontal com velocidade constante. Determine o â ngulo,
a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.
(MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa
a) Estime o intervalo de tempo t 1 , em segundos, que a bola levou para ir do ponto A ao ponto B. b) Estime o intervalo de tempo t 2
1 FÍSICA Durante um jogo de futebol, um chute forte, a partir do chão, lança a bola contra uma parede próxima. Com auxílio de uma câmera digital, foi possível reconstituir a trajetória da bola, desde o
3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.
Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia
14-11-2013. Adaptado de Serway & Jewett Marília Peres 2013. Marília Peres
Adaptado de Serway & Jewett Marília Peres 2013 2 1 Se a aceleração de um objecto é zero, podemos dizer que equilíbrio. di er q e este se encontra em eq ilíbrio Matematicamente, é equivalente a dizer que
Lista de Exercícios - Unidade 8 Eu tenho a força!
Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por
Aula de Véspera - Inv-2009 Professor Leonardo
01. Dois astronautas, A e B, encontram-se livres na parte externa de uma estação espacial, sendo desprezíveis as forças de atração gravitacional sobre eles. Os astronautas com seus trajes espaciais têm
Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:
PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da
Física - QUESTÕES de 01 a 06 INSTRUÇÕES: Questão 01 (Valor: 20 pontos) RASCUNHO
Física - QUESTÕES de 01 a 06 LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA QUESTÃO, FORMULE SUAS RESPOSTAS COM OBJETIVIDADE E CORREÇÃO DE LINGUAGEM E, EM SEGUIDA, TRANSCREVA COMPLETA- MENTE CADA UMA NA FOLHA
Fuvest 2005 2ª fase FÍSICA
Fuvest 2005 2ª fase FÍSICA 1. Procedimento de segurança, em auto-estradas, recomenda que o motorista mantenha uma distância de 2 segundos do carro que está à sua frente, para que, se necessário, tenha
VASOS SEPARADORES E ACUMULADORES
VASOS SEPARADORES E ACUMULADORES SÃO EQUIPAMENTOS MUITO USADOS NA INDÚSTRIA QUÍMICA PARA VÁRIAS FUNÇÕES, ENTRE ELAS: MISTURA OU SEPARAÇÃO DE FASES DISSOLUÇÃO AQUECIMENTO NEUTRALIZAÇÃO CRISTALIZAÇÃO REAÇÃO
Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação
Física Atividade 3 os anos Glorinha ago/09 Nome: Nº: Turma: Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação Essa atividade tem o objetivo de revisar alguns conceitos estudados
Questão 46. Questão 47. Questão 48. Questão 49. alternativa C. alternativa A. alternativa B
Questão 46 Um ferreiro golpeia, com a marreta, uma lâmina de ferro, em ritmo uniforme, a cada 0,9 s. Um observador afastado desse ferreiro vê, com um binóculo, a marreta atingir o ferro e ouve o som das
