Questão 1. Questão 2. Resposta
|
|
|
- Daniela Canejo Terra
- 9 Há anos
- Visualizações:
Transcrição
1 aceleração da gravidade na Terra, g = 10 m/s densidade da água, a qualquer temperatura, ρ = 1000 kg/m 3 = 1 g/cm 3 velocidade da luz no vácuo = 3, m/s calor específico da água 4 J/( o C g) 1 caloria 4 joules Questão 1 Uma pista de skate, para esporte radical, é montada a partir de duas rampas R 1 er, separadas entre A e B por uma distância D, com as alturas e ângulos indicados na figura. A pista foi projetada de tal forma que um skatista, ao descer a rampa R 1, salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R. VA 10 8 = VA 10 = m/s b) Sabendo que na altura máxima o skatista possui apenas a componente horizontal da velocidade, da Equação de Torricelli, para o movimento vertical, vem: o 0 = (VA sen 30 ) g Δh 0 = (10 0,) 10 Δh Δh = 1, m Assim, a altura H a partir do solo é dada por: H = h + Δh H = 3 + 1, H = 4, m c) Como a componente vertical da velocidade de A para B só inverte seu sentido, o tempo (t) gasto entre A e B é dado por: o o VA sen 30 = VA sen 30 g t 10 0, = 10 0, 10t t = 1,0 s Assim, a distância (D) é dada por: D = VAx t D = 8,7 1 D = 8,7 m Questão a) Determine o módulo da velocidade V A,em m/s, com que o skatista atinge a extremidade A da rampa R 1. b) Determine a altura máxima H, em metros, a partir do solo, que o skatista atinge, no ar, entre os pontos A e B. c) Calcule qual deve ser a distância D, em metros, entre os pontos A e B, para que o skatista atinja a rampa R em B, com segurança. Um gaveteiro, cujas dimensões estão indicadas no corte transversal, em escala, representado nas figuras, possui três gavetas iguais, onde foram colocadas massas de 1 kg, 8 kg e 3 kg, distribuídas de modo uniforme, respectivamente no fundo das gavetas G 1,G eg 3. Quando a gaveta G é puxada, permanecendo aberta, existe o risco de o gaveteiro ficar desequilibrado e inclinar-se para frente. Desconsidere a resistência do ar, o atrito e os efeitos das acrobacias do skatista. sen 30 o = 0, ; cos 30 o 0, 87 a) Sendo o sistema conservativo e tomando o referencial no solo, temos: V Em i Em f m A = mgh0 = mgh + a) Indique, no esquema a seguir, a posição do centro de massa de cada uma das gavetas
2 física quando fechadas, identificando esses pontos com o símbolo. b) Determine a distância máxima D, em cm, de abertura da gaveta G, nas condições da figura, de modo que o gaveteiro não tombe para frente. c) Determine a maior massa M max, em kg, que pode ser colocada em G, sem que haja risco de desequilibrar o gaveteiro quando essa gaveta for aberta completamente, mantendo as demais condições. Desconsidere o peso das gavetas e do gaveteiro vazios. Do equilíbrio, vem: M R (O) = 0 1 g 4 8 g (D 4) + 3 g 4 = 0 D = 36 cm c) Com a gaveta G totalmente aberta, na iminência de o gaveteiro tombar, poderemos ter em seu interior uma massa M máx. dada por: M R (O) = 0 1 g 4 Mmáx. g g 4 = 0 Mmáx. = 4 kg Questão 3 Um elevador de carga, com massa M = 000 kg, é suspenso por um cabo na parte externa de um edifício em construção. Nas condições das questões abaixo, considere que o motor fornece a potência P = 10 kw. a) Estando as massas uniformemente distribuídas no fundo das gavetas e sendo as gavetas consideradas sem massa, o centro de massa de cada uma está no centro geométrico das massas. Assim, temos: b) Marcando as forças na iminência de o gaveteiro tombar, temos: a) Determine a força F 1, em N, que o cabo exerce sobre o elevador, quando ele é puxado com velocidade constante. b) Determine a força F, em N, que o cabo exerce sobre o elevador, no instante em que ele está subindo com uma aceleração para cima de módulo a = m/s. c) Levando em conta a potência P do motor, determine a velocidade V, em m/s, com que o elevador estará subindo, nas condições do item (b) (a = m/s ).
3 física 3 d) Determine a velocidade máxima V L, em m/s, com que o elevador pode subir quando puxado pelo motor. A potência P, desenvolvida por uma força F, é igual ao produto da força pela velocidade V do corpo em que atua, quando V tem a direção e o sentido da força. a) Do equilíbrio (R = 0), o módulo de F 1 é dado por: F1 = P F1 = Mg = F 1 = N b) Do Princípio Fundamental da Dinâmica, para a situação apresentada, podemos calcular o módulo de F, como segue: R = Ma F Mg = Ma F = 000 F = N c) O módulo da velocidade instantâneav do elevador é dada por: P = FV = 7 000V V = m/s d) Supondo que o movimento do elevador nunca seja retardado (F P) e admitindo-se que a potência seja constante, temos que a velocidade do elevador será máxima quando a força exercida pelo cabo for mínima (F = P). Assim, calculando o módulo de V L, temos: P = F VL = 0 000VL VL = 3 m/s Questão 4 Uma figura gravada em uma folha de plástico (transparência) foi projetada sobre uma parede branca, usando-se uma fonte de luz e uma única lente, colocada entre a folha e a parede, conforme esquema ao lado. A transparência e a imagem projetada, nas condições de tamanho e distância usadas, estão representadas, em escala, na folha de respostas. As figuras 1 e correspondem a vistas de frente e a figura 3, a vista lateral. a) Determine, no esquema a seguir, traçando as linhas de construção apropriadas, a posição onde foi colocada a lente, indicando essa posição por uma linha vertical e a letra L. Marque o centro óptico da lente e indique sua posição pela letra C. b) Determine graficamente, no esquema a seguir, traçando as linhas de construção apropriadas, a posição de cada um dos focos da lente, indicando suas posições pela letra F. c) Represente, indicando por B nova, na figura, a posição da linha B, quando o centro óptico da lente for rebaixado em 10 cm (1 quadradinho). Todo raio que passa pelo centro óptico de uma lente emerge na mesma direção que incide.
4 física 4 a) Da propriedade do centro óptico de um sistema óptico esférico, temos a construção a seguir: b) Das propriedades do foco objeto e foco imagem de um sistema óptico esférico, temos a construção a seguir:
5 física c) Ao rebaixarmos o centro óptico da lente em 10 cm, da propriedade do mesmo para um sistema óptico esférico temos a construção a seguir: Questão Dois tanques cilíndricos verticais, A e B, de 1,6 m de altura e interligados, estão parcialmente cheios de água e possuem válvulas que estão abertas, como representado na figura para a situação inicial. Os tanques estão a uma temperatura T 0 = 80 K e à pressão atmosférica P 0. Em uma etapa de um processo industrial, apenas a válvula A é fechada e, em seguida, os tanques são aquecidos a uma temperatura T 1, resultando na configuração indicada na figura para a situação final. PV = nrt; ΔP =ρg ΔH Patmosférica 1,00 10 N/m a) Utilizando a Lei de Stevin na situação inicial, temos P0 = Patm = 1,00 10 N/ m, e para a situa- ção final, temos o esquema a seguir: a) Determine a razão R1 = P 1/P0, entre a pressão final P 1 e a pressão inicial P 0 do ar no tanque A. b) Determine a razão R = T 1/T0, entre a temperatura final T 1 e a temperatura inicial T 0 dentro dos tanques. c) Para o tanque B, determine a razão R3 = m 0/m1 entre a massa de ar m 0 contida inicialmente no tanque B e a massa de ar final m 1, à temperatura T 1, contida nesse mesmo tanque. PX = PY P1 = Patm + ρgδh P1 = 1, ,4 P1 = 1,04 10 N/m P1 1,04 10 Assim, R1 = = P 0 1,00 10 R1 = 1,04 b) Sendo S a área da base de cada tanque, utilizando a Lei Geral dos Gases Perfeitos para o ar no tanque A, temos: PV 0 0 PV 1 1 T1 PV 1 1 = = T0 T1 T0 PV 0 0 T1 1,04 10 S 1,0 = T 0 1,00 10 S 0,8 R = 1,3 c) Utilizando a Equação de Estado dos Gases Perfeitos no recipiente B, respectivamente, para a situação inicial e final, temos:
6 física 6 PV 0 0 = nrt 0 0 1,00 10 S 0,8 = m0 = M R T 0 (I) P0V = nrt1 1,00 10 S 0,6 = m1 = M R T 1 (II) Dividindo (I) por (II) e como T 0 1 = : T1 1,3 0,8 m0 1 m0 = = 1,73 R3 1,73 0,6 m1 1,3 m = 1 Questão 6 Imagens por ultra-som podem ser obtidas a partir da comparação entre o pulso de um sinal emitido e o pulso proveniente da reflexão em uma superfície do objeto que se quer analisar. Em um teste de controle de qualidade, para conferir a espessura de uma placa de plástico, são usados pulsos de ondas com freqüência f = 1, MHz. Os gráficos I e II representam, respectivamente, as intensidades em função do tempo dos pulsos emitidos e dos pulsos captados no receptor, em uma certa parte da placa. a) Determine o intervalo de tempo Δt, em μs, entre os pulsos emitidos e os pulsos captados. b) Estime a espessura D, em mm, da placa. c) Determine o comprimento de onda λ, em mm, das ondas de ultra-som utilizadas. 6 1 μ s = 10 s 1 MHz = 10 6 Hz Velocidade do ultra-som no plástico = = 100 m/s. Os gráficos representam a intensidade I em uma escala arbitrária. Cada pulso é composto por inúmeros ciclos da onda de ultra-som. Cada pulso só é emitido depois da recepção do pulso anterior. a) O intervalo Δt pedido pode ser obtido pela diferença de tempo entre um pico do gráfico I e o pico consecutivo do gráfico II, ou seja, Δt = 40 μ s. b) Como o pulso em um intervalo de tempo Δt = 40 μs percorre a distância total D com velocidade v = 1 00 m/s, temos: D D v = 1 00 = t D = 4 mm Δ c) Da equação fundamental da ondulatória para o ultra-som utilizado no plástico, vem: v = λf 1 00 = λ 1, 10 6 λ=0,80 mm Questão 7 Na época da formação da Terra, estimada como tendo ocorrido há cerca de 4, bilhões de anos, os isótopos de Urânio radioativo 3 U e 38 U existiam em maior quantidade, pois, ao longo do tempo, parte deles desintegrou-se, deixando de existir como elemento Urânio. Além disso, eram encontrados em proporções diferentes das de hoje, já que possuem meias-vidas diferentes. Atualmente, em uma amostra de 1,000 kg de Urânio, há 0,993 kg de 38 U e 0,007 kg de 3 U,de modo que o 3 U corresponde a 0,7% da massa total e tem importância estratégica muito grande, pela sua utilização em reatores nucleares.
7 física 7 a) Estime a massa M38, em kg, de uma amostra de 38 U, na época da formação da Terra, a partir da qual restaram hoje 0,993 kg de 38 U. b) Estime, levando em conta o número de meias-vidas do 3 U, a massa M3, em kg, de uma amostra de 3 U, na época da formação da Terra, a partir da qual restaram hoje 0,007 kg de 3 U. c) Estime a porcentagem P em massa de 3 U em relação à massa total de Urânio em uma amostra na época da formação da Terra. A meia-vida de um elemento radioativo é o intervalo de tempo necessário para que a metade da massa de uma amostra se desintegre; o restante de sua massa continua a se desintegrar. Meia-vida do 38 U 4, bilhões de anos 9 (4, 10 anos) Meia-vida do 3 U 700 milhões de anos 9 (0,7 10 anos) (Os valores acima foram aproximados, para facilitar os cálculos). a) A massa inicial M38 é dada por: t M38 = m38 p38 4, , 10 M38 = 0,993 9 M38 = 1,986 kg b) A massa inicial M3 é dada por: t M3 = m3 p3 4, ,7 10 M3 = 0,007 9 M3 = 0,448 kg c) A porcentagem (P) é dada por: P = M3 0,448 P = M3 + M38 0, ,986 P = 18,4% Questão 8 Uma pequena esfera, com carga elétrica positiva Q = 1, 10 9 C, está a uma altura D = 0,0m acima da superfície de uma grande placa condutora, ligada à Terra, induzindo sobre essa superfície cargas negativas, como na figura 1. O conjunto dessas cargas estabelece um campo elétrico que é idêntico, apenas na parte do espaço acima da placa, ao campo gerado por uma carga +Q e uma carga Q, como se fosse uma imagem de Q que estivesse colocada na posição representada na figura. a) Determine a intensidade da força F, emn, que age sobre a carga +Q, devida às cargas induzidas na placa. b) Determine a intensidade do campo elétrico E 0, em V/m, que as cargas negativas induzidas na placa criam no ponto onde se encontra a carga +Q. c) Represente, no diagrama a seguir, no ponto A, os vetores campo elétrico E + e E, causados, respectivamente, pela carga +Q e pelas cargas induzidas na placa, bem como o campo resultante, E A. O ponto A está a uma distância D do ponto O da figura e muito próximo à placa, mas acima dela. d) Determine a intensidade do campo elétrico resultante E A, em V/m, no ponto A. F = k Q1Q /r ; E = k Q/r ; onde 9 k = 9 10 N m /C 1 V/m = 1 N/C
8 física 8 Questão 9 a) Utilizando o conceito de carga-imagem e a Lei de Coulomb, vem: k Q Q , 10 1, 10 F = = (D) ( 0,0) 6 F =,0 10 N A relação entre tensão e corrente de uma lâmpada L, como a usada em automóveis, foi obtida por meio do circuito esquematizado na figura 1, onde G representa um gerador de tensão variável. Foi medido o valor da corrente indicado pelo amperímetro A, para diferentes valores da tensão medida pelo voltímetro V, conforme representado pela curva L no Gráfico 1, a seguir. O circuito da figura 1 é, então, modificado, acrescentando-se um resistor R de resistência 6,0 Ω em série com a lâmpada L, conforme esquematizado na figura. b) O campo E 0 tem intensidade dada por: 9 9 kq , 10 E0 = = (D) ( 0,0) 3 E0 = 1,4 10 V/m c) Representando os vetores campo elétrico na figura, temos: +Q D O D A _Q E_ E + E A d) Como E+ = E, e a distância das cargas + Q e Q ao ponto A é D, a intensidade do campo elétrico E A é dada por: EA = E+ kq E+ = ( D) E A = , 10 ( 0,0) 3 EA = 3,8 10 V/m a) Construa, no Gráfico a seguir, o gráfico da potência dissipada na lâmpada, em função da tensão U entre seus terminais, para U variando desde 0 até 1 V. b) Construa, no Gráfico 1 a seguir, o gráfico da corrente no resistor R em função da tensão U aplicada em seus terminais, para U variando desde 0 até 1 V. c) Considerando o circuito da figura, construa, no Gráfico 3 a seguir, o gráfico da corrente indicada pelo amperímetro em função da tensão U indicada pelo voltímetro, quando a corrente varia desde 0 até A.
9 física 9 O voltímetro e o amperímetro se comportam como ideais. Na construção dos gráficos, marque os pontos usados para traçar as curvas. Assim, o gráfico pedido é dado por: b) Sendo o resistor R ôhmico e i = U/R, temos: c) Sendo a tensão (U), medida pelo voltímetro, igual à soma da tensão na lâmpada (U L ), a qual é obtida do gráfico 1, e da tensão no resistor (UR = R i), podemos montar a seguinte tabela: i (A) U L (V) UR 6 i U =U L +U R (V) , , a) Como a potência dissipada na lâmpada é P U i =, podemos montar a seguinte tabela: 1, 6 9 1, Assim, podemos montar o seguinte gráfico: U (V) i (A) P (W) , 0, 3 1, , 9 1,0 4
10 física 10 Questão 10 Um procedimento para estimar o campo magnético de um ímã baseia-se no movimento de uma grande espira condutora E através desse campo. A espira retangular E é abandonada à ação da gravidade entre os pólos do ímã de modo que, enquanto a espira cai, um de seus lados horizontais (apenas um) corta perpendicularmente as linhas de campo. A corrente elétrica induzida na espira gera uma força eletromagnética que se opõe a seu movimento de queda, de tal forma que a espira termina atingindo uma velocidade V constante. Essa velocidade é mantida enquanto esse lado da espira estiver passando entre os pólos do ímã. A figura representa a configuração usada para medir o campo magnético, uniforme e horizontal, criado entre os pólos do ímã. As características da espira e do ímã estão apresentadas na tabela. Para a situação em que um dos lados da espira alcança a velocidade constante V = 0,40 m/s entre os pólos do ímã, determine: a) A intensidade da força eletromagnética F, em N, que age sobre a espira, de massa M, opondo-se à gravidade no seu movimento de queda a velocidade constante. b) O trabalho realizado pela força de gravidade por unidade de tempo (potência), que é igual à potência P dissipada na espira, em watts. c) A intensidade da corrente elétrica i, em amperes, que percorre a espira, de resistência R. d) O campo magnético B, em tesla, existente entre os pólos do ímã. Espira: Massa M Resistência R Dimensões do ímã: Largura a Altura b 0,016 kg 0,10 Ω 0,0 m 0,1 m P = F V; P = i R; F = Bi (Desconsidere o campo magnético da Terra). a) No equilíbrio, como a resultante das forças é nula, temos: F = Peso = M g F = 0, F = 0,16 N b) A potência é dada por: P = F V P = 0,16 0,40 P = 0,064 W c) A intensidade da corrente elétrica i vem de: P = i R 0,064 = i 0,10 i = 0,8 A d) O campo magnético B é obtido por: F = B i 0,16 = B 0,8 0,0 B = 1,0 T
= + + = = + = = + 0 AB
FÍSIC aceleração da gravidade na Terra, g 0 m/s densidade da água, a qualquer temperatura, r 000 kg/m 3 g/cm 3 velocidade da luz no vácuo 3,0 x 0 8 m/s calor específico da água @ 4 J/(ºC g) caloria @ 4
e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2
FÍSICA 1 Uma pista de skate, para esporte radical, é montada a partir de duas rampas R 1 e R 2, separadas entre A e B por uma distância D, com as alturas e ângulos indicados na figura. A pista foi projetada
FÍSICA. (19) 3251-1012 www.elitecampinas.com.br O ELITE RESOLVE FUVEST 2006 FÍSICA
(9) 3- O ELITE RESOLVE FUVEST FÍSICA FÍSICA QUESTÃO Uma pista de skate, para esporte radical, é montada a partir de duas rampas R e R, separadas entre A e B por uma distância D, com as alturas e ângulos
ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E ESPAÇOS PARA RESPOSTAS. VERIFIQUE SE ESTÁ COMPLETO. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS
ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E ESPAÇOS PARA RESPOSTAS. VERIFIQUE SE ESTÁ COMPLETO. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS VERIFIQUE TAMBÉM SE NO ESPAÇO DESTINADO ÀS RESPOSTAS DAS QUESTÕES 02,
FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO
ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.
1 a QUESTÃO: (1,5 ponto) Avaliador Revisor
1 a QUESTÃO: (1,5 ponto) Avaliador Revisor Um mol de um gás ideal é levado do estado A para o estado B, de acordo com o processo representado no diagrama pressão versus volume conforme figura abaixo: a)
Física - UFRGS 2010. 02. Alternativa D Afirmativa I Um ano corresponde à distância percorrida pela luz durante um ano.
Física - UFRGS 2010 01. Alternativa E De acordo com as leis de Kepler, a órbita de cada planeta é uma elipse com o Sol em um dos focos. A reta que une um planeta e o Sol, varre áreas iguais em tempos iguais
1 a QUESTÃO Valor 1,0
1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,
3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.
Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia
Olimpíada Brasileira de Física 2001 2ª Fase
Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição
Questão 46. Questão 47. Questão 48. alternativa A. alternativa D. alternativa D
Questão 46 Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,
n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que
QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente
Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0
46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,
3a. prova Simulado 5 Dissertativo 27.09.06 FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO
Simulado 5 Padrão FUVEST Aluno: N o do Cursinho: Sala: FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO 1. Aguarde a autorização do fiscal para abrir o caderno de questões e iniciar a prova. 2. Duração da
FÍSICA CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra
Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera
Questão 1 Na figura abaixo, vê-se um trecho de uma linha de produção de esferas. Para testar a resistência das esferas a impacto, são impulsionadas a partir de uma esteira rolante, com velocidade horizontal
Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013
Resolução Comentada UFTM - VESTIBULAR DE INVERNO 2013 01 - A figura mostra uma série de fotografias estroboscópicas de duas esferas, A e B, de massas diferentes. A esfera A foi abandonada em queda livre
V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.
11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.
= F cp. mv 2. G M m G M. b) A velocidade escalar V também é dada por: V = = 4π 2 R 2 = R T 2 =. R 3. Sendo T 2 = K R 3, vem: K = G M V = R.
FÍSICA Um satélite com massa m gira em torno da Terra com velocidade constante, em uma órbita circular de raio R, em relação ao centro da Terra. Represente a massa da Terra por M e a constante gravitacional
A velocidade escalar constante do caminhão é dada por:
46 c Da carroceria de um caminhão carregado com areia, pinga água à razão constante de 90 gotas por minuto. Observando que a distância entre as marcas dessas gotas na superfície plana da rua é constante
UNICAMP - 2006. 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 2006 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um corredor de 100 metros rasos percorre os 20 primeiros metros da corrida em 4,0 s com aceleração constante. A velocidade
Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade
Física 1 ano Prof. Miranda Lista de Exercícios II Unidade [email protected] 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os
CORTESIA Prof. Renato Brito www.vestseller.com.br Espaço
INSTITUTO TECNOLÓGICO DE AERONÁUTICA ESTIBULAR 983/984 PROA DE FÍSICA 0. (ITA-84) Colocou-se uma certa quantidade de bolinhas de chumbo numa seringa plástica e o volume lido na própria escala da seringa
FÍSICA 3. k = 1/4πε 0 = 9,0 10 9 N.m 2 /c 2 1 atm = 1,0 x 10 5 N/m 2 tan 17 = 0,30. a (m/s 2 ) 30 20 10 1,0 2,0 3,0 4,0 5,0.
FÍSIC 3 Valores de algumas grandezas físicas celeração da gravidade: 1 m/s Carga do elétron: 1,6 x 1-19 C Constante de Planck: 6,6 x 1-34 J Velocidade da luz: 3 x 1 8 m/s k = 1/4πε = 9, 1 9 N.m /c 1 atm
Questão 46 Questão 47
Questão 46 Questão 47 Um estudante que se encontrava sentado em uma praça, em frente de um moderno edifício, resolveu observar o movimento de um elevador panorâmico. Após haver efetuado algumas medidas,
DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO:
DISCIPLINA: FÍSICA PROFESSORES: Erich/ André NOME COMPLETO: I N S T R U Ç Õ E S DATA: 17/12/2015 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1 a EM Circule a sua turma: Funcionários:
FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE
FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem? celeração de 5 g (ou 50 m/s²), ocorrendo o enrijecimento dos músculos devido a força que o sangue exerce na volta
Questão 11. Questão 12. Resposta. Resposta
Questão 11 Acredita-se que desde o século XIV acrobatas chineses já usavam uma versão primitiva do pára-quedas. É certo que, no ocidente, Leonardo da Vinci (145-1519) já o havia imaginado. que a velocidade
FÍSICA. Prof. Fracalossi
FÍSICA Prof. Fracalossi 1. O cérebro humano demora cerca de 0,6 segundos para responder a um estímulo. Por exemplo, se um motorista decide parar o carro, levará no mínimo esse tempo de resposta para acionar
Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014
TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido
Questão 46. Questão 47. Questão 49. Questão 48. ver comentário. alternativa D. alternativa C
Questão 46 Um casal de namorados passeia, de braços dados, com velocidade escalar constante de 80 cm/s. O passo da menina mede 40 cm e o do rapaz, 60 cm. Se, em certo instante, ambos tocam o pé direito
Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO
Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano
PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO
PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,
Questão 46. alternativa A
Questão 46 Um garoto, brincando com seu autorama, resolve analisar o movimento do carrinho durante um ciclo, ao longo da trajetória pontilhada ABDEFA. Os trechos AB, D, DE e FA medem 40,00 cm cada um e
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical
a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos dois rios, cerca de vn
1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência: correr a distância de 1 km à velocidade
Bacharelado Engenharia Civil
Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite
Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ
Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao
Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento
Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Quando aplicamos uma força sobre um corpo, provocando um deslocamento, estamos gastando energia, estamos realizando um trabalho. Ʈ
FÍSICA PRIMEIRA ETAPA - 1998
FÍSICA PRIMEIRA ETAPA - 1998 QUESTÃO 01 Este gráfico, velocidade versus tempo, representa o movimento de um automóvel ao longo de uma estrada reta A distância percorrida pelo automóvel nos primeiros 1
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é
UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,
Trabalho e potência. 1º caso: a força F não é paralela a d. 2º caso: a força F é paralela a d. 3º caso: a força F é perpendicular a d
Trabalho e potência Trabalho mecânico Realizar trabalho, em Física, implica a transferência de energia de um sistema para outro e, para que isso ocorra, são necessários uma força e um deslocamento adequados.
Escolha sua melhor opção e estude para concursos sem gastar nada
Escolha sua melhor opção e estude para concursos sem gastar nada VALORES DE CONSTANTES E GRANDEZAS FÍSICAS - aceleração da gravidade g = 10 m/s 2 - calor específico da água c = 1,0 cal/(g o C) = 4,2 x
(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2
F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?
TIPO-A FÍSICA. x v média. t t. x x
12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos
www.enemdescomplicado.com.br
Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)
FÍSICA. Valores de algumas grandezas físicas:
Valores de algumas grandezas físicas: Aceleração da gravidade: 10 m/s Velocidade da luz no vácuo: 3,0 x 10 8 m/s. Velocidade do som no ar: 330 m/s Calor latente de fusão do gelo: 80 cal/g Calor específico
Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m.
Intensivo 2015.2 Trabalho, potência e Energia mecânica 01 - (PUC PR) Uma motocicleta de massa 100kg se desloca a uma velocidade constante de 10m/s. A energia cinética desse veículo é equivalente ao trabalho
ENERGIA CINÉTICA E TRABALHO
ENERGIA CINÉTICA E TRABALHO O que é energia? O termo energia é tão amplo que é diícil pensar numa deinição concisa. Teoricamente, a energia é uma grandeza escalar associada ao estado de um ou mais objetos;
ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS
ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS A correção de cada questão será restrita somente ao que estiver registrado no espaço
Fuvest 2005 2ª fase FÍSICA
Fuvest 2005 2ª fase FÍSICA 1. Procedimento de segurança, em auto-estradas, recomenda que o motorista mantenha uma distância de 2 segundos do carro que está à sua frente, para que, se necessário, tenha
Dinâmica do movimento de Rotação
Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;
FÍSICA - Grupos H e I - GABARITO
1 a QUESTÃO: (,0 pontos) Avaliador Revisor Um sistema básico de aquecimento de água por energia solar está esquematizado na figura abaixo. A água flui do reservatório térmico para as tubulações de cobre
TC 1 UECE 2012 FASE 2. PROF.: Célio Normando
TC 1 UECE 01 FASE PROF.: Célio Normando Conteúdo: Aritmética Ordem de Grandeza 1. Racionalizar o uso da água significa usá-la sem desperdício e considerá-la uma prioridade social e ambiental, para que
γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2
OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s 2 ; para a massa específica
PROVA DE FÍSICA QUESTÃO 01 UFMG
QUESTÃO 01 Em uma corrida de Fórmula 1, o piloto Miguel Sapateiro passa, com seu carro, pela linha de chegada e avança em linha reta, mantendo velocidade constante Antes do fim da reta, porém, acaba a
Problemas de eletricidade
Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de
Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA
Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado
1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.
FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem
Questão 01 O dono do circo anuncia o início do espetáculo usando uma sirene.
As questões apresentadas nesta prova relacionam-se ao ambiente e às situações encontradas em um circo. Sempre que necessário, utilize, em seus cálculos, g = 10 m/s 2. Questão 01 O dono do circo anuncia
EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS
EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de
Lista de Exercícios - Unidade 8 Eu tenho a força!
Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por
CPV seu pé direito também na medicina
CPV seu pé direito também na medicina unifesp 6/dezembro/0 física. Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir
Resolução da Questão 1 Item I Texto definitivo
Questão A seguir, é apresentada uma expressão referente à velocidade (v) de um ciclista, em km/min, em função do tempo t, computado em minutos. 0,t, se 0 t < 0,, se t < v ( t) = 0, + 0,t,
ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE
ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis
Introdução à condução de calor estacionária
Introdução à condução de calor estacionária Exercício 1 - O telhado de uma casa com aquecimento elétrico tem 6m de comprimento, 8m de largura e 0, 25m de espessura e é feito de uma camada plana de concreto
4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES
CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma
Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo
1 a Questão: Valor : 1,0 Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo retilíneo está animado de translaç ã o horizontal com velocidade constante. Determine o â ngulo,
Nome 3ª série Nº Conceito
Prova Recuperação do 2º Semestre (Novembro) Física Prof. Reinaldo Nome 3ª série Nº Conceito Nº de questões 14 Tempo 100 min Data 13/11/15 Não é permitido o uso de calculadora. 0 = 4..10 7 T.m/A B = 0.i
Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06
Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi Maio/2015 Atenção: Semana de prova S1 15/06 até 30/06 LISTA DE EXERCÍCIOS # 2 1) Um corpo de 2,5 kg está
FÍSICA. Questões de 01 a 06
FIS. 1 FÍSICA Questões de 01 a 06 01. Um estudante de Física executou um experimento de Mecânica, colocando um bloco de massa m = 2kg sobre um plano homogêneo de inclinação regulável, conforme a figura
TC 2 UECE 2012 FASE 1 PROF. : Célio Normando
TC UECE 01 FASE 1 PROF. : Célio Normando Conteúdo: Cinemática - MRUV 1. Um avião vai decolar em uma pista retilínea. Ele inicia seu movimento na cabeceira da pista com velocidade nula e corre por ela com
b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC.
Questão 1 A pressão P no interior de um fluido em equilíbrio varia com a profundidade h como P = P 0 + ρgh. A equação dos gases ideais relaciona a pressão, o volume e a temperatura do gás como PV = nrt,
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.
FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza
NOTE E ADOTE Desconsidere o peso das gavetas e do gaveteiro vazios.
1. (Fuvest 2006) Um elevador de carga, com massa M = 5 000 kg, é suspenso por um cabo na parte externa de um edifício em construção. Nas condições das questões a seguir, considere que o motor fornece a
Assinale a alternativa que contém o gráfico que representa a aceleração em função do tempo correspondente ao movimento do ponto material.
Física 53. O gráfico da velocidade em função do tempo (em unidades aritrárias), associado ao movimento de um ponto material ao longo do eixo x, é mostrado na figura aaixo. Assinale a alternativa que contém
Fichas de sistemas de partículas
Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.
Lentes. Parte I. www.soexatas.com Página 1
Parte I Lentes a) é real, invertida e mede cm. b) é virtual, direta e fica a 6 cm da lente. c) é real, direta e mede cm. d) é real, invertida e fica a 3 cm da lente. 1. (Ufg 013) Uma lente convergente
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 3 - Forças fundamentais, leis de Newton e Lei da gravitação universal 11.º Ano Turma A e B 1 outubro 2014 NOME Nº Turma 1. Associe um número da coluna 1 a uma
FÍSICA. Sempre que for necessário, utilize g= 10m/s 2
FÍSICA Sempre que for necessário, utilize g= 10m/s 2 28 d Leia com atenção a tira da Turma da Mônica mostrada abaixo e analise as afirmativas que se seguem, considerando os princípios da Mecânica Clássica.
COMENTÁRIO DA PROVA DE FÍSICA
COMENTÁRIO DA PROVA DE FÍSICA A prova de Física da UFPR 2013/2014 apresentou algumas questões fáceis, algumas difíceis e maioria de questões médias. Dessa forma, é possível afirmar que, quanto ao nível,
Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas
Resumo de fórmulas Força magnética em uma carga elétrica em movimento F = q. v. B. senθ Fórmulas para cargas elétricas Raio de uma trajetória circular gerada por uma partícula em um campo magnético R =
= 15,0. 30(m) = 450m. = 250m. b) Seja T o instante de encontro: = s B 30T = (T 5,0 + T 15,0)
17 Um veículo A passa por um posto policial a uma velocidade constante acima do permitido no local. Pouco tempo depois, um policial em um veículo B parte em perseguição do veículo A. Os movimentos dos
A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos
Energia 1-Uma pequena bola de borracha, de massa 50g, é abandonada de um ponto A situado a uma altura de 5,0m e, depois de chocar-se com o solo, eleva-se verticalmente até um ponto B, situado a 3,6m. Considere
Hoje estou elétrico!
A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava
TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor
1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída
Mecânica 2007/2008. 3ª Série
Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?
= R. Sendo m = 3,3. 10 27 kg, V = 3,0. 10 7 m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3,3. 10 27. (3,0. 10 7 ) 2 = (N) 0,45
37 a FÍSICA Em um cíclotron tipo de acelerador de partículas um deutério alcança velocidade final de 3,0 x 10 7 m/s, enquanto se move em um caminho circular de raio 0,45m, mantido nesse caminho por uma
Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de
OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s ; para a massa específica
Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto
1. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando
Lançamento Horizontal
Lançamento Horizontal 1. (Ufsm 2013) Um trem de passageiros passa em frente a uma estação, com velocidade constante em relação a um referencial fixo no solo. Nesse instante, um passageiro deixa cair sua
Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.
Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância
Questão 1. Questão 2. Resposta. Resposta
Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.
CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.
CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,
20/10/2015. Prof. Pedro Netto @pcsilvanetto. www.laboratoriodefisica.com.br. [email protected]. @pcsilvanetto. @pcsilvanetto
Prof. Pedro Netto @pcsilvanetto www.laboratoriodefisica.com.br [email protected] @pcsilvanetto @pcsilvanetto 1. A figura abaixo mostra um homem de massa igual a 100 kg, próximo a um trilho de ferro
Primeira lista de física para o segundo ano 1)
Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2
Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física
Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua
Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano Lectivo 09/10
Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano ectivo 09/10 Duração da Actividade: 90 minutos Data: 04/ 12 / 09 Responda com clareza às questões
