ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE
|
|
|
- Henrique Lobo Angelim
- 10 Há anos
- Visualizações:
Transcrição
1 Disciplina: Matemática Curso: Ensino Médio Professor: Aguinaldo Série: 1ªSérie Aluno (a): ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Número: 1 - Conteúdo: Notação científica Área de polígonos Ângulos internos e externos de um polígono Função linear e função quadrática Estudo de sinais e esboço gráfico Estudo do domínio de uma função 2 - Data de entrega: Na aula de recuperação 3 - Material para consulta: Livro didático 4 - Trabalho a ser desenvolvido: Correção das Provas semanais, Mensais e Bimestrais (1,0 ponto) Avaliação deste conteúdo na forma de trabalho com consulta no 1 dia de recuperação (1,0 ponto) Prova de Recuperação (8,0)
2 Trabalho de recuperação 1) Observe o quadro e responda a) Qual é o país mais populoso do mundo? E qual ocupa a 4ªposição? Países mais populosos do mundo 2008 Países População Brasil b) A população dos Estados Unidos corresponde a que porcentagem da população da Índia? China (excluindo Hong Kong) Estados Unidos Índia c) Os países apresentados no quadro, juntos, possuem uma população de: Paquistão d) Qual é o número absoluto de habitantes do Brasil? 2) Na figura dada, o lado do quadrado maior mede 8 cm e o lado do menor mede 4 cm. As diagonais do quadrado maior contêm as diagonais do quadrado menor. Quanto mede a área da região hachurada?
3 3) ) Sabendo que um pentacontágono é um polígono de 50 lados, determine: a) O número de triângulos que podemos formar partindo apenas de um de seus vértices. b) Qual é o valor do ângulo interno do pentacontágono? c) Qual é o valor do ângulo externo do pentacontágono? d) Quais são os comandos para que o super logo o construa com REPITA? 4) (UECE-CE) Na figura, as duas circunferências são tangentes, o centro da circunferência maior é um ponto da circunferência menor e o diâmetro da circunferência maior mede 4 cm. Calcule a área da região pintada.
4 5) Em uma praça, será construído um jardim, conforme o esquema abaixo. Observe que o quadrado está inscrito na circunferência maior e circunscrito à circunferência menor. Na parte pintada, será plantada grama. Quantos metros quadrados de grama serão necessários, aproximadamente, sabendo que o raio do círculo maior mede 10 m? 6) (Uesc-BA) O valor total cobrado por uma empresa de TV a cabo para instalar um equipamento em uma residência inclui uma parte fixa correspondente à visita do técnico e outra variável, correspondente à quantidade de fio requerida pelo serviço. O gráfico representa o valor do serviço efetuado em função da metragem de fio usada no serviço. Se uma pessoa contratar os serviços dessa empresa e durante a instalação do equipamento forem utilizados 35 metros de fio, quanto essa pessoa deverá pagar, pelo serviço?
5 7) Para que valores de x a função: a. é positiva? b) é negativa? 8) Escreva a função linear, as quais são representadas pelos gráficos abaixo: 9) Determine o domínio das funções abaixo:
6 10) A água potável utilizada em propriedades rurais, de modo geral, é retirada de poços com o auxílio de uma bomba-d água com capacidade para bombear 15L por minuto. Essa bomba é ligada automaticamente quando o reservatório está com 250L de água e desligada ao enchê-lo. Com essas informações, podemos escrever uma fórmula que permite calcular a quantidade de água contida no reservatório em função do tempo em que a bomba permanece ligada, considerando que não haja consumo de água durante esse período. Utilizando essa fórmula, calcule a quantidade de água contida no reservatório 25 minutos após a bomba entrar em funcionamento. 11) Determine o domínio das funções abaixo: 12) Para que valores de x a função: a. é negativa? b) é positiva?
7 13) (Unicamp-SP) O custo de uma corrida de taxi é constituído por um valor inicial fixo, chamado de bandeirada mais um valor proporcional à distância percorrida. Sabe-se que, em uma corrida na qual foram percorridos 3,6 Km, a quantia cobrada foi de R$ 8,25, e que em outra corrida, de 2,8 Km, a quantia cobrada foi de R$ 7,25. Se, em um dia de trabalho, um taxista arrecadou R$ 75,00 em 10 corridas, quantos quilômetros seu carro percorreu naquele dia? 14) Escreva a função linear, as quais são representadas pelos gráficos abaixo:
8 15) Construa os gráficos, calcule o vértice e as raízes da funções representadas abaixo: x y x Y 16) Faça o esboço gráfico das funções quadráticas abaixo: 17) Para que valores de x as função é positiva?
9 18) (Unicamp-SP) O preço a ser pago por uma corrida de táxi inclui uma parcela fixa, denominada bandeirada, e uma parcela que depende da distância percorrida. Se a bandeirada custa R$ 3,44 e cada quilometro rodado custa R$ 0,86, calcule: a. O preço de uma corrida de 11 km; b. A distância percorrida por um passageiro que pagou R$ 21,50 pela corrida 19) (Uesc-BA) O valor total cobrado por uma empresa de TV a cabo para instalar um equipamento em uma residência inclui uma parte fixa correspondente à visita do técnico e outra variável, correspondente à quantidade de fio requerida pelo serviço. O gráfico representa o valor do serviço efetuado em função da metragem de fio usada no serviço. Se uma pessoa contratar os serviços dessa empresa e durante a instalação do equipamento forem utilizados 55 metros de fio, quanto essa pessoa deverá pagar, pelo serviço?
10 20) Para que valores de x a função: a. é positiva? b) é negativa? 21) Escreva a função linear, as quais são representadas pelos gráficos abaixo:
11 22) Determine o domínio das funções abaixo: 23) P a r a q u e va l o r e s a f u n ç ã o f ( x) = 9 x² - 8x- 1 é p o s it i v a? 24) Resolva as inequações:
12 25)Observe a figura. Note que as duas circunferências menores se tangenciam no centro da circunferência maior e, também tangenciam a circunferência maior. Sabendo que o comprimento da circunferência maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é de quanto em em cm 2? 26) Na Matemática, os números primos sempre foram objeto de especial atenção. Em 1742, na correspondência entre o matemático prussiano Christian Goldbach e o famoso matemático suíço Leonard Euler, foi formulada a seguinte questão, conhecida por Conjectura de Goldbach : Todo inteiro par maior que 2 pode ser escrito como a soma de dois números primos. Esta suposição tornou-se um dos problemas mais intrigantes da Matemática e não foi resolvido até os dias de hoje. Há quantos anos os matemáticos tentam resolver o problema citado no texto acima? Escreva a sua resposta em notação científica. 27) Determine o valor do ângulo externo e a soma dos ângulos internos de um dodecaedro.
Função Afim Função do 1º Grau
Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM
16 Comprimento e área do círculo
A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.
Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()
CURSO FREE PMES PREPARATÓRIO JC
CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
5 LG 1 - CIRCUNFERÊNCIA
40 5 LG 1 - CIRCUNFERÊNCIA Propriedade: O lugar geométrico dos pontos do plano situados a uma distância constante r de um ponto fixo O é a circunferência de centro O e raio r. Notação: Circunf(O,r). Sempre
CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.
Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.
Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)
PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA
RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma
Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se
"Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor
(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de
QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao
Equipe de Matemática MATEMÁTICA
Aluno (a): Série: 3ª Turma: TUTORIAL 10B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Função Afim Um vendedor recebe, mensalmente, um salário que é composto por uma parte fixa de R$ 3.000,00 e uma
Matemática (UENF Grupo I)
2 a fase exame discursivo 01/12/2002 Matemática (UENF Grupo I) Neste caderno você encontrará um conjunto de 05 (cinco) páginas numeradas seqüencialmente, contendo 10 (dez) questões de Matemática. Leia
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:
ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero
Algoritmos com Estrutura Sequencial
Algoritmos com Estrutura Sequencial 1. A partir da diagonal de um quadrado, deseja-se elaborar um algoritmo que informe o comprimento do lado do quadrado. Construa um algoritmo que leia o valor da diagonal
Universidade Federal de Goiás Instituto de Informática
Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas
FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.
FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma
Construções Fundamentais. r P r
1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular
EXERCÍCIOS DE REVISÃO PFV - GABARITO
COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva
Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5
KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 1. Com um automóvel que faz uma média de consumo de 12 km por litro, um motorista A gasta em uma viagem R$ 143,00 em combustível, abastecendo ao preço de R$ 2,60
MATEMÁTICA FURG COPERVE PROCESSO SELETIVO 2010
FURG COPERVE PROCESSO SELETIVO 00 MATEMÁTICA ) Em uma Instituição de Ensino Superior, um aluno do curso de Engenharia Metalúrgica anotou suas médias bimestrais nas disciplinas: Cálculo I (CI), Álgebra
Matemática Financeira II
Módulo 3 Unidade 28 Matemática Financeira II Para início de conversa... Notícias como essas são encontradas em jornais com bastante frequência atualmente. Essas situações de aumentos e outras como financiamentos
2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.
ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a
2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).
MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico
RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14
FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,
3 Exercícios. 2 Equação que fornece o custo do aluguel: y = 80 + 0, 75x. 3 Equação que fornece o dinheiro disponível: y = 185
Roteiro da aula MA091 Matemática básica Aula 19 Solução de equações e inequações no plano. 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Abril de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática
Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana
Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade
Gabarito - Matemática - Grupos I/J
1 a QUESTÃO: (1,0 ponto) Avaliador Revisor Para a estréia de um espetáculo foram emitidos 1800 ingressos, dos quais 60% foram vendidos até a véspera do dia de sua realização por um preço unitário de R$
Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.
Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de
Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98
Prova Resolvida Matemática p/ TJ-PR - Uma caixa contém certa quantidade de lâmpadas. Ao retirá-las de 3 em 3 ou de 5 em 5, sobram lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7,
PROBLEMAS DE OTIMIZAÇÃO
(Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as
b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m?
1 - Dadas as medidas da bicicleta abaixo: a) Sabendo que um ciclista pedala com velocidade constante de tal forma que o pedal dá duas voltas em um segundo. Qual a velocidade linear, em km/h da bicicleta?
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.
MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II
Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas
CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS
VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,
Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência
Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura
RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.
ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se
Nesta aula iremos continuar com os exemplos de revisão.
Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).
AULA 1. A ideia de função. Objetivo geral
AULA 1 A ideia de função Objetivo geral Relembrar a ideia de função, explorando o cálculo de valores numéricos, a construção de tabelas e a associação em gráficos cartesianos. Expectativas de aprendizagem
COLÉGIO MACHADO DE ASSIS. Turma: Data: / /
Disciplina: Matemática Professor: Eduardo Nagel COLÉGIO MACHADO DE ASSIS Turma: Data: / / Aluno: ( ) Avaliação ( x ) Exercício / Revisão ( ) Recuperação Bim ª Chamada ( ) 1ª Prova ( ) ª Prova Estude e
Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos
Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura
1 a Questão: (10,0 pontos)
Ciências da Natureza, e suas Tecnologias 1 a Questão: (10,0 pontos) Suponha que, em certo dia de janeiro de 00, quando 1 dólar americano valia 1 peso argentino e ambos valiam,1 reais, o governo argentino
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9
RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos
LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI
01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.
Volumes parte 02. Isabelle Araujo
olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C
Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento
360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300
01) Uma empresa possui 1000 carros, sendo uma parte com motor a gasolina e o restante com motor flex (que funciona com álcool e com gasolina). Numa determinada época, neste conjunto de 1000 carros, 36%
A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido.
Atividade extra Exercício 1 A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Se a balança abaixo se encontra em equilíbrio é correto afirmar que: Fonte: http//portaldoprofessorhmg.mec.gov.br
Grandezas proporcionais (II): regra de três composta
Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2
Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1
Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx
Progressão Geométrica- 1º ano
Progressão Geométrica- 1º ano 1. Uma seqüência de números reais a, a 2, a 3,... satisfaz à lei de formação A n+1 = 6a n, se n é ímpar A n+1 = (1/3) a n, se n é par. Sabendo-se que a = 2, a) escreva os
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP Péricles Bedretchuk Araújo Situações de aprendizagem: a circunferência, a mediatriz e uma abordagem com o Geogebra Dissertação apresentada à Banca Examinadora
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.
2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades
Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta
Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
Roda de Samba. Série Matemática na Escola
Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em
O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente.
Aluno (a): Disciplina MATEMÁTICA Professor ROLANDO Curso FUNDAMENTAL II ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 7º ANO Número: 1 - Conteúdo: Estudo de sistemas de equações do 1º grau Estudo da
Aula 12 Áreas de Superfícies Planas
MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número
3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12
3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido
Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015
Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.
Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015
Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria
1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.
1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00
PLANEJAMENTO ANUAL DE. MATEMÁTICA 7º ano
COLÉGIO VICENTINO IMACULADO CORAÇÃO DE MARIA Educação Infantil, Ensino Fundamental e Médio Rua Rui Barbosa, 1324, Toledo PR Fone: 3277-8150 PLANEJAMENTO ANUAL DE MATEMÁTICA 7º ano PROFESSORAS: SANDRA MARA
m dela vale R$ 500,00,
CLICK PROFESSOR Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Calcule: Se um carro mede cerca de 4 m, quantos carros, aproximadamente, há em uma rodovia com 3 pistas e que tem 6 km
PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,
Matemática Financeira Módulo 2
Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente
b) A quantidade mínima de peças que a empresa precisa vender para obter lucro.
Avaliação Trimestral Amanda Marques Adm-Manhã 1. Uma empresa produz um tipo de peça para automóveis. O custo de produção destas peças é dado por um custo fixo de R$10,00 mais R$5,00 por peça produzida.
Lista 4. 2 de junho de 2014
Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua
Problemas de volumes
Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução
É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do
A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y
5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas
Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.
Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.
Super Boia Eletronica
Super Boia Eletronica funcionamento, ajuste e operação Manual Técnico www.bombac.com.br Industria Brasileira Super Boia Eletronica As vantagens DURABILIDADE: A Super Boia Eletronica funciona com contatos
Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 4 Disciplina: matemática Prova: desafio nota: QUESTÃO Como prêmio de final de ano, o dono de uma loja quer dividir uma
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA UNICAMP-FASE. POR PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO Em uma determinada região do planeta, a temperatura média anual subiu de 3,35 ºC em 995 para
A A A A A A A A A A A A A A A
MTEMÁTIC ViajeBem é uma empresa de aluguel de veículos de passeio que cobra uma tarifa diária de R$ 60,00 mais R$,50 por quilômetro percorrido, em carros de categoria. lucar é uma outra empresa que cobra
Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.
SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces
Geometria Área de Quadriláteros
ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,
Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 6.05.2010. 11.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 6.05.2010 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS. Reconhecer a figura de uma circunferência e seus elementos em diversos objetos de formato circular.
CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS "Um homem pode imaginar coisas que são falsas, mas ele pode somente compreender coisas que são verdadeiras, pois se as coisas forem falsas, a noção delas não é compreensível."
TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.
Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou
1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra
GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos
Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D
Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,
PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2014-01 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1
PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2014-01 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 Exercício 1 Apesar da existência do Sistema Internacional (SI) de Unidades, ainda existe a divergência
Matemática Financeira II
Módulo 3 Matemática Financeira II Para início de conversa... Notícias como essas são encontradas em jornais com bastante frequência atualmente. Essas situações de aumentos e outras como financiamentos
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005
b) Determine o valor inicial cobrado pela construtora para a construção do prédio da biblioteca.
Questão 1 Uma construtora, para construir o novo prédio da biblioteca de uma universidade, cobra um valor fixo para iniciar as obras e mais um valor, que aumenta de acordo com o passar dos meses da obra.
