Fun c ao Logaritmo Fun c ao Logaritmo ( ) F. Logaritmo Matem atica II 2008/2009

Tamanho: px
Começar a partir da página:

Download "Fun c ao Logaritmo Fun c ao Logaritmo ( ) F. Logaritmo Matem atica II 2008/2009"

Transcrição

1 Função Logaritmo ( )

2 Função Logaritmo Acabámos de estudar a função exponencial, cuja forma mais simples é a função f(x) = e x. Resolvemos vários problemas que consistiam em calcular f(x 0 ) para um valor x 0 indicado. Suponhamos agora que pretendemos calcular um número y tal que e y = 9 Podemos ir por tentativas até chegarmos a um número razoável. Tentemos y = 2 Obtemos e 2 = 7,389 Tentemos y = 3 Obtemos e 3 = 20,0855 Tentemos y = 2,5 Obtemos e 2,5 = 12,18 Tentemos y = 2,3 Obtemos e 2,3 = 9,97 Tentemos y = 2,2 Obtemos e 2,2 = 9,025 Tentemos y = 2,199 Obtemos e 2,199 = 9,01599 Tentemos y = 2,198 Obtemos e 2,198 = 9, Verificamos que este processo é muito moroso...

3 O que foi feito para o número 9 podia ser feito para qualquer número x positivo. Dado um número x > 0, podemos encontrar um número y tal que e y = x Definimos uma nova função, chamada logaritmo, da forma seguinte: y é logaritmo de x se x = e y isto é y = ln(x) se x = e y Este logaritmo designa-se por logaritmo neperiano e e é a base deste logaritmo.

4 Podemos generalizar este raciocínio para qualquer base a positivo e diferente de 1. Logaritmo de um número positivo na base a, positivo e diferente de 1 é o número a que se deve elevar a base para obter x, i.e, log a x = y x = a y

5 Gráfico das funções g(x) = log 10 x,f(x) = lnx e h(x) = log 2 x

6 Propriedades Para a,b > 0 e diferente de 1 tem-se 1 para x > 0, x = a log a x 2 log a a = 1 3 log a 1 = 0 4 para p,q > 0, log a (p.q) = log a p + log a q 5 para p,q > 0, log a ( p q ) = log a p log a q 6 para p > 0 e q um número qualquer, log a (p q ) = q.log a p 7 log a a x = x 8 para x > 0, log a x = log b x log b a

7 Exemplo 1 log 2 32 = log = 5 2 log 0,1 100 = log 0, = log 0,1 (10 1 ) 2 = log 0,1 ( 1 10 ) 2 = log 0,1 (0,1) 2 = 2 Exercício 1- Determine (a) log 7 49 (b) log 2 32 (c) ln1 (d) lne 2- Resolva as seguintes equações (a) log 10 x = 0 (b) log b 64 = 3

8 Juros Compostos Já vimos que, num processo de juros compostos, com capital inicial C e uma taxa de juros j, o valor do capital acumulado A ao fim de x anos é dado por A = C.(1 + j) x Com esta expressão podemos resolver vários problemas.

9 A = C.(1 + j) x 1- Dados o capital inicial e a taxa de juro, determinar o capital acumulado (A) passado um determinado número de anos. 2- Dados o capital inicial e a taxa de juro, determinar o número de anos (x) necessários para se atingir um certo capital (acumulado). 3- Dado o capital inicial e o número de anos em que se pretende atingir um determinado capital (acumulado), calcular a taxa de juro (j) adequada. 4- Dados uma taxa de juro e o capital acumulado que se pretende atingir após um determinado número de anos, calcular o capital inicial (C) necessário.

10 Exemplo Suponha que a taxa de juro que um determinado banco oferece, aos seus clientes, é de 3% ao ano, em regime de juros compostos. 1- Suponha que um cliente faz um depósito de euros. (a) Determine o capital acumulado ao fim de 2 anos. (b) Calcule o número de anos que demora para obter um capital acumulado de euros. (c) Determine a taxa de juro necessária para que o cliente obtivesse euros de capital acumulado ao fim de 15 anos. 2- Determine o capital inicial a aplicar, por um cliente, para obter euros ao fim de 10 anos.

11 Resolução 1- A = C.(1 + j) x (a) A = (1 + 0,03) 2 = (1,03) 2 = ,5 O capital acumulado ao fim de 2 anos é de ,5 euros.

12 Resolução (cont.) (b) Temos = (1,03) x = (1,03)x (1,03) x = 1,3333 Aplicando log 1,03 (i.e, fazendo a composição com a função log 1,03 x) em ambos os membros vem

13 Resolução (cont.) log 1,03 (1,03) x = log 1,03 1,3333 x = log 1,03 1,3333 x = ln1,3333 ln1,03 x 9,73 O número de anos que demora para obter um capital acumulado de euros é de 9,73 anos. Assim, só passado 10 anos é que se obtém um capital acumulado superior a euros.

14 Resolução (cont.) (c) Temos = (1 + j) = (1 + j) = (1 + j) = 1 + j 1,047 = 1 + j j = 0,047 logo a taxa de juro necessária é de 4,7%.

15 Resolução (cont.) 2- Temos = C(1,03) 10 C = (1,03) 10 C = ,69 O capital inicial a aplicar deveria ser ,69 euros.

16 Valor Marginal Consideremos a função logaritmo y = ln x (f(x) = ln x) e calculemos o seu valor marginal y. Temos y = f(x + 1) f(x) = ln(x + 1) lnx = ln( x + 1 x ) O valor marginal do logaritmo y = lnx é ainda uma função logaritmo: y = ln( x + 1 x )

17 Derivada Consideremos a função logaritmo y = ln x (f(x) = ln x) e calculemos a sua derivada f (x) = lim h 0 f(x + h) f(x) h Comecemos por calcular a diferença e depois a razão incremental f(x + h) f(x) = ln(x + h) lnx = ln( x + h x ) f(x + h) f(x) h

18 f(x + h) f(x) h = ln( x + h x ) h Pretendemos determinar = 1 h ln(x + h x ) = ln[( x + h x ) 1 h] f (x) = lim h 0 ln[( x + h x ) 1 h]

19 Prova-se que Assim, f (x) = lim h 0 ln[( x + h x ) 1 h] lim [(x + h h 0 x ) h] 1 = e 1 x f (x) = lne 1 x = 1 x Concluímos que a derivada da função logaritmo lnx é 1 x, isto é, (lnx) = 1 x.

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

Fun c ao Exponencial Fun c ao Exponencial ( ) F. Exponencial Matem atica II 2008/2009

Fun c ao Exponencial Fun c ao Exponencial ( ) F. Exponencial Matem atica II 2008/2009 Função Exponencial (20-02-2009) Função Exponencial Chama-se função exponencial de base a à correspondência f : R R + x a x, com a > 0 Se a = 1, a função é constante e tem pouco interesse. Vejamos agora,

Leia mais

Aulas n o 22: A Função Logaritmo Natural

Aulas n o 22: A Função Logaritmo Natural CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos

Leia mais

Concavidade. Universidade de Brasília Departamento de Matemática

Concavidade. Universidade de Brasília Departamento de Matemática Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Máximos e mínimos em intervalos fechados

Máximos e mínimos em intervalos fechados Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0

Leia mais

Equações Exponenciais e Logarítmicas

Equações Exponenciais e Logarítmicas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Exponenciais e Logarítmicas

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

O logarítmo e aplicações da integral Aula 31

O logarítmo e aplicações da integral Aula 31 O logarítmo e aplicações da integral Aula 31 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 0/11/014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Capítulo 3- Modelos populacionais

Capítulo 3- Modelos populacionais Capítulo 3- Modelos populacionais 3.1- Introdução (página 84 do manual) [Vídeo 29] Aqui pretendemos estudar a evolução do número de indivíduos de uma população. (84) Crescimento populacional positivo:

Leia mais

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos ( Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Exercícios de exames e testes intermédios 1. Seja g uma função contínua, de domínio R, tal que: para todo o número real x, (g g)(x) = x para um certo

Leia mais

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa. LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

Composição de Funções

Composição de Funções Composição de Funções Existem muitas situações em que uma função depende de uma variável que, por sua vez, depende de outra, e assim por diante. Podemos dizer, por exemplo, que a concentração de monóxido

Leia mais

Crescimento Populacional

Crescimento Populacional Crescimento Populacional (06-03-09) Taxa de variação Suponha que y é uma quantidade que depende de outra quantidade x. Assim, y é uma função de x e escrevemos y = f(x). Se x variar de x 1 para x 2, então

Leia mais

Consequências do Teorema do Valor Médio

Consequências do Teorema do Valor Médio Universidade de Brasília Departamento de Matemática Cálculo 1 Consequências do Teorema do Valor Médio Neste texto vamos demonstrar o Teorema do Valor Médio e apresentar as suas importantes consequências.

Leia mais

A derivada (continuação) Aula 17

A derivada (continuação) Aula 17 A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 007/008 Semestre 1 o Apontamentos Teóricos:

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Exponenciais e Logaritmos - Notas de Aulas 3(2016) Prof Carlos Alberto S Soares

Exponenciais e Logaritmos - Notas de Aulas 3(2016) Prof Carlos Alberto S Soares Exponenciais e Logaritmos - Notas de Aulas 3(206) Prof Carlos Alberto S Soares Função Logarítmica Iniciamos estas propondo um exercício que evidenciará a relação entre uma função e sua inversa quanto ao

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa intermédia nº 4 A

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa intermédia nº 4 A 1º Ano de Matemática A Tarefa intermédia nº 4 A 1. No referencial da figura estão partes das representações gráficas das funções f e g definidas por: f ( ) = 6 e g( ) 4 =. 1.1. Indique o domínio, o contradomínio,

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5 Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº 5 do plano de trabalho nº 5 Resolver os eercícios 03, 0, 05, 0 e 6 das páginas 95 e 0.

Leia mais

PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta)

PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) PROVAS Ciência da Computação 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) Ajuste de Curvas Objetivo Ajustar curvas pelo método dos mínimos quadrados 1 - INTRODUÇÃO Em geral, experimentos

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material

Leia mais

f(x) x x 2 e que se encontra representada

f(x) x x 2 e que se encontra representada Escola Secundária com º ciclo D. Dinis 0º Ano de Matemática A TEMA Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Aula 5 do plano de trabalho nº Resolver os exercícios 5,, 8, 9 e

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II Tarefa Intermédia nº 6 1. No referencial da figura está representada graficamente uma função h, de domínio IR, e as assímptotas do gráfico. Dê eemplo de uma sucessão ( u n ) tal que: 1.1. lim( h( un 1..

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

Qual é o tempo? INTRODUÇÃO

Qual é o tempo? INTRODUÇÃO LOGARÍTMOS INTRODUÇÃO Qual é o tempo? Amanda ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. O declive da reta AB é dado por: m AB = y B y A x B x A = 2 = 2 + = Como retas paralelas têm o mesmo declive, de

Leia mais

Tarefa Intermédia nº 7

Tarefa Intermédia nº 7 Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada Tarefa Intermédia nº 7 1. O João

Leia mais

Os logaritmos decimais

Os logaritmos decimais A UA UL LA Os logaritmos decimais Introdução Na aula anterior, vimos que os números positivos podem ser escritos como potências de base 10. Assim, introduzimos a palavra logaritmo no nosso vocabulário.

Leia mais

VERSÃO B. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla.

VERSÃO B. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. VERSÃO B Na sua folha de respostas, escreva "VERSÃO B". A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. Identi que claramente os grupos e as questões que responde.

Leia mais

5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS

5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 57 5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 5.. EQUAÇÕES EXPONENCIAIS Equações que envolvem termos em que a incógnita aparece no epoente são chamadas de equações eponenciais. Por eemplo, =

Leia mais

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x + UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e

Leia mais

Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II

Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II Tema : Cálculo diferencial de funções de duas variáveis Este teto foi retirado do manual de apoio à

Leia mais

LOGARITMOS: se e somente se. Obs.: Temos que é a base do logaritmo, é o logaritmando e o logaritmo.

LOGARITMOS: se e somente se. Obs.: Temos que é a base do logaritmo, é o logaritmando e o logaritmo. LOGARITMOS: Definição: Sejam números reais positivos com Chamase Logaritmo de na base o expoente ao qual se deve elevar a base de modo que a potência seja igual a, isto é: se e somente se Obs: Temos que

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada Tarefa n.º 9 1. Considere as funções

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 0º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Resolver os exercícios 45, 4, 47, 46 e 49 das páginas 5 a 57 45. Considere

Leia mais

Logaritmos e a Calculadora

Logaritmos e a Calculadora Logaritmos e a Calculadora Denise Martinelli PIBID/Matemática Neumar Regiane Machado Albertoni PIBID/Matemática Violeta Maria Estephan professora do DAMAT CURITIBA, 015 19 a 1 de agosto de 015 Página 1

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

Derivadas. Incremento e taxa média de variação

Derivadas. Incremento e taxa média de variação Derivadas Incremento e taxa média de variação Consideremos uma função f, dada por y f (x). Quando x varia de um valor inicial de x para um valor x, temos o incremento em x. O símbolo matemático para a

Leia mais

Matemática 1. Conceitos Básicos 2007/2008

Matemática 1. Conceitos Básicos 2007/2008 Matemática 1 2007/2008 Objectivos Resolver rapidamente equações dos 1 o e 2 o graus Traduzir alguns problemas em equações Interiorizar os conceitos de equação possível e equação impossível Alguns conceitos

Leia mais

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f (

Leia mais

O domínio [ 1, 1] é simétrico em relação a origem.

O domínio [ 1, 1] é simétrico em relação a origem. QUESTÕES-AULA 33 1. Determine quais das funções abaixo são pares, quais são impares e quais não são pares nem impares. Justifique as suas respostas. (a) g : [ 3, 3] R, x x 3 (b) h : ( 3, 3) R, x x 3 x

Leia mais

Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim

Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim Cálculo Numérico Aula 4 Zeros de Funções 2014.1-09/04/2014 Prof. Rafael mesquita rgm@cin.ufpe.br Adpt. por Prof. Guilherme Amorim gbca@cin.ufpe.br Últimas aulas... Aritmética de máquina Erros Sistema de

Leia mais

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados.

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados. 17 Equações Diferenciais de Segunda Ordem Copyright Cengage Learning. Todos os direitos reservados. 17.2 Equações Lineares Não Homogêneas Copyright Cengage Learning. Todos os direitos reservados. Equações

Leia mais

Matemática Computacional Ficha 5 (Capítulo 5) 1. Revisão matéria/formulário

Matemática Computacional Ficha 5 (Capítulo 5) 1. Revisão matéria/formulário Matemática Computacional Ficha 5 (Capítulo 5) Integração numérica 1. Revisão matéria/formulário A técnica de aproximar o integral de f pelo integral do seu polinómio interpolador passando num conjunto

Leia mais

FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) =

FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) = Matemática Matemática Avançada 3 o ano João mar/11 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є f: R definida por f(x) = - {1}, a função Definições - O gráfico da função

Leia mais

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios

Leia mais

Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Polinômios de Taylor Aula 24 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Os polinômios

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

Concluímos esta secção apresentando alguns exemplos que constituirão importantes limites de referência. tan θ. sin θ

Concluímos esta secção apresentando alguns exemplos que constituirão importantes limites de referência. tan θ. sin θ aula 08 Funções reais de variável real Limites e continuidade (Continuação) A definição de limite segundo Heine permite, como já vimos anteriormente no caso da álgebra de limites, transpor quase imediatamente

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

Matemática Aplicada à Economia LES 201. Aulas 19 e 20 Funções exponenciais e logarítmicas. Luiz Fernando Satolo

Matemática Aplicada à Economia LES 201. Aulas 19 e 20 Funções exponenciais e logarítmicas. Luiz Fernando Satolo Matemática Aplicada à Economia LES 201 Aulas 19 e 20 Funções exponenciais e logarítmicas Luiz Fernando Satolo Funções Exponenciais e Logaritmicas Chiang, cap. 10 Funções exponenciais e logarítmicas várias

Leia mais

( 5,2 ). Quantas soluções existem?

( 5,2 ). Quantas soluções existem? Escola Secundária com º ciclo D Dinis 0º Ano de Matemática A Funções e Gráficos Generalidades Funções polinomiais Função módulo Considere as funções da família y = a(x b) Tarefa nº De que tipo de funções

Leia mais

FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!!

FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!! Matemática Matemática Avançada 3 o ano João mar/1 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є!! - {1}, a função f: R!! definida por f(x) =!! Definições - O gráfico

Leia mais

Apoio sobre a aplicação do teorema da função implícita. A) Uma nota sobre terminologia.

Apoio sobre a aplicação do teorema da função implícita. A) Uma nota sobre terminologia. APOIO À FICHA 8 MARGARIDA BAÍA, DM, IST Apoio sobre a aplicação do teorema da função implícita. A) Uma nota sobre terminologia. Exemplo 1. A equação y = 6x 2 + 3 define y explicitamente em função de x.

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. Tarefa nº 5 do plano de trabalho nº 1

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. Tarefa nº 5 do plano de trabalho nº 1 Escola Secundária com 3º ciclo D. Dinis 1º Ano de Matemática A Tema III Trigonometria e Números Complexos Tarefa nº 5 do plano de trabalho nº 1 1. Na figura está representado o gráfico da função g, de

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Ajuste de dados pelo Métodos dos Mínimos Quadrados

Ajuste de dados pelo Métodos dos Mínimos Quadrados Ajuste de dados pelo Métodos dos Mínimos Quadrados Prof. Santos Alberto Enriquez Remigio Famat-Ufu Problema Após serem efetuadas medições num gerador de corrente contínua, foram obtidos os valores indicados

Leia mais

1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5.

1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5. Lista de Exercícios de Cálculo I - Funções de uma variável Real 1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (a) 2x + 5 < 3x 7 3 2x 3 5 7 (c) x 2 x 6 < 0 (d)

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como A e B são acontecimentos incompatíveis, temos que A B, ou seja, P A B 0 Como P A B P A + P B P A B P A B + P A B P

Leia mais

Função Afim. Definição. Gráfico

Função Afim. Definição. Gráfico Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função

Leia mais

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em

Leia mais

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a: Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 12 (entregar em ) GRUPO I

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 12 (entregar em ) GRUPO I Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos TPC nº (entregar em -0-0) GRUPO I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 0) Um recipiente com capacidade para 5 litros está completamente cheio de leite puro. Uma pessoa retira 3 litros desse leite e completa o recipiente com 3 litros de água. Em seguida, retira 3 litros

Leia mais

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla.

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. VERSÃO A Na sua folha de respostas escreva "VERSÃO A". A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. Identi que claramente os grupos e as questões que responde.

Leia mais

Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010 . Logaritmos Definição: O logaritmo de um número real x na base n, denotado por log n x, é definido como o expoente ao qual devemos elevar o número n para obtermos como resultado o número x, ou seja log

Leia mais

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016 MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x

Leia mais

Grupo I Cada resposta certa...10 Grupo II

Grupo I Cada resposta certa...10 Grupo II Provas de Acesso ao Ensino Superior Para Maiores de Anos Candidatura de 0 Exame de Matemática Tempo para realização da prova: horas Tolerância: 0 minutos Material necessário: Material de escrita. Máquina

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

Diagrama de Fluxo de Caixa Fluxo de caixa é uma sucessão temporal de entradas e de saídas de dinheiro no caixa de uma entidade.

Diagrama de Fluxo de Caixa Fluxo de caixa é uma sucessão temporal de entradas e de saídas de dinheiro no caixa de uma entidade. Séries de agamentos Agora vamos estudar as operações financeiras que envolvem pagamentos ou recebimentos parcelados. Consideremos os pagamentos, 2,, n nas datas, 2,, n, respectivamente de um Valor resente

Leia mais

Algumas Regras para Diferenciação

Algumas Regras para Diferenciação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Algumas Regras para

Leia mais

Matemática Aplicada à Tecnologia

Matemática Aplicada à Tecnologia Provas e listas: Matemática Aplicada à Tecnologia Período 2015.2 Sérgio de Albuquerque Souza 4 de maio de 2016 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio

Leia mais

Integrais. Parte I I. Integrais Indefinidos [ELL] Definição

Integrais. Parte I I. Integrais Indefinidos [ELL] Definição Parte I I. Indefinidos [ELL] A taxa de crescimento da população Estafilococos é dada por 21, em milhares de indivíduos por minuto, onde representa o tempo, em minutos. Qual a função que devolve o número

Leia mais

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23 Esboço de Gráfico - s e Regras de L Hospital Aula 23 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 06 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

Prof. Doherty Andrade. 25 de outubro de 2005

Prof. Doherty Andrade. 25 de outubro de 2005 Funções Hiperbólicas - Resumo Prof. Doherty Andrade 5 de outubro de 005 Sumário Funções Transcendentes. Função Logaritmo Natural............................ Funções Trigonométricas Hiperbólicas.....................

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente 11-1-13 1.3 Derivadas de funções definidas implicitamente Uma equação do tipo f(,y) = nem sempre permite obter eplicitamente y como função de. Por eemplo, y 1 y 1 não é uma função y 1 y 1 y 1 y 1 3 1.3

Leia mais

Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo

Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo Cálculo Diferencial - 2016.2 - Lista de Problemas 1.1 1 Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo Questão 01 Encontre o domínio da função (a) f(x) = x + 4 x 2 9 (b) f(t) = 3 2t 1 (c)

Leia mais

Prova Escrita de Conhecimentos Específicos de MATEMÁTICA

Prova Escrita de Conhecimentos Específicos de MATEMÁTICA Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos Prova Escrita de Conhecimentos Específicos

Leia mais

Capítulo 2: Derivada de funções de uma variável real

Capítulo 2: Derivada de funções de uma variável real Notas Matemática para Economia I: Capítulo 2: Derivada de funções de uma variável real Felipe Rivero e Thiago Salvador Revisado por: Emilia Neves, Juliana Coelho e Yuri Ki F. Rivero e T. Salvador 2 Matemática

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 5º Teste de avaliação versão B.

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 5º Teste de avaliação versão B. Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para

Leia mais