CÁLCULO COMPUTACIONAL DA SÉRIE DE FOURIER

Tamanho: px
Começar a partir da página:

Download "CÁLCULO COMPUTACIONAL DA SÉRIE DE FOURIER"

Transcrição

1 CÁLCULO COMPUTACIONAL DA SÉRIE DE FOURIER Luiz Eduardo Ourique 1 1. Resumo As séries de Fourier foram introduzidas pelo matemático francês Joseph Fourier ( ), a partir de um artigo publicado em 1807, descrevendo a teoria analítica do calor, ver Ramirez (1985) e Garbi (006). A idéia central do trabalho de Fourier era a hipótese fundamental de que, satisfeitas certas condições, uma função pode ser representada por uma série, em que cada parcela desta série é uma combinação linear das funções trigonométricas seno e cosseno, cujos coeficientes são chamados de coeficientes de Fourier. Esta idéia não foi aceita de imediato; no entanto, mais tarde, com as contribuições de Dirichlet, foi possível estabelecer as condições de convergência das séries de Fourier, ver Hsu (1973). Com esta teoria, Fourier desenvolveu técnicas de resolução de problemas de contorno na condução de calor. Com o tempo, o trabalho de Fourier demonstrou ser de grande importância, tendo aplicações na Física e na Matemática, e mais modernamente em Teoria da Comunicação, Sistemas Lineares, entre outras áreas, ver Godunov (1984). Muitos cursos de graduação da área de Ciências Exatas prevêem em alguma de suas ementas um estudo, ainda que introdutório, das séries de Fourier. Aos 1 Doutor em Engenharia Mecânica pela UFRGS. Prof. da Faculdade de Matemática da Pontifícia Universidade Católica do Rio Grande do Sul. 458

2 professores é dada a árdua tarefa de apresentar em algumas aulas as idéias gerais: os principais resultados e as técnicas de cálculos dos coeficientes, e a expansão de uma função periódica como uma soma de senos e cossenos. Em muitos casos, os professores não têm tempo de mostrar uma aplicação, como por exemplo, a resolução de um problema de valores de contorno, ver DiPrima (00). A utilização de recursos computacionais em praticamente todas as áreas da atividade humana permite o acesso e a divulgação de informações numa escala muito maior do que aquela dos tempos em que Fourier viveu. Tal fenômeno chegou à Universidade: o uso de recursos computacionais permite facilidades de cálculo, deixando mais tempo para análise e interpretação de resultados. Neste contexto, este trabalho apresenta uma abordagem computacional de cálculo dos coeficientes de Fourier e das somas parciais da série de Fourier de uma dada função usando o programa Maple, disponível aos alunos e professores nos laboratórios da Faculdade de Matemática ( FAMAT ) da Pontifícia Universidade Católica do Rio Grande do Sul ( PUCRS ), numa seqüência de gráficos que permitem a visualização da convergência. Os pré-requisitos para o entendimento desta teoria são: Cálculo Diferencial e Integral, Séries Infinitas, Bases Ortogonais de Espaços de Dimensão Infinita, Propriedades das Funções Trigonométricas, entre outros. Para dar uma base teórica, apresentamos na seção alguns resultados sobre funções periódicas, definição da série de Fourier e as propriedades das funções ortogonais que motivam a expansão em série de Fourier de uma função periódica. Na seção 3, apresentamos exemplos de utilização do Maple para determinação dos coeficientes de Fourier e 459

3 das somas parciais da série. Na seção 4, apresentamos as conclusões do trabalho. Palavras-chave. Séries de Fourier. Convergência.. Funções periódicas e coeficientes de Fourier Uma função f = f( t) é periódica se existir um T tal que f(t) = f(t + T) (1) para qualquer t pertencente ao domínio de f. O menor T para o qual a igualdade (1) é válida é chamada de período de f. Quando existe T que satisfaz (1), dizemos que a função f(t) é T-periódica. Um exemplo clássico de função π-periódica é a função f(t) = cos(t). Propriedade 1. Se f (t +T) = f(t), então a+ T/ a T/ T/ f(t)dt = f(t)dt () T/ Isto é, a integral de uma função T periódica é invariante, num intervalo de comprimento igual a T. Em muitos problemas de valores de contorno, estamos procurando uma função que satisfaz certas condições, as quais permitem que a função possa ser representada por sua série de Fourier. Portanto, no que segue vamos admitir que f(t) satisfaz tais condições. Se f(t) é uma função periódica com período T, então f(t) pode ser representada pela série trigonométrica: 1 f(t)= a +a 0 1 cos(ω 0 t)+a cos(ω 0 t)+...+b 1 sen(ω 0 t)+b sen(ω 0 t) +... ou: 460

4 1 f(t)= a n= 1 (a cos(nω t) + b sen(nω t)) (3) n onde ω 0 = π/t. A propriedade fundamental necessária para o desenvolvimento da teoria é a ortogonalidade das funções seno e cosseno, no intervalo [ T/, T/]. Podemos demonstrar que o conjunto de funções {1,cos(ω 0 t),cos(ω 0 t),...,sen(ω 0 t),sen(ω 0 t),...}, 0 n 0 denotado por {1, cos(nω 0 t),sen(nω 0 t)} n, é um conjunto ortogonal de funções, no intervalo [ T/, T/ ], onde ω 0 = π/t. Resumindo, podemos escrever as fórmulas de cálculos dos coeficientes de Fourier, conforme Hsu (1973): a n = T b n = T T/ T/ T/ T/ f(t)cos(nω t)dt 0, n = 0,1,,... (4) f(t)sen(nω 0t)dt, n = 1,,... (5) Em função da propriedade da integral definida expressa na fórmula (), não é necessário que o intervalo de integração em (4) e (5) seja simétrico em relação à origem, mas sim que a integral seja considerada em um intervalo igual a um período, ver Courant (1970). Com as fórmulas acima, podemos determinar computacionalmente os coeficientes de Fourier de uma dada função T-periódica, bastando para isto definir a freqüência angular fundamental ω 0 =π/t, e implementar as fórmulas (4) e (5). Como último resultado teórico importante desta seção, destaco as condições de Dirichlet, mediante as quais uma função admite representação em série de Fourier. Condições de Dirichlet. São as seguintes: 1.A função f(t) tem número finito de descontinuidades num período. 461

5 . A função f(t) tem um número finito de máximos e mínimos num período. 3. A função f(t) é absolutamente integrável num período, isto é, T/ T/ f(t) dt < (6) Se uma função satisfaz as três condições acima, então, num ponto de descontinuidade, digamos t = t 1, a série de Fourier converge para f(t + ) + f(t1 1 onde f(t 1 +) e f(t 1 ) são os limites laterais à direita e à esquerda, respectivamente, de f(t) em t 1. Na próxima seção, vamos mostrar um exemplo de como calcular os coeficientes de Fourier no Maple, fazer a definição das somas parciais da série e sua análise gráfica. 3. Cálculo dos coeficientes de Fourier e das somas parciais no Maple Para implementar as fórmulas de cálculo dos coeficientes a n e b n, inicialmente devemos definir a função, o período T e a freqüência fundamental. Mostremos com um exemplo. Exemplo 1. Calcular os coeficientes de Fourier da onda f(t) = 1,se 1,se 1 < t < 0 0 < t < 1 ) (7) e f(t+) = f(t), cujo gráfico está esboçado abaixo na figura 1. Para obter este gráfico, uma solução é usar os comando abaixo no Maple, onde definimos a função, esboçamos o gráfico e calculamos os coeficientes: > f:=t->piecewise(-1<t and t<0,-1,t>0 and t<1,1,t>1 and t<,-1,t>- and t<- 1,1); 46

6 > with(plots): > graf1:=textplot([0.5,1.5,`f(t)`]): >graf:=plot(f(t),t=-..,discont=true, thickness=): > display(graf1,graf); O commando piecewise define uma função com mais de uma lei; with(plots) carrega uma bilbioteca, graf1 e graf definem dois gráficos e display mostra estes gráficos. Fig.1 Onda quadrada do exemplo 1. Para definirmos o coeficiente a 0, entramos com os comandos abaixo: > T:=; > omega0:=*pi/t; > a0:=/t*int(f(t),t=-t/..t/); Para calcular o coeficiente a 0, escrevemos: > a0:=/t*int(f(t),t=-t/..t/); Agora, definimos os coeficientes a n como funções de n, para n =1,...: 463

7 >an:=n-> t=-t/..t/); /T*int(f(t)*cos(n*omega0*t), Verificamos diretamente que os coeficientes a n são iguais a zero, para todo n=0,1,,.... Agora, definimos os coeficientes b n como funções de n, para n = 1,,...: >bn:=n->/t*int(f(t)*sin(n*omega0*t), t=-t/..t/); Como n é um número inteiro positivo, vemos que os coeficientes pares são iguais a zero. A fórmula geral é, 0, n portanto, b n = 4, n nπ par. A série de Fourier, neste ímpar caso, é uma série de senos. Igualando a função à sua série de Fourier, obtemos: f(t) = sen(πt)+ sen(3πt)+ sen(5πt)+ sen(7πt) +... π 3π 5π π = 4 π + sen((n + 1) πt) = n + n 0 1 Definindo s n (t) = a 0 / + (a n k= 1 k cos(kω t) + b sen(kω como a n-ésima soma parcial da série de Fourier, as primeiras somas parciais da série obtida acima são: s 1 (t) = π 4 sen(πt), s3 (t) = π 4 ( sen(πt) sen(3πt) ) e 0 k 0 t)) s 5 (t)= (sen(πt)+ sen(3πt)+ sen(5πt)). Os gráficos de π 3 5 f(t) e das duas primeiras somas parciais estão esboçados na figura 1. Como podemos ver, não há uma proximidade muito grande entre os gráficos, a não ser em um pequeno número de pontos. De fato, s 1 (t) e f(t) coincidem em quatro pontos, enquanto s 3 (t) e f(t) coincidem em nove pontos. 464

8 >graf0:=plot(f(t),t=-..1,discont=true): >graf1:=plot(s(1,t),t=-1..1,color=red): >graf:=plot(s(3,t),t=- 1..1,color=blue,thickness=3): >graf3:=textplot([0.5,1.,`s1(t)`],color =red): >graf4:=textplot([0.5,0.75,`s3(t)`],colo r=blue): Fig.. As somas parciais s 1 (t) e s 3 (t) de f(t). Para valores mais elevados de n, podemos definir uma soma parcial como uma função de duas variáveis no Maple: >s:=(n,t)->sum(bn(k)*sin(k*omega0*t), k=1..n); Assim, se quisermos definir e ver todos os termos de uma soma parcial, podemos usar o comando expand: > expand(s(5,t)); 465

9 A execução deste comando define a soma parcial s 5 (t) com os cinco primeiro harmônicos ( neste exemplo, temos uma série de senos ), só que escrita numa forma diferente da usual. Aumentando o número de parcelas da soma parcial, vemos que esta tende a se aproximar de f(t), num número maior de pontos, como podemos ver no gráfico, onde está esboçado o gráfico da soma parcial s 30 (t). Vemos graficamente que nos pontos de descontinuidade, por maior f(t+ ) + f(t ) que seja o valor de n, a soma parcial s n (t), conforme estabelece o teorema da convergência das séries de Fourier, satisfeitas as condições de Dirichlet. De fato, para a função f(t) do gráfico acima, nos pontos de descontinuidade, como por exemplo em t = 0, os limites laterais são f(0+)= lim f(t) =1 e f(0 )= lim f(t) = 1, logo, t 0+ t 0 f(0+ ) + f(0 ) s n (0) = 0. Para obter o gráfico da figura 3, devemos usar os comandos: >graf5:=plot(f(t),t=-..,discont=true, thickness=, color=red): >graf6:=plot(s(30,t),t=-..,color=blue,thickness=): >graf7:=textplot([0.5,1.,`f(t)`],color= red): >graf8:=textplot([0.5,0.8,`s30(t)`],colo r=blue): >display(graf5,graf6,graf7,graf8); 466

10 Fig. 3. A soma parcial s 30 (t). De fato, podemos visualizar a convergência graficamente, através de uma seqüência de gráficos animados, através do comando abaixo: >animate(plot,[{s(n,t),f(t)},t=-.., discont=true],n=1..60,frames=60); Tal comando produz uma animação que pode ser vista no Maple ou no Powerpoint. Nos pontos t = 0, ± 1, ±, ± 3,... a função f(t) definida acima tem uma descontinuidade. Na vizinhança destes pontos, a medida que n cresce para infinito, a soma parcial s n (t) tende a uma valor que difere aproximadamente 9% de f(t), sendo que tal diferença não pode ser eliminada, e que é conhecida como fenômeno de Gibb, ver O Neill (1995). Por exemplo, se t 0+, então f(t) 1, mas s n (t) 1.09, quando n +. O que se observa é que o pico da soma parcial s n (t) se aproxima cada vez mais de zero, à medida que aumentamos o valor de n, mas este pico não pode ser eliminado. 467

11 4. Conclusões: neste trabalho, apresentamos a dedução da fórmula dos coeficientes de Fourier, o cálculo dos coeficientes num caso particular (onda quadrada), e a definição das somas parciais da série de Fourier. Mostramos que é possível visualizar a convergência das somas parciais, usando os recursos gráficos do Maple, o que significa pouco esforço nos cálculos manuais, deixando mais tempo para a interpretação dos resultados. Acreditamos que esta possa ser uma prática a ser utilizada em cursos de graduação no ensino de séries de Fourier, com este programa (Maple) ou outro similar, que permita uma melhor visualização dos gráficos das somas parciais da série de Fourier de f(t), o que permite uma compreensão mais precisa do significado da convergência da série de Fourier e o fenômeno de Gibb. Outras aplicações das séries de Fourier, relacionadas com o resolução de problemas de valores de contorno e o Teorema de Parseval, que pode ser usado na determinação da soma de séries numéricas convergentes,ver Abdounur (1999) e DiPrima (00), também podem ser exploradas, e deixadas para um futuro trabalho. Referências: Abdounur, O. J. Matemática e Música. O pensamento analógico na construção de significados. São Paulo, Escrituras Editora, Brigham, E. O. The Fast Fourier Transform and its Applications. New Jersey, Prentice Hall, Boyce, W., e DiPrima, R. Equações Diferenciais Elementares e Problemas de Valores de Contorno. Rio de Janeiro, LTC Editora,

12 Courant, Cálculo Diferencial e Integral, Vol. 1. Porto Alegre, Editora Globo, Garbi, G. G. A rainha das ciências. São Paulo, Editora Livraria da Física, 006. Godunov, S. K. Ecuaciones de la física matemática. Moscou, Editora Mir, Hsu, H. P. Análise de Fourier. Rio de Janeiro, Livros Técnicos e Científicos Editora, O Neill, Peter. Advanced engineering mathematics. 4. ed. Pacific Grove : Brooks/Cole, Ramirez, Robert W. The FFT : Fundamentals and concepts. Prentice Hall. New Jersey

PSI-3214 Laboratório de Instrumentação Elétrica. Sinais Periódicos. Vítor H. Nascimento

PSI-3214 Laboratório de Instrumentação Elétrica. Sinais Periódicos. Vítor H. Nascimento PSI-34 Laboratório de Instrumentação Elétrica Introdução à Análise de Fourier Sinais Periódicos Vítor H. Nascimento Introdução Sinais periódicos (ou aproximadamente periódicos) aparecem em diversas situações

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais Séries de Fourier Série de Fourier Qualquer função periódica f(t) pode ser representada por uma

Leia mais

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes SÉRIES DE FOURIER Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues Ferreira Alves, Rafael Caveari Gomes UFF - Universidade Federal Fluminense Neste artigo mostramos com diversos

Leia mais

Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo

Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Convolução, Série de Fourier e Transformada de Fourier contínuas Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Tópicos Sinais contínuos no tempo Função impulso Sistema

Leia mais

Análise de Sinais no Tempo Contínuo: A Série de Fourier

Análise de Sinais no Tempo Contínuo: A Série de Fourier Análise de Sinais no Tempo Contínuo: A Série de Fourier Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 7 e 8 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 3. Série de Fourier

Leia mais

Métodos de Fourier Prof. Luis S. B. Marques

Métodos de Fourier Prof. Luis S. B. Marques MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

SÉRIES DE FOURIER. Felipe do Carmo Amorim. Fernando Soares Alves. Marcelo da Rocha Lopes. Engenharia Mecânica RESUMO

SÉRIES DE FOURIER. Felipe do Carmo Amorim. Fernando Soares Alves. Marcelo da Rocha Lopes. Engenharia Mecânica RESUMO SÉRIES DE FOURIER Felipe do Carmo Amorim Fernando Soares Alves Marcelo da Rocha Lopes Engenharia Mecânica RESUMO Apresentam-se no artigo que segue os conceitos sobre função periódica, séries trigonométricas,

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

Reginaldo J. Santos. Universidade Federal de Minas Gerais 22 de novembro de 2007

Reginaldo J. Santos. Universidade Federal de Minas Gerais  22 de novembro de 2007 Séries de Fourier e Equações Diferenciais Parciais Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.r/~regi de novemro de 7 Sumário Séries de

Leia mais

Séries de Fourier. Victor Rios Silva

Séries de Fourier. Victor Rios Silva Séries de Fourier Victor Rios Silva victorrios@live.com Universidade Federal Fluminense (UFF) Instituto de Matemática (IM) Departamento de Matemática Aplicada (GMA) Rua Mário Santos Braga, S/N Valonguinho

Leia mais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu

Leia mais

Capítulo 4 Séries de Fourier

Capítulo 4 Séries de Fourier Capítulo 4 Séries de Fourier Dizemos que representamos uma função real ela se expressa na série em série de Fourier quando os coeficientes são chamados de coeficientes de Fourier. Claro, a série de Fourier

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Representação de Fourier para Sinais 1

Representação de Fourier para Sinais 1 Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais A Transformada de Fourier Série de Fourier e Transformada de Fourier Partindo da Série de Fourier

Leia mais

Notas de Análise Real. Jonas Renan Moreira Gomes

Notas de Análise Real. Jonas Renan Moreira Gomes Notas de Análise Real Jonas Renan Moreira Gomes 6 de novembro de 2008 ii Sumário 1 Séries de Fourier 1 1.1 Produto Hermitiano......................... 1 1.1.1 Definições........................... 1 1.1.2

Leia mais

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2) Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

As séries de fourier tem como objetivo representar uma função periódica como uma soma de

As séries de fourier tem como objetivo representar uma função periódica como uma soma de Métodos Matemáticos Séries de Fourier Pedro Henrique do Nascimento de Luzia Engenharia Elétrica da Universidade Federal Fluminense phnl_vr@hotmail.com Resumo A fórmula geral para uma série de fourier é:.

Leia mais

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada

Leia mais

Fórmula de Taylor. Cálculo II Cálculo II Fórmula de Taylor 1 / 15

Fórmula de Taylor. Cálculo II Cálculo II Fórmula de Taylor 1 / 15 Fórmula de Taylor Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Fórmula de Taylor 1 / 15 Outra vez a exponencial... Uma função pode ser aproximada (na proximidade

Leia mais

Sistemas Lineares. Aula 9 Transformada de Fourier

Sistemas Lineares. Aula 9 Transformada de Fourier Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como

Leia mais

FUNDAMENTOS DE CONTROLE - EEL 7531

FUNDAMENTOS DE CONTROLE - EEL 7531 Soluções periódicas e ciclos limite Funções descritivas FUNDAMENTOS DE CONTROLE - EEL 7531 Professor: Aguinaldo S. e Silva LABSPOT-EEL-UFSC 9 de junho de 2015 Professor: Aguinaldo S. e Silva FUNDAMENTOS

Leia mais

Representação de sinais

Representação de sinais Representação de sinais Espaços vectoriais Seja F o conjunto de todos os sinais definidos no intervalo Neste conjunto estão definidas as operações de adição de funções e multiplicação por escalares (reais

Leia mais

Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) =

Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) = Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março 29 Exercício Seja f : R R uma função periódica tal que { se x < h f(x) = se h x

Leia mais

Nome: Erick Bordallo Tavares. Turma: 14:00 às 16:00hs. Professor: Altair

Nome: Erick Bordallo Tavares. Turma: 14:00 às 16:00hs. Professor: Altair Nome: Erick Bordallo Tavares Turma: 14:00 às 16:00hs Professor: Altair 1. SÉRIES DE FOURIER 1.1. FUNÇÕES PERIÓDICAS Exemplo: Uma função f(x) é dita periódica com um período T se f(x+t) = f(x) para qualquer

Leia mais

Aula de Processamento de Sinais I.B De Paula. Tipos de sinal:

Aula de Processamento de Sinais I.B De Paula. Tipos de sinal: Tipos de sinal: Tipos de sinal: Determinístico:Sinais determinísticos são aqueles que podem ser perfeitamente reproduzidos caso sejam aplicadas as mesmas condições utilizadas sua geração. Periódico Transiente

Leia mais

Transformada de Fourier. Theo Pavan e Adilton Carneiro TAPS

Transformada de Fourier. Theo Pavan e Adilton Carneiro TAPS Transformada de Fourier Theo Pavan e Adilton Carneiro TAPS Análise de Fourier Análise de Fourier - representação de funções por somas de senos e cossenos ou soma de exponenciais complexas Uma análise datada

Leia mais

SÉRIE DE FOURIER. Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos Niterói RJ, CEP

SÉRIE DE FOURIER. Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos Niterói RJ, CEP SÉRIE DE FOURIER LUCAS NOBREGA CANELAS COSTA GUIMARÃES NATÃ DOS SANTOS LOPES GOMES RICARDO DE ALMEIDA CARVALHO WERTES MOTTA OLIVEIRA Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos

Leia mais

Sinais Não-Periódicos de Tempo Contínuo - FT

Sinais Não-Periódicos de Tempo Contínuo - FT Sinais Não-Periódicos de Tempo Contínuo - FT A Transformada de Fourier FT é utilizada para representar um sinal não-periódico de tempo contínuo como uma superposição de senoides complexas. A natureza contínua

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 012 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01012 Métodos Aplicados de Matemática II Créditos/horas-aula

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Disciplina: Cálculo Diferencial e Integral IV Unidades: Escola Politécnica e Escola de Quimica Código: MAC 48 a

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO RESOLUÇÃO N. 075/12-COGEP DE 14/12/12

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO RESOLUÇÃO N. 075/12-COGEP DE 14/12/12 Ministério da Educação UIVERSIDADE TECOLÓGICA FEDERAL DO PARAÁ Câmpus Curitiba PLAO DE ESIO CURSO Bacharelados do Câmpus Curitiba da UTFPR MATRIZ AS FUDAMETAÇÃO LEGAL RESOLUÇÃO. 075/-COGEP DE 4// DISCIPLIA/UIDADE

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos 1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas

Leia mais

Tranformada de Fourier. Guillermo Cámara-Chávez

Tranformada de Fourier. Guillermo Cámara-Chávez Tranformada de Fourier Guillermo Cámara-Chávez O que é uma série de Fourier Todos conhecemos as funções trigonométricas: seno, cosseno, tangente, etc. O que é uma série de Fourier Essa função é periódica,

Leia mais

Convergência em espaços normados

Convergência em espaços normados Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO. 167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula

Leia mais

Processamento de Imagem. Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres

Processamento de Imagem. Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres Processamento de Imagem Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres Lembrando Filtragem Correlação A correlação e a convolução sãos dois conceitos relacionados a filtragem.

Leia mais

Resoluções de Equações Diferenciais Ordinárias (EDOs) por Séries de Potências

Resoluções de Equações Diferenciais Ordinárias (EDOs) por Séries de Potências Resoluções de Equações Diferenciais Ordinárias (EDOs) por Séries de Potências Hudson Umbelino dos Anjos 1, Julia de Paula Borges 2 1 Mestre em Matemática IFTO. e-mail: hudsonanjos@ifto.edu.br 2 Graduanda

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 167 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01167 Equações Diferenciais II Créditos/horas-aula Súmula

Leia mais

Transformada de Fourier: fundamentos matemáticos, implementação e aplicações musicais

Transformada de Fourier: fundamentos matemáticos, implementação e aplicações musicais Transformada de Fourier: fundamentos matemáticos, implementação e aplicações musicais MAC 0337 Computação Musical Jorge H. Neyra-Araoz IME USP 22/11/2007 Resumo Série de Fourier para funções periódicas

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n

Leia mais

2/47. da matemática é ainda de grande importância nas várias áreas da engenharia. Além disso, lado de Napoleão Bonaparte. 1/47

2/47. da matemática é ainda de grande importância nas várias áreas da engenharia. Além disso, lado de Napoleão Bonaparte. 1/47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia Sinais: conjunto de dados ou informação

Leia mais

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.10 Séries de Taylor e Maclaurin Copyright Cengage Learning. Todos os direitos reservados. Começaremos supondo

Leia mais

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de.

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de. MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES DE POTÊNCIAS Definição: Séries de Potências é uma série infinita de termos variáveis. Elas podem ser usadas em várias aplicações, como por exemplo,

Leia mais

Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1)

Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) silviavicter@iprj.uerj.br Tópicos Definição da Transformada de Fourier (TF) Propriedades importantes (ex: linearidade e periodicidade)

Leia mais

Erros nas aproximações numéricas

Erros nas aproximações numéricas Erros nas aproximações numéricas Prof. Emílio Graciliano Ferreira Mercuri Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR emilio@ufpr.br 4 de março de 2013 Resumo: O objetivo

Leia mais

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A Séries de Fourier Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke As séries de Fourier são a ferramente básica para se representar as funções periódicas, as quais desempenham um importante

Leia mais

Sinais e Sistemas. A Transformada de Fourier de Tempo Contínuo. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. A Transformada de Fourier de Tempo Contínuo. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sistemas A Transformada de Fourier de Tempo Contínuo Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Introdução Nas últimas aulas, desenvolvemos a representação

Leia mais

Série de Fourier. Prof. Dr. Walter Ponge-Ferreira

Série de Fourier. Prof. Dr. Walter Ponge-Ferreira Resposta à Excitação Periódica Série de Fourier Prof. Dr. Walter Ponge-Ferreira E-mail: ponge@usp.br Escola Politécnica da Universidade de São Paulo Departamento de Engenharia Mecânica - PME Av. Prof.

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinais e Sistemas Mecatrónicos Sinais e Sistemas Sinais Contínuos no Tempo José Sá da Costa José Sá da Costa T2 - Sinais Contínuos 1 Sinais Sinal É uma função associada a um fenómeno (físico, químico,

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012 Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem A C Tort 22 de outubro de 2012 Uma equação diferencial ordinária linear de segunda ordem

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinais e Sistemas Série de Fourier Renato Dourado Maia Faculdade de Ciência e ecnologia de Montes Claros Fundação Educacional Montes Claros Convergência da Um sinal periódico contínuo possui uma representação

Leia mais

EEE 335 Eletromagnetismo II

EEE 335 Eletromagnetismo II 0.6 J 0 J 0.4 J 2 J 3 0.2 0 0.2 0 2 4 6 8 0 Universidade Federal do Rio de Janeiro EEE 335 Eletromagnetismo II Prof. Antonio Carlos Siqueira de Lima Domínio da Frequência & Fasores Transformadas de Fourier

Leia mais

1.1 DERIVADA COMO RETA TANGENTE E TAXA DE VARIAÇÃO

1.1 DERIVADA COMO RETA TANGENTE E TAXA DE VARIAÇÃO 1 PLANO DE AULA II - DERIVADAS Essa aula tem como principal objetivo, introduzir o conceito de derivadas, de uma maneira rápida, para que, quando o professor fazer uso dos softwares na resolução de problemas

Leia mais

Sinais e Sistemas p.1/33

Sinais e Sistemas p.1/33 Resumo Sinais e Sistemas Transformada de Fourier de Sinais Contínuos lco@ist.utl.pt Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier

Leia mais

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Programa Analítico de Disciplina MAT147 Cálculo II

Programa Analítico de Disciplina MAT147 Cálculo II Programa Analítico de Disciplina Departamento de Matemática - Centro de Ciências Exatas e Tecnológicas Aprovação processo: 00/4802 Número de créditos: 4 Teóricas Práticas Total Duração em semanas: 15 Carga

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Análise Espectral de Processos Estocásticos

Análise Espectral de Processos Estocásticos Análise Espectral de Processos Estocásticos Airlane Pereira Alencar 21 de Março de 2019 Alencar, A.P. (IME-USP) Análise espectral 21 de Março de 2019 1 / 24 Índice 1 Objetivos 2 Pré-requisitos 3 Espectro

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO

UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO DISCIPLINA Equações Diferenciais CÓDIGO MAF-2010-C01 PROFESSOR CRISTIAN PATRICIO NOVOA BUSTOS CURSO Engenharia PERÍODO CRÉDITO

Leia mais

Capítulo 3. Séries Numéricas

Capítulo 3. Séries Numéricas Capítulo 3 Séries Numéricas Neste capítulo faremos uma abordagem sucinta sobre séries numéricas Apresentaremos a definição de uma série, condições para que elas sejam ou não convergentes, alguns exemplos

Leia mais

ANÁLISE DE SINAIS E SISTEMAS

ANÁLISE DE SINAIS E SISTEMAS ANÁLISE DE SINAIS E SISTEMAS AULA 2: :. Sinais de Tempo Contínuo e Sinais de Tempo Discreto; 2. Sinais Analógicos e Digitais; 3. Sinais Determinísticos e Sinais Aleatórios; 4. Sinais Pares e Sinais Ímpares;

Leia mais

Processamento de sinais digitais

Processamento de sinais digitais Processamento de sinais digitais Aula 2: Descrição discreta no tempo de sinais e sistemas silviavicter@iprj.uerj.br Tópicos Sequências discretas no tempo. Princípio da superposição para sistemas lineares.

Leia mais

exercícios de análise numérica II

exercícios de análise numérica II exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando

Leia mais

Convergência de séries de Fourier

Convergência de séries de Fourier Recorde-se que: Convergência de séries de Fourier Sendo f uma função definida num intervalo a,b, excepto, eventualmente, num número finito de pontos, diz-se que f é seccionalmente contínua em a, b se:

Leia mais

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma: QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

Séries de Fourier. Matemática Aplicada. Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2014/2015 1

Séries de Fourier. Matemática Aplicada. Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2014/2015 1 Séries de Fourier Matemática Aplicada Artur M. C. Brito da Cruz Escola Superior de Tecnologia Instituto Politécnico de Setúbal 14/15 1 1 versão 16 de Dezembro de 17 Conteúdo 1 Séries de Fourier...............................

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

PROGRAMA DE ENSINO. CÓDIGO DISCIPLINA OU ESTÁGIO SERIAÇÃO IDEAL/PERÍODO ELE1071 Matemática Aplicada à Engenharia Elétrica 2ª série / 4º Período

PROGRAMA DE ENSINO. CÓDIGO DISCIPLINA OU ESTÁGIO SERIAÇÃO IDEAL/PERÍODO ELE1071 Matemática Aplicada à Engenharia Elétrica 2ª série / 4º Período PROGRAMA DE ENSINO UNIDADE UNIVERSITÁRIA: UNESP CÂMPUS DE ILHA SOLTEIRA CURSO: Engenharia Elétrica (Resolução UNESP nº 40 / 05 - Currículo: 05 ) HABILITAÇÃO: OPÇÃO: DEPARTAMENTO RESPONSÁVEL: Engenharia

Leia mais

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f) 1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Equações Diferenciais Parciais Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Equações Diferenciais Parciais Uma equação diferencial parcial (EDP) é uma equação envolvendo uma ou mais

Leia mais

3.1 Introdução... 69

3.1 Introdução... 69 Sumário Prefácio Agradecimentos xi xvii 1 EDOs de primeira ordem 1 1.1 Introdução.............................. 1 1.2 Existência e unicidade de soluções................. 6 1.3 A equação linear..........................

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira Capítulo 4 Condução Bidimensional em Regime Estacionário Prof. Dr. Santiago del Rio Oliveira 4. Considerações Gerais A distribuição de temperaturas é caracterizada por duas coordenadas espaciais, ou seja:

Leia mais

O poço quadrado finito

O poço quadrado finito O poço quadrado infinito FNC375N: ista 8 5//4. Um próton se encontra num poço infinito de largura. Compute a energia do estado fundamental para (a), nm, o tamanho aproximado de uma molécula, e (b) fm,

Leia mais

2 Propriedades geométricas de curvas parametrizadas no R 4

2 Propriedades geométricas de curvas parametrizadas no R 4 2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas

Leia mais

Prof. Daniel Hasse. Princípios de Comunicações

Prof. Daniel Hasse. Princípios de Comunicações Prof. Daniel Hasse Princípios de Comunicações AULA 3 Análise de Fourier Prof. Daniel Hasse Sinais e espectros Os sinais são compostos de várias componentes senoidais (Série de Fourier) Generalização ransformada

Leia mais

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO 1 EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO Bruno Claudino dos Santos, Viviane Colucci, Vitória Maria Almeida Teodoro de Oliveira, Felipe Borino Giroldo, eticia Darlla Cordeiro. Universidade Tecnológica

Leia mais

Comprimento de Arco, o Número π e as Funções Trigonométricas

Comprimento de Arco, o Número π e as Funções Trigonométricas Comprimento de Arco, o Número π e as Funções Trigonométricas J. A. Verderesi Apresentaremos a seguir a medida de um ângulo como limite de poligonais inscritas e circunscritas à circunfêrencia unitária,

Leia mais