Integral Indefinido - Continuação
|
|
|
- Ronaldo Aragão Anjos
- 9 Há anos
- Visualizações:
Transcrição
1 - Continação Técnicas de Integração (Primitivação) OBJETIVO: Apresentar técnicas para determinar a fnção F() conhecida como primitiva tal qe F () f() o: f() d F() As principais técnicas de primitivação de FUNÇÕES DE UMA VARIÁVEL são: INTEGRAÇÃO POR PARTES INTEGRAÇÃO POR DECOMPOSIÇÃO EM FRAÇÕES RACIONAIS INTEGRAÇÃO UTILIZANDO SUBSTITUIÇÕES (POR MEIO DE IDENTIDADES) TRIGONOMÉTRICAS
2 Passo Dada a fnção f(g()), faz-se g() Passo Calcla-se dg`()d Passo Faz-se as segintes sbstitições no integral inicial: g() e dg`()d Passo 4 Calcla-se o integral em ordem a Passo 5 Sbstiti-se por g() para obter a solção do integral inicial EXEMPLO 0 Calclar ( ) 50 d Solção Seja Logo: d d d d Assim, o integral é escrito como: () 50 d () 50 5 ( ) d C C
3 EXEMPLO 0 Calclar sen( 9) d Solção Seja 9 Logo: d d d d Assim, o integral é escrito como: sen() d sen() d cos() C cos( 9) C EXEMPLO 0 Calclar sen () cos() d Solção Seja sen() Logo: cos() d d d cos() d Assim, o integral é escrito como: d sen () d C C
4 EXEMPLO 04 e Calclar d Solção Seja Então Logo: d d d d d d Antes da sbstitição, a fnção dada tem de ser escrita de otra forma. e e e d d d Assim, o integral é escrito como: e d e d otra maneira de chegar aqi sem maniplar a fnção dada é fazendo: d d d d e d e d e C e C O seja: e d e C 4
5 EXEMPLO 05 Calclar d Solção Seja Logo: d d Se Então () Assim, o integral é escrito como: ( ) d o: ( ) Portanto: 5 d d 5 d 5 d C 5 5
6 Finalmente: d 7 5 Escrevendo em termos de : C 7 4 d ( ) ( ) ( ) C Algmas Técnicas de Integração por Sbstitição A chave do método da sbstitição é dividir a fnção em partes e depois encontrar ma parte da fnção cja derivada também faça parte dela. Eemplo Podemos dividir a eqação acima em das partes: sen.de cos. sen d cos Repareqeaderivadadocosé-sen,portanto, aderivadadocosseno fazpartedafnção. 6
7 Passos: Procre na fnção ma parte cja derivada esteja na fnção. Se tiver em dúvidas, tente sar a qe está no denominador o algma epressão qe esteja elevada a ma potência; Designe-a por e tome sa derivada com relação ao diferencial (d, dy, dt, etc.). Acrescentando esse diferencial; Use as epressões e d para sbstitir as partes do integral original; O se novo integral será mais fácil de ser calclado, mas não esqeça de, no final, desfazer a sbstitição. Eemplo 06: Use o método de sbstitição para encontrar o integral: Solção sen d cos Devemos escolher parte da fnção cja derivada esteja na fnção, como a derivada de sen cos e a derivada do cos -sen, e, ambas estão na fnção, na dúvida... selecionamos a parte qe está no denominador, isto é, cos. Chamamoscos; Agoraderivamoscomrelaçãoa,portanto:d-sen.d; Como na fnção original a fnção seno é positiva, basta mltiplicar ambos os ladospor paraqeelafiqepositiva; d sen. d 7
8 Solção Basta re-escrever o integral original com as epressões e d ; Integral original: Novo integral: sen. d cos d Qe também pode ser re-escrito como: d Solção d ln Basta calclar: ; C O passo final é desfazer a sbstitição de pelo o valor original: d ln cos C 8
9 Eemplo 07 Use o método de sbstitição para encontrar o integral: Solção Chamamos ; Agora derivamos com relação a, portanto: d.d; Basta re-escrever o integral original com as epressões e d ; Note qe.d não está na eqação original, apenas d. Para ficar apenas com d, fazemos: d d cos(). d Solção Basta re-escrever o integral original com as epressões e d ; Integral original: Novo integral: Qe também pode ser re-escrito: cos(). d d cos. cos. d 9
10 Solção Calclando, temos: cos. d cos. d. sen C Sbstitindo pelo se valor original, teremos: cos. d.sen C EXEMPLO 08 INTEGRAÇÃO DE POTÊNCIAS QUADRÁTICAS DAS FUNÇÕES TRIGONOMÉTRICAS SEN(X) E COS(X) Sejam as identidades trigonométricas: cos cos sen cos Assim, cos sen d d d cos d 0 sen 0 sen sen C 4 cos d d d d d cos d cos d sen C 0
11 Da mesma forma, tilizando a otra identidade trigonométrica: sen cos C 4 O integral pode ser resolvido fazendo: sen cos d sen cos d ( cos )d 4 cos cos d ( cos) ( cos) d ( cos )d 4 d 4 4 cos d cos d cos d d d sen sen sen 4 cos d sen4 8 sen4 C 8
12 EXEMPLO 09 Determinar ( ) sen( 4 6) d Solção Seja 4 6 Então: d 4 d d ( 4) d ( ) d Mas: Logo, seja: ( ) sen( 4 6) d d ( ) d Assim, d ( ) sen( 4 6) d sen() sen() d Sabe-se qe: sen() d cos() C TABELA
13 Então: ( ) sen( 4 6) d ( cos() C) Portanto: ( ) sen( 4 6) d cos( 4 6) C EXEMPLO 0 Determinar d Solção Seja Então: d d ( ) d d Na integral original, fazer: d d d
14 4 Mas: d d d d d C d d d O segndo integral a ser resolvido é: TABELA C a ln d a d a d d onde: a d d
15 5 Portanto: C 4 ln d Então, finalmente: C 4 ln d FIM Bibliografia:
MÉTODOS DE INTEGRAÇÃO
ÁLULO DIFERENIL E INTEGRL MÉTODOS DE INTEGRÇÃO Nem todas as integrais são imediatas segndo o formlário dado, porém algns métodos simples ajdam a obter as primitivas das fnções qe não têm integração imediata.
3- Equação Diferencial Ordinária de 1 a Ordem Homogênea
- Eqação Diferencial Ordinária de a Ordem Homogênea Definição de Fnção Homogênea: Se ma fnção f(, y) satisfaz a condição f(t, ty) n f(, y) para algm número real n, então dizemos qe f é ma fnção homogênea
Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. As seis integrais
PRIMITIVAS 1. INTRODUÇÃO
Material de apoio referente ao tópico: Integrais Módlo I. Adaptado de: Prof. Dr. José Donizetti Lima por Prof. Dra. Dayse Regina Batists.. INTRODUÇÃO PRIMITIVAS Em mitos problemas, embora a derivada de
Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II
Cálclo Diferencial e Integral II Página Universidade de Mogi das Crzes UMC Campos Villa Lobos Cálclo Diferencial e Integral II Parte II Engenharia Civil Engenharia Mecânica [email protected] º semestre de
DERIVADAS E DIFERENCIAIS II. Nice Maria Americano da Costa
DERIVADAS E DIFERENCIAIS II Nice Maria Americano da Costa DERIVADAS DE ALGUMAS FUNÇÕES ELEMENTARES f f sen f f tg f cot f log f ln f e n a f n n f f sen sen f loga e f f e f sec f ec PROPRIEDADES Teorema.
AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO
Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo
Integrais indefinidas
Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()
Cálculo 1 4ª Lista de Exercícios Derivadas
www.matematiqes.com.br Cálclo 4ª Lista de Eercícios Derivadas ) Calclar as derivadas das epressões abaio, sando as fórmlas de derivação: a) y 4 4 d 4 b) f f c) y d d) y R : d df e) 6 f R : 6 d f) 5 y 4
MAT146 - Cálculo I - Integração de Funções Trigonométricas
MAT146 - Cálculo I - Integração de Funções Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Até o momento, somos capazes de resolver algumas integrais trigonométricas
OUTRAS TÉCNICAS DE INTEGRAÇÃO
8 OUTRAS TÉCNICAS DE INTEGRAÇÃO Gil da Costa Marques 8. Integração por partes 8. Integrais de funções trigonométricas 8.3 Uso de funções trigonométricas 8.4 Integração de Quociente de Polinômios 8.5 Alguns
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] Generalidades Aplicação: integrais cujos integrandos são compostos de: produtos; funções trigonométricas;
CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Ala n o 07: Teorema do Confronto. Limite Fndamental Trigonométrico. Teorema do Valor Intermediário.
Integrais indefinidas
Integrais indefinidas que: Sendo f(x) e F(x) definidas em um intervalo I R, para todo x I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F (x) = f(x) Exemplos: F(x) = x é uma antiderivada
Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Técnicas de Integração - Continuação Aula 34 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:
A segir, ma demonstração do livro. Para adqirir a versão completa em papel, acesse: www.pagina0.com.br CÁLCULO VOLUME ZERO - REGRAS E PROPRIEDADES INICIAIS DE DERIVAÇÃO f() k f( ) k k k 0 f'() lim lim
Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11
www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com
Técnicas de Integração II. Algumas Integrais Trigonométricas
Técnicas de Integração II Algumas Integrais Trigonométricas Prof. Dr. José Ricardo de Rezende Zeni UNESP, FEG, Depto de Matemática Guaratinguetá, agosto de 2017 Direitos reservados. Reprodução autorizada
Notas sobre primitivas
MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos
CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança
CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário
Equações Diferenciais Ordinárias
Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet
Aula 2: Vetores tratamento algébrico
Ala : Vetores tratamento algébrico Vetores no R e no R Decomposição de etores no plano ( R ) Dados dois etores e não colineares então qalqer etor pode ser decomposto nas direções de e. O problema é determinar
( ) d dx. A Regra Geral da Potência. A Regra Geral da Potência
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Para começar, cosideremos
Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
de Potências e Produtos de Funções Trigonométricas
MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,
AT4-1 - Unidade 4. Integrais 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação. 1 Versão com 14 páginas
AT4-1 - Unidade 4 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 14 páginas 1 / 14 Tópicos de AT4-1 1 2 / 14 Tópicos de AT4-1 1 3 / 14 Relação entre funções
MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017)
Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma Cálculo Diferencial e Integral I 07/II a Lista de Integrais (07//07 Faça a antidiferenciação. Verifique o resultado, calculando a
CÁLCULO LIMITE S ENGENHARIA
CÁLCULO LIMITE S ENGENHARIA Confira as aulas em vídeo e eercícios 1 DEFINIÇÃO DE Imagine o seguinte eemplo: uma formiga está tentando chegar no ponto em = 3 andando pela curva definida pela função f()=²,
CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata
CAPITULO I PRIMITIVAS. Generalidades. Primitivação imediata e quase imediata Sendo f () uma função real de variável real definida no intervalo não degenerado I, chama-se primitiva de f () em I a qualquer
CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aulas n o 9: Técnicas de Integração II - Integrais Trigonométricas e Substituição Trigonométrica Objetivos da Aula Calcular integrais de potências
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo:
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 8: Integrais Trigonométricas. Substituição Trigonométrica. Objetivos da Aula Calcular
TÓPICOS. Diferenciação complexa. Derivadas complexas. Funções analíticas. Equações de Cauchy-Riemann. Funções harmónicas. Regra de L Hospital.
Note be a leitra destes apontaentos não dispensa de odo alg a leitra atenta da bibliograia principal da cadeira Chaa-se à atenção para a iportância do trabalho pessoal a realiar pelo alno resolendo os
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
Seno e cosseno de arcos em todos os. quadrantes
Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos
1. FUNÇÕES REAIS DE VARIÁVEL REAL
1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções
Estratégias de Integração. Estratégias de Integração
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Estratégias de Integração
Integração Numérica. Regra do 1/3 de Simpson (1ª regra) Regra dos 3/8 de Simpson (2ª regra)
ntegração Nérica Regra do / de Sipson (ª regra) Regra dos /8 de Sipson (ª regra) ntrodção Seja f() a fnção contína do intervalo [a,b]. Seja F() a priitiva de f(), tal qe F () f(). Então a integral definida
Cálculo Diferencial e Integral I
Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio
Elaborado por: João Batista F. Sousa Filho (Graduando Engenharia Civil UFRJ )
www.engenhariafacil.weebly.com Elaborado por: João Batista F. Sousa Filho (Graduando Engenharia Civil UFRJ- 014.1) Bizu: (I) Resumo com exercícios resolvidos do assunto: Métodos de Integração. (I) Métodos
Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo
Derivada Ala 09 Cálclo Dierencial Proessor: Éwerton Veríssimo Derivada: Conceito Físico Taa de Variação A dosagem de m medicamento pode variar conorme o tempo de tratamento do paciente. O desgaste das
19. h z 3 e z dz 20. h x tg 2 xdx. xe 2x (1 2x) h dx 22. h (arcsen x) 2 dx 1/ h 0. x cos px dx 24. h h 1. r3 ln r dr 28.
7. Eercícios Calcule a integral usando a integração por partes com as escolhas de u e dv indicadas.. y ln ; u ln, dv. y cos d; u, dv cos d 6 Calcule a integral.. h cos 5 4. h e 5. h re r/ dr 6. h t sen
Cálculo de primitivas ou de antiderivadas
Aula 0 Cálculo de primitivas ou de antiderivadas Objetivos Calcular primitivas de funções usando regras elementares de primitivação. Calcular primitivas de funções pelo método da substituição. Calcular
de Potências e Produtos de Funções Trigonométricas
MÓDULO - AULA 0 Aula 0 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Introdução Apesar
Derivada - Parte 2 - Regras de derivação
Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada
ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR
ISEP LEI AMATA - S. 9/ CÁLCULO DIFERENCIAL EM IR Cálclo Dierencial em IR Derivaa e ma nção nm ponto Q Q As rectas PQ, PQ epq 3 são rectas secantes à crva. P Q 3 t A recta t é tangente à crva no ponto P.
Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica
CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte
II.4 - Técnicas de Integração Integração de funções racionais:
Nesta aula, em complemento ao da aula anterior iremos resolver integrais de funções racionais utilizando expandindo estas funções em frações parciais. O uso deste procedimento é útil para resolução de
Exercícios de Coordenadas Polares Aula 41
Revisão - Métodos de Integração e Exercícios de Coordenadas Polares Aula 41 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 24 de Junho de 2014 Primeiro Semestre de 2014 Turma
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
Apostila Cálculo Diferencial e Integral I: Integral
Apostila Cálculo Diferencial e Integral I: Integral Apostila Cálculo Diferencial e Integral I: Integral Sumário 1 Integral 5 1.1 Antidiferenciação......................... 5 1.1.1 Exercícios.........................
Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos
MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de
Como, neste caso, temos f(x) = 1, obviamente a primitiva é F(x) = x, pois F (x) = x = 1 = f(x).
4. INTEGRAIS 4.1 INTEGRAL INDEFINIDA A integral indefinida da função f(x), denotada por f x dx, é toda expressão da forma F(x) + C, em que F (x) = f(x) num dado intervalo [a,b] e C é uma constante arbitrária.
Cálculo Diferencial e Integral C. Me. Aline Brum Seibel
Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno
5 Cálculo Diferencial Primitivação
5 Cálculo Diferencial Primitivação. Determine uma primitiva de cada uma das funções: a) + 3 3, b) + +, c) +, d) 3 3 +, e) 3, f) 5, 3 e g) h) 3 + 4 + e, i) cos + sen, sen() j) sen(), k) + sen, l) cos, m)
INTEGRAÇÃO DE FUNÇÕES RACIONAIS
Cálculo Volume Dois - 40 INTEGRAÇÃO DE FUNÇÕES RACIONAIS Quando uma função racional da forma N()/D() for tal que o grau do polinômio do numerador for maior do que o do denominador, podemos obter sua integral
MATEMÁTICA PRIMITIVAS E INTEGRAIS. 7ª Edição. Coleção Matemática EDIÇÕES SÍLABO MANUEL ALBERTO M. FERREIRA ISABEL AMARAL
MATEMÁTICA RIMITIVAS E INTEGRAIS MANUEL ALBERTO M. FERREIRA ISABEL AMARAL 7ª Edição Coleção Matemática EDIÇÕES SÍLABO COLEÇÃO MATEMÁTICA COLEÇÃO MATEMÁTICA INTEGRAIS MÚLTILOS E EQUAÇÕES DIFERENCIAIS CÁLCULO
Acadêmico(a) Turma: Capítulo 7: Limites
Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores
II-2. Integração de Funções Trigonométricas Integração de Funções Trigonométricas
II-2. Integração de Funções Trigonométricas Integração de Funções Trigonométricas Nesta aula são apresentadas as integrais de funções trigonométricas que se resolve através das relações trigonométricas
Lista de exercícios sobre integrais
Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas ICEB Departamento de Matemática DEMAT Cálculo Diferencial e Integral A Lista de exercícios sobre integrais Questão : Em nossa
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode
INTEGRAÇÃO INDEFINIDA
Capítulo 6 INTEGRAÇÃO INDEFINIDA 6.1 Introdução Na primeira parte do capítulo mostraremos como obter uma função conhecendo apenas a sua derivada. Este problema é chamado de integração indefinida. Definição6.1.
Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e
Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------
Cálculo I 3ª Lista de Exercícios Limites
www.cursoeduardochaves.com Cálculo I ª Lista de Eercícios Limites Calcule os ites: a (4 7 +5 b + 5 c ( 5 ++4 d + 5 4 e 5 + 4 + ++ f 6 4 Resp. : a b 0 c /8 d / e 9 5 f Calcule os ites abaio: a 4 b + c +5
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Resolução do Eame / Testes de Recuperação I.. (, val.)determine os ites das seguintes sucessões convergentes (i) u n n + n n e n + n, (ii) v n n + π n Resolução: i) A sucessão
Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à
Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura
FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0
FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode
Resolvendo Integrais pelo Método de
Capítulo Resolvendo Integrais pelo Método de Substituição. Métodos da substituição em integrais indefinidas O teorema fundamental do cálculo permite que se resolva rapidamente a integral b a f(x) dx, desde
Primitivação de funções reais de variável real
Capítulo 3 Sugere-se a seguinte bibliografia adicional que completa o estudo a efectuar nas aulas teóricas e nas aulas práticas: Maria Aldina C. Silva e M. dos Anjos F. Saraiva. Primitivação. Edições Asa,
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] PARTE 1: INTEGRAÇÃO DE FUNÇÕES RACIONAIS FRACIONÁRIAS A integração das funções racionais fracionárias poderá recair
f (x) Antiderivadas de f (x) ; 3 8x ; 8
INTEGRAIS Definição: Uma fnção F é ma antierivaa e f em m intervalo I se F' ) f ) para too em I Chamaremos tamém F ) ma antierivaa e f ) eterminação e F, o F ), é chamao ANTIDIFERENCIAÇÃO O processo e
AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v.
AULA 4 Prodto escalar Prodto escalar definição algébrica Sejam,, e,, escalar o número real:, chamamos de prodto Notação: o, e se lê: escalar. Eemplos: ) Dados os etores,,3 e 3,4,, calclar: a) =. (-3) +.
Substituição Trigonométrica
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica
PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo.
PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo. Um corpo move ao longo de uma reta obedecendo a função horária
Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES
Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes
1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:
Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.
CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos
