SEMELHANÇA DE TRIÂNGULOS
|
|
|
- Marta Stachinski Capistrano
- 9 Há anos
- Visualizações:
Transcrição
1 SLHÇ TRIÂGULOS 1. SGTOS PROPORIOIS Quao egmeno,,, GH,, nea odem, ão popocionai quando ua medida, omada numa mema unidade, fomaem uma popoção. Indicação: ( Lê-e: eá paa GH aim como eá paa GH ) emplo: Veifica e cm, 1cm, 1cm, e cm fomam, nea odem, uma popoção Temo que : e 1 1 como emo valoe iguai : ão popo- 1 cionai.. TOR TLS Um feie de ea paalela deemina obe dua ea anveai egmeno popocionai. Temo que : aemáica 1 1. SLHÇ TRIÂGULOS oi iângulo ão emelhane quando em o ângulo epecivamene conguene ou o lado coepondene popocionai O 1 1 a b m geal emo: // // (,, ão ea paalela) e a e b ão ea anveai. ou ainda ou ou. emplo: alcule abendo que // //. a b Obevaçõe: Se Se ˆ ˆ, ˆ ˆ, ˆ ˆ ou enão: enão: dioa ao
2 aemáica.1) ao de emelhança Ângulo Ângulo () oi iângulo ão emelhane quando pouem doi ângulo epecivamene conguene. e ˆ ˆ XRÍIOS 1 e acodo com a figua a egui, calcule o valo de, abendo que ////. a) ˆ ˆ ˆ ˆ 1 Lado-Lado Lado-Lado (LLL) oi iângulo ão emelhane quando pouem o lado epecivamene popocionai. b) c) Lado-Ângulo Ângulo-Lado (LL) oi iângulo ão emelhane quando pouem doi lado epecivamene popocionai e o ângulo compeendido ene ee lado conguene. dioa ao
3 aemáica eemine o valo de, na figua a egui. a) // b) // X X (U.TÓLI SLVOR-) a figua abaio, a medida ainalada ão dada em cenímeo e //. Se 7cm, enão é igual a: a) 1, d), b) 1, e) m c),1 eemine o valo de na figua a egui. a) 9 1 c) // b) (U.PSSO UO-RS) figua moa um equema, no qual é paalelo a 0cm, 1cm e 0cm. a medida de é igual: (. PORTO-LGRS RS) iângulo eângulo a egui, a medida, em cm, é: cm cm a) cm d) cm b) cm e) cm c) cm 1cm 1cm cm '' cm ' a) a c) a b) a d) a dioa ao
4 aemáica 7 (U) a figua abaio, e. Se é paalelo a, o egmeno mede: 7m a) d) 9 b) e) c) 1 1 Qual a diância, em meo. a) 7 d) 79 b) 7 e) 0 c) 7 (UIP-SP) a figua abaio, o valo de é (////): 11 (UIRIO) m 0m a) c) b) d) 7 9 (U-P) incidência do aio olae faz com que o eemo da omba do homem e da ávoe coincidam. O homem em 1,0m de alua e ua omba mede m. Se a omba da ávoe mede m, a alua mede: Somba 1m uma cidade do ineio, à noie, ugiu um objeo voado não idenificado, em foma de dico, que eacionou a 0m do olo, apoimadamene. Um helicópeo do e- écio, iuado a apoimadamene 0m acima do objeo, iluminou-o com um holofoe, confome moa a figua aneio. Sendo aim, pode-e afima que o aio do dico-voado mede, em m, apoimadamene. a),0 c),0 b), d), a).m d),m b), m e),7m c) 7 1 (U-G) o iângulo da figua, //. O valo de é: (OVST-P) figua a egui ilua doi eeno plano. Suponha que o lado e ão paalelo, epecivamene, a e e que,,, ão pono colineae. dioa ao
5 aemáica a) d) 7, b) e) nenhuma c) 7, 1 (URS) Paa eima a pofundidade de um poço com 1,m de lagua, uma peoa cujo olho eão a 1,0m do chão poiciona-e a 0,0m de ua boda. ea foma, a boda do poço econde eaamene eu fundo, como moa a figua. 1,m 0,0m 1,0m 1 (I-SP) na figua, mede: 17 a). b). 1 c) falam dado paa calcula. d) +. 1 e) a. GRITO om o dado acima, a peoa conclui que a pofundidade do poço é: a),m d),m b),00m e),m c),0m 1 (eganio-rj) O iângulo 1 e da figua ão eângulo iócele. não a azão da áea de 1 paa a de é: a). b). c). d). e) a) 9, b) c) a) 7, b) 9 c) a)1 b) dioa ao
GEOMETRIA PLANA 1 - INTRODUÇÃO 2 - NOÇÕES PRIMITIVAS 3 - NOTAÇÕES 4 - ÂNGULO
GEOETRI L 1 - ITROUÇÃO Geomeia é uma palava de oigem gega e que ignifica medida de ea. Geomeia, como um do amo da aemáica, euda a figua geoméica e ua popiedade. O conceio peviamene eaelecido, em Geomeia,
EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x?
EOREMA DE TALES Se um feixe de paalela deemina egmeno conguene obe uma anveal, enão ee feixe deemina egmeno conguene obe qualque oua anveal. Aim, um feixe de paalela deemina, em dua anveai quaique, egmeno
TEOREMA DE TALES PROF. JOÃO BATISTA
PROF. JOÃO BATISTA TEOREMA DE TALES Se um feie de paalela deemina egmeno conguene obe uma anveal, enão ee feie deemina egmeno conguene obe qualque oua anveal. Aim, um feie de paalela deemina, em dua anveai
01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E.
PROFESSOR: Macelo Soae NO E QUESTÕES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉIO ============================================================================================= GEOMETRI Pae 1 01- figua é um quadado
BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Sabendo que //, dê a medida
GEOMETRIA DE POSIÇÃO.
GEMETRI DE SIÇÃ. Geomeia de oição é a pae da Geomeia que euda a deeminação do elemeno geoméico, bem como a poiçõe elaiva e a ineeçõe dee elemeno no epaço. III - o dua ea paalela diina. IV - o dua ea concoene.
suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur
Eta Geometia Plana Pof Eweton Paiva 01) (UFF 007) fim de elaboa um elemento de ua oba de ate, um eculto ua um pedaço de aame e contói uma cicunfeência, confome mota a figua P b) Pove que med(» ) med( E»
Ângulo é a figura formada pela união dos pontos de duas semirretas com origem no mesmo ponto.
uo de linguagem maemáica Pofeo Renao Tião Ângulo Ângulo é a figua fomada pela união do pono de dua emiea com oigem no memo pono. = ou implemene. Q P é o véice, e ão o lado e é a medida do ângulo. P peence
17. (PUC-SP)Se a 16. 19. (GV) Se x 3200000 e y 0, 00002, calcule o valor do produto x. y.
Um navio dipõe de eeva uficiente paa alimenta homen duante dia, ma ecebe obevivente de um naufágio eeva de alimento daão paa no máimo quanto dia? LIST 0 XRÍIOS GOMTRI PLN PROF ROGRINHO º nino Médio (Razão
Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Retas Cortadas por uma Transversal. Oitavo Ano
Maeial Teóico - Módulo Elemeno áico de Geomeia Plana - Pae 1 Rea oada po uma Tanveal Oiavo no uo: Pof. Ulie Lima Paene Revio: Pof. nonio aminha M. Neo 1 Rea coada po uma anveal Sejam e dua ea iuada em
Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.
8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete
Unidade 3 Geometria: triângulos
Sugeõe de ividde Unidde 3 Geomei: iângulo 8 MTEMÁTI 1 Memáic 1. No iângulo egui você deve deemin: ) medid do ângulo ; b) medid do ângulo ; c) medid do ângulo z; d) medid do ângulo eeno o ângulo z. 120
UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1
UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Weslei
Áea de Diciplina: Ano: 8º - Enino Fundamental Pofeoe: Macu e Welei Atividade paa Etudo Autônomo Data: 0 / 5 / 09 Cao(a) aluno(a), O momento de evião deve e vito como opotunidade de econtui conhecimento
Exercícios propostos
Eecícios poposos 01 Esceva uma equação da ea nos casos a segui a) passa pelo pono P(, 1,) e em a dieção do veo u (,1,1 ) b) passa pelos ponos A(1,, 1) e B(0,,) 0 Veifique, em cada um dos iens abaio, se
Testes Propostos de Geometria Plana: Ângulos
u de Matemática Tete Ppt de Gemetia Plana: Ângul 01. Sejam, e epectivamente a medida d cmplement, uplement e eplement d ângul de 40, têm-e 05. i ângul adjacente ã cmplementae. ntã, ângul fmad pela bietize
GEOMETRIA. Noções básicas de Geometria que deves reter:
Noçõe báica de Geometia que deve ete: nte de iniciae qualque tabalho geomético, deve conhece o conjunto de intumento que deveá te empe: lgun cuidado a te: 1 Mante égua e equado limpo. 2 Não ua x-acto ou
MATEMÁTICA. Módulo 28. Frente IV -Caderno 07. Paralelismoe Perpendicularismono Espaço Página 229
MATEMÁTICA Fene IV -Cadeno 07 Módulo 28 Paalelismoe Pependiculaismono Espaço Página 229 GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B Numa ea, ou foa dela, exisem
MATEMÁTICA. Retas e Planos no Espaço. Geometria de Posição Capítulo 1 LIVRO 4
MATEMÁTICA LIVRO 4 Geomeia de Posição Capíulo 1 Reas e Planos no Espaço GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B β Numa ea, ou foa dela, exisem infinios
Fazer: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. y 60º. a) do ângulo de 27º 31 é. Geometria plana PARFOR
Geometia plana PRFOR Faze: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. 1. Calcule o valo de e obevando a figua abaio: a) b) 3 15º 60º 5 15º 4 + 5º 2. Calcule a medida de na eguinte figua: a) b) 3 5º 3 + 20º +
ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009)
ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Pofesso : Humbeo Anônio Baun d Azevedo ª LISTA DE EXERCÍCIOS (Aualizada em abil de 009 1 Dados A (1, 0, -1, B (, 1,, C (1, 3, 4 e D (-3, 0, 4 Deemina: a
Onde sentar no cinema?
Onde ena no cinema? Felipe Vieia 1 [email protected] im como muia áea da maemáica, poblema de exemo maximização ou minimização de uma cea vaiável) ão eudado á muio empo. Ee poblema, que êm deafiado maemáico
DINÂMICA Dinâmica Cinemática Dinâmica Movimento rectilíneo Movimento Curvilíneo 11-1
DINÂMICA A Dinâmica inclui: - Cinemáica (Kinemaic): eudo da geomeia do moimeno. A Cinemáica é uilizada paa elaciona o delocameno, a elocidade, a aceleação e o empo, em elação com a caua do moimeno. - Dinâmica
EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO
EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede
Matemática. 8 o ano. Caderno 1
Matemática 8 o ano adeno 1 Módulo 1 1 Em elação ao infogáfico apeentado a egui, eponda ao que e pede. Fonte: Folha de S.Paulo, 6, 9 ma. 2014. a) Qual é a fonte da pequia? b) Qual é o aunto cental dee infogáfico?
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ
RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,
Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente
Mateial Teóico - Módulo Elemento áico de Geometia Plana - Pate 1 Conceito Geomético áico itavo no Pof. Ulie Lima Paente 1 Conceito pimitivo ideia de ponto, eta e plano apaecem natualmente quando obevamo
Professoras: Lisiane e Suziene. Lista de Conteúdos e Exercícios Preparatórios para Exame Final 2018
Componente Cuicula: Matemática Ano: 8º Tuma: 18 A, 18B, 18C e 18D Pofeoa: Liiane e Suziene Lita de Conteúdo e Eecício Pepaatóio paa Eame Final 018 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica
Conteúdos Exame Final e Avaliação Especial 2016
Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe
Nessas condições, a coluna de água mede, em metros, a) 1,0. b) 5,0. c) 8,0. d) 9,0. e) 10.
EVSÃO UEL-UEM-ENEM HDOSTÁTCA. 01 - (FATEC SP/011/Janeio) Nas figuas apesentadas, obsevam-se tês blocos idênticos e de mesma densidade que flutuam em líquidos difeentes cujas densidades são, espectivamente,
SISTEMA DE COORDENADAS
ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos
Material Teórico - Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularidade. Terceiro Ano - Médio
Mateial Teóico - Módulo de Geometia naĺıtica 1 Paalelimo e Pependiculaidade Teceio no - Médio uto: Pof ngelo Papa Neto Revio: Pof ntonio aminha M Neto 1 Reta paalela Na aula obe a equação da eta vimo que,
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ
ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A
5. Transformada de Laplace
Sinai e Siema - 5. Tanfomada de Laplace A Tanfomada de Laplace é uma impoane feamena paa a eolução de equaçõe difeenciai. Também é muio úil na epeenação e análie de iema. É uma anfomação que faz um mapeameno
Geometria: Perímetro, Área e Volume
Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos
TRIÂNGULO 1 - CONCEITO 2 - CLASSIFICAÇÃO. acutângulo 2º) Quanto aos ângulos retângulo obtusângulo. Sejam, não colineares, os pontos A, B, e C A.
TRIÂNGULO 1 - ONITO Sejm, não olineres, os pontos,, e utângulo 2º Qunto os ângulos retângulo otusângulo I é utângulo é união dos segmentos, e. m ( = Ldos: m ( = Vérties: m ( = II, e são gudos 2 - LSSIFIÇÃO
CONSTRUÇÕES FUNDAMENTAIS
COLÉGIO EDRO II Camp RELENGO II Diciplina: DESENHO ª Séie (EM) of. Sonia Sá CONSTRUÇÕES FUNDMENTIS São contçõe báica feita com axílio do intmento de Deenho. Taçado de RLELS e ERENDICULRES com pa de ESQUDROS
Processamento de Imagens
Poceamento de Imagen By Vania V. Etela UFF-TELECOM, Joaquim T. de AiIPRJ-UERJ Técnica de Modificação de Hitogama O hitogama de uma imagem, que é uma oiedade do conteúdo da infomação contida na mema, é
Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga
onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule
DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE
DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de
MATEMÁTICA 3 A SÉRIE - E. MÉDIO
1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e
Aula-5 Capacitância. Curso de Física Geral F-328 1 o semestre, 2008
Aula-5 apacitância uso de Física Geal F-38 o semeste, 8 apacitância apacitoes Dois condutoes caegados com cagas Q e Q e isolados, de fomatos abitáios, fomam o ue chamamos de um capacito. A sua utilidade
). c) Por três pontos não colineares passam três retas não simultaneamente (P 3
Resolução das atividades complementaes Matemática M7 Geometia p. 6 Sejam tês pontos distintos, e não colineaes no espaço. a) Quantas etas passam po? infinitas b) Quantas etas passam po e po? uma única
Eletromagnetismo Licenciatura. 18 a aula. Professor Alvaro Vannucci
leomagesmo Lcecaua 8 a aula Pofesso Alvao Vaucc Na úlma aula vmos... Poêca adada po um Dpolo léco que Oscla: P dpolo p 0 4 c quao que a Poêca adada po uma aea mea-oda: P aea q 0 4 c Agoa, em emos do valo
setor 1103 Aula 39 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO Então, 1. INTRODUÇÃO Duas retas r e s de um plano podem ser: Distintas: r s = Exemplo:
to 58 Aula 9 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO. INTRODUÇÃO Dua ta d um plano podm : Ditinta: = Emplo: Então, O coficint angula ão iguai. O coficint lina ão difnt. Paalla b) ão PARALELAS COINCIDENTES.
Cap014 - Campo magnético gerado por corrente elétrica
ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate
4 Descrição de permutadores
Aponameno de Pemuadoe de alo Equipameno émico 005 João Luí oe Azevedo 4 ecição de pemuadoe Nea ecção vão deceve-e o pincipai ipo de pemuadoe de calo de conaco indieco com anfeência dieca, ou eja, equipameno
EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA
UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da
Miloje / Shutterstock. Matemática B. CP_18_GAIA_MB1.indd 1 12/01/ :44
Miloje / Shuttertock Matemática _18_GI_M1.indd 1 1/01/018 14:44 Matemática aula 1 é ietriz de Ô Ô Ô Soma de ângulo adjacente Quanto ao valor, a oma de doi ângulo adjacente pode er claificada em trê categoria:
Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1
Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades
MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto
MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo
Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v
Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos
ˆ y. Calcule x e y. B P C 14. Na figura, o quadrilátero ABCD está circunscrito na circunferência de centro O. Sendo
LIST 02 XRÍIOS GOTRI PLN PROF. ROGRINHO 1º nsino édio (Tangência ângulos na circunf. quadrilátros pontos notávis do torma d Tals smlhança d a) Nom: n turma 08. No rtângulo da figura ao lado tm-s qu: ˆ
APÊNDICE. Revisão de Trigonometria
E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio
Alinhamento de Três Pontos
ANO 0 DISIPLINA: Matemática PROFESSORA): Adiano Lima SERIE/TURMA: o Ano VALOR: ATIVIDADE TRABALHO PROVA PARIAL PROVA FINAL REUPERAÇÃO ETAPA: a Etapa SUPERVISORA: Lânia Rezende DATA: NOTA ALUNOA): N. o
TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).
TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos
MATEMÁTICA A - 11o Ano Geometria - Declive e inclinação Propostas de resolução
MTEMÁTI - o no Geometia - Declive e inclinação Popota de eolução Eecício de eame e tete intemédio. omo a tangente é pependicula ao aio, a eta é pependicula à eta, ou eja, declive da eta é o imético do
Aula 31 Área de Superfícies - parte II
MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.
F-328 Física Geral III
F-328 Física Geal III Aula exploatóia Cap. 23 UNICAMP IFGW 1 Ponto essencial O fluxo de água atavessando uma supefície fechada depende somente das toneias no inteio dela. 2 3 1 4 O fluxo elético atavessando
1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)
. O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico
PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:
UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão
O perímetro da circunferência
Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe
COLÉGIO MILITAR BELO HORIZONTE
COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 3 DE OUTUBRO DE 004 DURAÇÃO: 10 MINUTOS CONCURSO DE ADMISSÃO 004 / 005 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070
PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.
Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares.
Reolução da atividade complementare Matemática M9 Geometria nalítica: Ponto e Reta p. 08 (MK-SP) Identifique a entença fala: a) O ponto (0, ) pertence ao eio. b) O ponto (4, 0) pertence ao eio. c) O ponto
HIDROLOGIA E RECURSOS HÍDRICOS. Fenómenos hidrológicos extremos. Mitigação dos efeitos das cheias
HIDOLOGIA E ECO HÍDICO Fenómenos hidrológicos extremos Mitigação dos efeitos das cheias Medidas preventivas e corretivas. Controlo de cheias em s Medidas corretivas e preventivas dos efeitos das cheias
PARTE IV COORDENADAS POLARES
PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta
v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.
Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,
Lista 3 Figuras planas
Profa. Debora Cristiane arbosa Kirnev Disciplina: Geometria Descritiva I Curso: rquitetura e urbanismo 2º Semestre Nome: 1. Construa o que se pede: Lista 3 Figuras planas a) Semi-reta de origem e que passa
