Matemática. 8 o ano. Caderno 1
|
|
|
- Giovanna Conceição Delgado
- 8 Há anos
- Visualizações:
Transcrição
1 Matemática 8 o ano adeno 1
2 Módulo 1 1 Em elação ao infogáfico apeentado a egui, eponda ao que e pede. Fonte: Folha de S.Paulo, 6, 9 ma a) Qual é a fonte da pequia? b) Qual é o aunto cental dee infogáfico? c) pequia nele divulgada envolveu toda a população ou utilizou uma amota? Jutifique. d) No infogáfico apeentado, há doi gáfico. De que tipo ele ão? Qual é o conteúdo dele? e) Elaboe quato comentáio analítico obe o dado apeentado no infogáfico. 2
3 Módulo 2 1 onidee a expeõe algébica: = 3x 3 + 2x 2 2x + 5; = 2x 3 + 1; = 4x 2 + 3x 3. alcule o valo de 2 ( + ), eduzindo o temo emelhante. 2 (Saep daptada) Uma empea de entega em domicílio coba, na gande São Paulo, R$ 5,00 fixo po entega, mai R$ 0,03 paa cada um gama. No inteio do Etado, ela coba o peço da gande São Paulo acecido de 10%. Eceva a expeão que epeenta o peço de entega de uma encomenda de x gama paa o inteio de São Paulo, em eai. Módulo 3 1 (Mateial de efeência Pova ail) figua ao lado mota uma oldana, na qual, em cada um do pato, há um peo de valo conhecido e efea de peo x. Uma expeão matemática que elaciona o peo no pato da oldana é a) 3x 5 < 8 2x. b) 3x 5 > 8 2x. c) 2x + 8 < 5 + 3x. d) 2x + 8 > 5 + 3x. X 8 g X X 5 g X X 2 (Pova anguu) Um balão pode caega uma ceta contendo caga máxima de 80 kg. Doi dee balõe podem caega a mema ceta com uma caga máxima de 180 kg. Qual é o peo da ceta? a) 10 kg. b) 20 kg. c) 30 kg. d) 40 kg. e) 50 kg. máx. 80 kg máx. 180 kg 3 (Pova anguu) Numee o cículo de 1 a 7 no diagama, de modo que a oma do tê númeo em cada linha eja empe a mema. Qual é o númeo que deveá e ecito no cículo mai alto? a) 1. b) 3. c) 4. d) 5. e) 6. 4 (Fuvet-SP) Um upemecado adquiiu detegente no aoma limão e coco. compa foi entegue embalada em 10 caixa, com 24 faco em cada caixa. Sabendo-e que cada caixa continha doi faco de detegente a mai no aoma limão do que no aoma coco, o númeo de faco entegue, no aoma limão, foi a) 110. b) 120. c) 130. d) 140. e)
4 Módulo 4 1 Na figua a egui, a eta e ão paalela. alcule, em cada cao, o valo de α. a) c) 130o 2α 75o α α + 120o b) α d) 2α 4α + 20o α α + 85o 2 eta a e b da figua a egui ão paalela? Jutifique ua epota. a b 35o 20o 123o c d 3 Dua feovia, pefeitamente eta, ataveam um paí, inteceptando-e em ua capital. feovia 1 foma, com a dieção Note-Sul, um ângulo de 10 e a feovia 2 foma, com a dieção Lete-Oete, um ângulo de 20. medida do ângulo agudo fomado pela dua feovia é igual a a) 10. b) 30. c) 70. d) Na figua a egui, a eta e ão paalela e a medida do ângulo é o tiplo da medida do ângulo D. Detemine a medida x indicada na figua. D x 80o 4
5 Módulo 5 1 Na figua a egui, o polígono ombeado foi fomado pela jutapoição de quato paalelogamo idêntico e a eta intecepta doi vétice dee polígono. Detemine a medida do ângulo inteno de cada paalelogamo. 130o 150o 2 Em um tapézio D, o ângulo inteno ão tai que: a medida de upea em 10 a medida de ; a medida de upea em 10 a medida de ; a medida de D upea em 10 a medida de. alcule a medida do quato ângulo inteno dee tapézio e indique o eu vétice na figua. Módulo 6 1 (Saep) Reolva a expeão a egui e maque a altenativa que coeponde ao eultado coeto. a) 2. b) = c) 32. d) 7. 2 Reduza a uma ó potência: a) (3 2 ) 3 c) (2 3 ) 3 b) 3 23 d) laifique como vedadeio (V) ou falo (F): ( ) = ( ) (2x) 10 = 2x 10 ( ) (5 3) 2 = ( ) (5 3) 2 = ( ) (5 + 3) 2 = ( ) (5 3) 2 = alcule o valo de (0,25) 2 (0,5) 2. 5 Qual é o valo da expeão a egui? , ,6 20,16 5
6 Módulo 7 1 Simplifique a expeõe: a) (x2 y 5 ) 4, endo x e y não nulo. x 3 y 2 b) 3 n 3 n25 c) p 3n+1. p n 1 d) ( 26 ) Efetue a multiplicaçõe e a diviõe indicada: a) 3m 2 ( m 2 + 4m + 3) b) 104t 5 v 6 ( 4t 3 v), endo t e v não nulo. c) 4x 5? [1x ] d) 4x8 9 2x3 6 3 Detemine a potência: a) [ 5b3 a 4 4v ] 3, endo a não nulo. b) ( 10a 1 b 4 c 3 ) 4, endo a não nulo. Módulo 8 1 (Mateial de efeência Pova ail) Fabício pecebeu que a viga do telhado da ua caa fomavam um tiângulo etângulo que tinha um ângulo de medida 68. Quanto medem o outo ângulo dee tiângulo? 68o a) 22 e 90. b) 45 e 45. c) 56 e 56. d) 90 e (Mateial de efeência Pova ail) Paa faze um aviãozinho, Felipe tomou uma folha etangula de papel e obevou o pao indicado na figua a egui. O tiângulo é: 1 o pao 2 o pao 3 o pao 4 o pao a) etângulo e ecaleno. b) etângulo e iócele. c) acutângulo e ecaleno. d) acutângulo e iócele. 6
7 3 Na figua a egui, o ângulo é eto. alcule a oma da medida do ei ângulo ainalado. 4 No pentágono DE, o lado E e D ão paalelo e o lado e DE também ão paalelo. medida do ângulo inteno é igual a D E 70o 45o a) 55. b) 60. Módulo 9 c) 65. d) (Fuvet-SP daptada) Na figua,, e D ão ponto ditinto da cicunfeência de cento O, e o ponto é exteio a ea cicunfeência. lém dio:, e etão alinhado e, O e D também etão alinhado; = O e o ângulo ÔD mede 54. Nea condiçõe, o ângulo O mede a) 108. b) 120. c) 126. d) 136. e) 144. O D F 2 (Inpe-SP) Sejam α, β, γ, λ e θ a medida, em gau, do ângulo,, DF, EF e DFE da figua, epectiva mente. oma α + β + γ + λ + θ é igual a a) 120. b) 150. c) 180. D d) 210. E e)
8 Módulo 10 1 (Pova anguu daptada) Numa eleição, todo o cinco candidato tiveam votaçõe difeente, num total de 36 voto. O vencedo ecebeu 12 voto e o último colocado ecebeu 4 voto. Quanto voto ecebeu o egundo colocado na eleição? a) etamente ecebeu 8. d) Pode te ecebido 9 ou 10. b) Pode te ecebido 8 ou 9. e) etamente ecebeu 10. c) etamente ecebeu 9. 2 (Pova anguu) No final de um campeonato de futebol egional, houve muito gol. Já no pimeio tempo, ei gol haviam ido macado, com o time viitante à fente do macado. No egundo tempo, o time da caa macou tê gol e acabou vencendo o jogo. Quanto gol o time da caa fez neta patida? a) 3. d) 6. b) 4. e) 7. c) 5. 3 (Pova anguu) Num ceto mê havia 5 ábado e 5 domingo, ma omente 4 exta-feia e 4 egunda-feia. om ceteza, o mê eguinte teve a) 5 quata-feia. b) 5 quinta-feia. c) 5 exta-feia. d) 5 ábado. e) 5 domingo. 8
Conteúdos Exame Final e Avaliação Especial 2016
Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe
Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.
8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete
Professoras: Lisiane e Suziene. Lista de Conteúdos e Exercícios Preparatórios para Exame Final 2018
Componente Cuicula: Matemática Ano: 8º Tuma: 18 A, 18B, 18C e 18D Pofeoa: Liiane e Suziene Lita de Conteúdo e Eecício Pepaatóio paa Eame Final 018 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ
RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno
Fazer: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. y 60º. a) do ângulo de 27º 31 é. Geometria plana PARFOR
Geometia plana PRFOR Faze: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. 1. Calcule o valo de e obevando a figua abaio: a) b) 3 15º 60º 5 15º 4 + 5º 2. Calcule a medida de na eguinte figua: a) b) 3 5º 3 + 20º +
Material Teórico - Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularidade. Terceiro Ano - Médio
Mateial Teóico - Módulo de Geometia naĺıtica 1 Paalelimo e Pependiculaidade Teceio no - Médio uto: Pof ngelo Papa Neto Revio: Pof ntonio aminha M Neto 1 Reta paalela Na aula obe a equação da eta vimo que,
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Weslei
Áea de Diciplina: Ano: 8º - Enino Fundamental Pofeoe: Macu e Welei Atividade paa Etudo Autônomo Data: 0 / 5 / 09 Cao(a) aluno(a), O momento de evião deve e vito como opotunidade de econtui conhecimento
Geometria: Perímetro, Área e Volume
Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070
PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.
17. (PUC-SP)Se a 16. 19. (GV) Se x 3200000 e y 0, 00002, calcule o valor do produto x. y.
Um navio dipõe de eeva uficiente paa alimenta homen duante dia, ma ecebe obevivente de um naufágio eeva de alimento daão paa no máimo quanto dia? LIST 0 XRÍIOS GOMTRI PLN PROF ROGRINHO º nino Médio (Razão
PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO
Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,
suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur
Eta Geometia Plana Pof Eweton Paiva 01) (UFF 007) fim de elaboa um elemento de ua oba de ate, um eculto ua um pedaço de aame e contói uma cicunfeência, confome mota a figua P b) Pove que med(» ) med( E»
Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente
Mateial Teóico - Módulo Elemento áico de Geometia Plana - Pate 1 Conceito Geomético áico itavo no Pof. Ulie Lima Paente 1 Conceito pimitivo ideia de ponto, eta e plano apaecem natualmente quando obevamo
EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO
EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede
singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)
1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru
Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de
BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Sabendo que //, dê a medida
MATEMÁTICA 3 A SÉRIE - E. MÉDIO
1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e
GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas
GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas
Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.
NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As
CPV O cursinho que mais aprova na GV
RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais
APÊNDICE. Revisão de Trigonometria
E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio
Miloje / Shutterstock. Matemática B. CP_18_GAIA_MB1.indd 1 12/01/ :44
Miloje / Shuttertock Matemática _18_GI_M1.indd 1 1/01/018 14:44 Matemática aula 1 é ietriz de Ô Ô Ô Soma de ângulo adjacente Quanto ao valor, a oma de doi ângulo adjacente pode er claificada em trê categoria:
O perímetro da circunferência
Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe
XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível α (6 o e 7 o anos do Ensino Fundamental) Gabaritos
XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Pova da Pimeia Fase (3 de agosto de 0) Nível α ( o e 7 o anos do Ensino Fundamental) Gabaitos www.opm.mat.b PROBLEMA a) Na sequência esnúfica, 3,, 3, o quinto temo
Matemática do Ensino Médio vol.2
Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2
Matemática D Intensivo V. 2
Intensivo V. Execícios 0) Note que o lado ( ) do tetaedo é a diagonal da face do cubo de aesta, sendo assim: D 0) 0) 0) C 05) Segue que a áea da face do tetaedo é: l ( ).. Soma das aestas é dada po: S
PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos
PPNL Min (Max) f(x). a. g i (x) (,, =) b i, i =,,m onde x = (x,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas
PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO
PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as
EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x?
EOREMA DE TALES Se um feixe de paalela deemina egmeno conguene obe uma anveal, enão ee feixe deemina egmeno conguene obe qualque oua anveal. Aim, um feixe de paalela deemina, em dua anveai quaique, egmeno
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio
Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO
Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto
Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de
VETORES GRANDEZAS VETORIAIS
VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma
7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR
EBIAH 7º ANO PLANIFICAÇÃO A LONGO PRAZO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR IDENTIFICAR/DESIGNAR: O aluno deve utiliza coetamente a designação efeida, sabendo defini o conceito apesentado como se indica
01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E.
PROFESSOR: Macelo Soae NO E QUESTÕES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉIO ============================================================================================= GEOMETRI Pae 1 01- figua é um quadado
o anglo resolve a prova da 2ª fase da FUVEST
o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:
UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)
F-328 Física Geral III
F-328 Física Geal III Aula exploatóia Cap. 23 UNICAMP IFGW 1 Ponto essencial O fluxo de água atavessando uma supefície fechada depende somente das toneias no inteio dela. 2 3 1 4 O fluxo elético atavessando
Todo mundo tem seu jeito singular de ser feliz, de viver e de enxergar se os olhos são maiores ou são orientais e daí, que diferença faz?
EA CFOAV/CFOINT/CFOINF 04 PROVAS DE LÍNGUA PORTUGUESA MATEMÁTICA LÍNGUA INGLESA FÍSICA REDAÇÃO VERSÃO A 5 TEXTO IV 5 - São ecusos estilísticos que foam exploados no texto da canção, EXCETO: SER DIFERENTE
Ensino Médio. Nota. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018. Lista 3 Potencial Elétrico
Ensino Médio Pofesso: Vilson Mendes Disciplina: Física I Aluno(a): Nº. Séie: 3ª Tuma: Data: / /2018 Lista 3 Potencial Elético N2 Nota 1. Em um campo elético, há um ponto P cujo potencial elético vale VP
4.4 Mais da geometria analítica de retas e planos
07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no
Processamento de Imagens
Poceamento de Imagen By Vania V. Etela UFF-TELECOM, Joaquim T. de AiIPRJ-UERJ Técnica de Modificação de Hitogama O hitogama de uma imagem, que é uma oiedade do conteúdo da infomação contida na mema, é
MATEMÁTICA - 3o ciclo
MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecícios de povas nacionais e testes intemédios. Considea, num efeencial catesiano, a eta definida pela equação = +. Seja s a eta que é paalela
Energia no movimento de uma carga em campo elétrico
O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.
a) A energia potencial em função da posição pode ser representada graficamente como
Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >
TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.
CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas
MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto
MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo
Canguru Matemático sem Fronteiras 2019
Destinatáios: alunos dos 5. o e 6. o anos de escolaidade Nome: Tuma: Duação: h 30min Não podes usa calculadoa. Em cada uestão deves assinala a esposta coeta. As uestões estão agupadas em tês níveis: Poblemas
Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.
Instituto de Física de São Calos Laboatóio de Eleticidade e Magnetismo: Nesta pática vamos estuda o compotamento de gandezas como campo elético e potencial elético. Deteminaemos as supefícies equipotenciais
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales
INSTITUTO PLIÇÃO RNNO RORIUS SILVIR Pofeo: Mello mdeo luno(): Tum: LIST Teoem de Tle Teoem de Tle hmmo de feie de plel um onjunto de et plel de um plno, ou ej, // // //. Ret plel otd po um tnvel: onidee
TEOREMA DE TALES PROF. JOÃO BATISTA
PROF. JOÃO BATISTA TEOREMA DE TALES Se um feie de paalela deemina egmeno conguene obe uma anveal, enão ee feie deemina egmeno conguene obe qualque oua anveal. Aim, um feie de paalela deemina, em dua anveai
Extensão da trigonometria a ângulos retos e obtusos e resolução de triângulos
UNIDADE Etensão da tigonometia a ângulos etos e obtusos e esolução de tiângulos TAREFAS E AVALIAR CONHECIMENTOS. Razões tigonométicas de ângulos agudos () Taefa Apesente uma justificação paa cada uma das
Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10
Pova final Pova final 6 Soluções das 0 Pova final ESCOLA: NOME: N. O : TURMA: DATA: Cadeno (com calculadoa) 5 minutos Gupo I Paa cada uma das questões deste gupo, selecione a opção coeta de ente as altenativas
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
Cap014 - Campo magnético gerado por corrente elétrica
ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate
GEOMETRIA. Noções básicas de Geometria que deves reter:
Noçõe báica de Geometia que deve ete: nte de iniciae qualque tabalho geomético, deve conhece o conjunto de intumento que deveá te empe: lgun cuidado a te: 1 Mante égua e equado limpo. 2 Não ua x-acto ou
Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio
Mateial Teóico - Cículo Tigonomético Radiano, Cículo Tigonomético e Conguência de acos Pimeio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto de setembo de
( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:
P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o
Testes Propostos de Geometria Plana: Ângulos
u de Matemática Tete Ppt de Gemetia Plana: Ângul 01. Sejam, e epectivamente a medida d cmplement, uplement e eplement d ângul de 40, têm-e 05. i ângul adjacente ã cmplementae. ntã, ângul fmad pela bietize
Matemática / Física. Figura 1. Figura 2
Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da
FIGURA 1. Diagrama fasorial de um dielétrico submetido a uma tensão CA.
i.ee DETEMINAÇÃO DO FATO DE DISSIPAÇÃO PEDAS DIELÉTIAS Eng. Joé Aino Teieia J. ondutividade eidual. Peda o olaização 3. Peda o decaga aciai Gae : O gae gealmente tem eda etemamente baia. O mecanimo de
