- Processamento digital de sinais Capítulo 4 Transformada discreta de Fourier
|
|
|
- Ágatha Garrau
- 6 Há anos
- Visualizações:
Transcrição
1 - Processaeto digital de siais Capítulo Trasforada discreta de Fourier
2 O que vereos 1 Itrodução Etededo a equação da DFT 3 Sietria da DFT Liearidade e agitude da DFT 5 Eio da frequêcia 6 Iversa da DFT 7 Leakage/ vazaeto 8 Jaelaeto de siais 9 Resolução e preechieto co zeros 10Represetações o doíio da frequêcia 11A FFT
3 1 Itrodução A iportâcia da DFT o PDS Orige f t e jft dt tepo frequêcia Correspodete discreta: 1 0 e j / 3
4 Etededo a equação da DFT Reescrevedo: 1 0 e j / cos j. se 1 0 -ode úero de aostras a sere processadas úero de potos o eio da frequêcia - varia de 0 até -1
5 Eeplo 1: cosidere quado e Fs500 5 se j. cos 1 0. cos 3 0 se j cos 0 se j cos se j cos se j cos se j cos 1 se j cos se j cos se j cos se j
6 Vale destacar que: Assi: f. Fs Hz Hz Hz Hz prieiro tero de frequêcia DC segudo tero de frequêcia terceiro tero de frequêcia quarto tero de frequêcia 6
7 A agitude é: O âgulo é A potêcia do espectro é: 7 o âgulo de j ag iag real φ + iag real ag + ta 1 real iag φ iag real ag PS +
8 Eeplo : calcule as oito prieiras copoetes de frequêcia da DFT do sial cosiderado F s 8000 a/s 1000t + 0.5se / t se t Solução: Discretizado: 1000t + 0.5se 000t + 3 / se s s As copoetes de frequêcia serão: 0Hz, 1kHz, khz,... 7kHz e o sial será: 8
9 O forato do sial é: A prieira copoete é: cos /8 j se /8 9
10 10
11 11
12 1
13 13
14 1
15 15
16 16
17 17
18 A fase é relativa ao cosseo! E.: -90 equivale a cosα-90 siα 18
19 3 Sietria Fora geral: Sietria par da agitude * Sietria ípar da fase copleo cojugado Coclusão: iforação relevate só até / -1 19
20 Prova ateática sietria: Sedo que / / 1 0 / j j j e e e 1 0 / j j e e 1 0 / j e 1 si cos j e j * 1 0 / e j Lebrado de cojugado copleo: a + jb * a jb e jα * e -jα
21 Liearidade e agitude da DFT Liearidade: soa 1 + Magitude: E.: soa t + 0.5se / t se t Solução : e j / 1
22 5 Eio da frequêcia Resolução frequêcia: f resol.. Lebretes iportates: Fs A cada saída da DFT é a soa tero a tero do produto de ua sequêcia de etrada o doíio co ua sequêcia represetado odas seo e cosseo ; B para etradas de úeros reais, ua DFT de potos provê ua saída co /+1 teros idepedetes; C a agitude dos resultados da DFT são proporcioais a ; D a resolução de frequêcia da DFT é dada pela fora acia
23 6 DFT iversa Fórula: e j / Aplicado ao eeplo teos: 3
24 7 Leakage\vazaeto Descrição problea: Eeplo: 1000t + 0.5se / t se t Cosiderado Fs8000 e 8. E se Fs5000?
25 O leakageacotece quado a frequêcia de u sial de etrada ão te correspodêcia eata co o eio de frequêcia 5
26 Forato de u espectro puro: A0 si[ k ]. k Kú aostras por ciclo ou úde ciclos da aostra 6
27 Eeplo: Fs3.000 e 3 7
28 Replicação espectral: 8
29 8 Jaelaeto w 1 0 w e j / 9
30 30
31 Eeplo 3: 31
32 Eeplo : 3
33 9 Resolução e preechieto co zeros Trasforada cotíua de Fourier: O que fazer para elhorar a resolução do espectro? Preecher a etrada co zeros?! zero paddig 33
34 Coo cosertar o eio das frequêcias co preechieto co zeros? Melhoraeto da resolução as ão elhora etedieto das frequêcia de etrada Obs.: SR 3
35 10 Represetação o doíio da frequêcia Eio da frequêcia e: Hz f 7.f s / Hz; oralizado por f s f/f s 7/ ciclos/aostra; Âgulo oralizado wf/f s radiaos/aostra; 35
36 Resuido: Represetação alterativa: w e jw 36
37 Eeplo: calcule a trasforada de 0,75 u usado a variável w. Resolução: Aplicado a série geoétrica: Coclusão: 37 jw e w jw jw e e w 0,75 0, jw e w 0, j w e w / 1 0 /
38 Resuido a: trasforada cotíua, a trasforada discreta e a série de Fourier: 38
39 Obs.: efeito de Gibbs e sisteas digitais 39
40 Custo coputacioal 11 FFT versus.log Para : DFT: 3 seaas; FFT: 10 segudos! Potêcia de preechieto co zeros 0
41 1
2- Resolução de Sistemas Não-lineares.
MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u
Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia
SALVADOR-BA Forado pessoas para trasforar o udo. Tarefa: RESOLUÇÃO DA ª AVALIAÇÃO DE MATEMÁTICA ALUNOA: ª série do esio édio Elaboração: Prof. Octaar Marques Resolução: Profa. Maria Atôia Gouveia Tura:
Exercícios de Matemática Binômio de Newton
Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot
Processamento Digital de Sinais Lista de Exercícios Suplementares 2-1 semestre 2012
Processameto Digital de Siais Lista de Exercícios Suplemetares - semestre 0 (07 (PROAKIS; MANOLAKIS, 996, p 370 Calcule a trasformada de Fourier de tempo discreto dos seguites siais: (a x u u 6 (b x u
Operadores Lineares e Matrizes
Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)
Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log
0 IME "A ateática é o alfabeto co que Deus escreveu o udo" Galileu Galilei Questão 0 Cosidere log b a 4, co a e b úeros reais positivos. Deterie o valor de, úero real, para que a equação x 8 x log b ab
1 o SIMULADO NACIONAL AFA - SISTEMA SEI
Istruções 1. Para a realização das provas do Siulado Nacioal AFA Sistea SEI, o usuário deverá estar cadastrado, e o seu cadastro, ativado.. E cojuto co esse arquivo de questões, está sedo dispoibilizado
Série Trigonométrica de Fourier
studo sobre a Série rigoométrica de Fourier Série rigoométrica de Fourier Uma fução periódica f( pode ser decomposta em um somatório de seos e seos eqüivaletes à fução dada f ( o ( ( se ( ) ode: o valor
Processamento Digital de Sinais Lista de Exercícios Suplementares 3-1 quad. 2012
Processameto Digital de Siais - Lista de Exercícios Suplemetares 3- Marcio Eisecraft abril 01 Processameto Digital de Siais Lista de Exercícios Suplemetares 3-1 quad 01 1 (1041) [OPPENHEIM, p 603] Supoha
DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular
Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,
Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m
Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de
x 2 r f (1) + D t x 2 ( 2 x x 2 (4) Esquemas pseudo-implícitos: são esquemas implícitos em sua formulação, mas explícitos na realização.?
IO 5 - Modelage Nuérica e Oceaogra a ª Lista de exercícios Aluo: Dailo Rodrigues Vieira ) O que são esqueas uéricos explícitos, iplícitos, sei-iplícitos, pseudo-iplícitos e iterativos? Quais são as vatages
Equações Recorrentes
Filipe Rodrigues de S oreira Graduado e Egeharia ecâica Istituto Tecológico de Aeroáutica (ITA) Julho 6 Equações Recorretes Itrodução Dada ua seqüêcia uérica, uitas vezes quereos deteriar ua lei ateática,
Condução Bidimensional em Regime Estacionário
Codução Bidiesioal e Regie Estacioário Euações de Difereças Fiitas E certos casos os étodos aalíticos pode ser usados a obteção de soluções ateáticas eatas para probleas de codução bidiesioal e regie estacioário.
GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS
C/007/MATEMATICA/ITAIME/MAT599ita(res)/ Cleo 5607 o Esio Médio Prova de Mateática (SIMULADO ITA/007) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Coo e y são iteiros, só podeos ter ( ) é u
= { 1, 2,..., n} { 1, 2,..., m}
IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação
Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra
Cap. 5-Trasformada de Z Uiversidade de Coimbra Aálise e Processameto de BioSiais Mestrado Itegrado em Egeharia Biomédica Faculdade de Ciêcias e Tecologia Uiversidade de Coimbra Slide Aálise e Processameto
Análise de Sistemas no Domínio do Tempo
CAPÍTULO 4 Aálise de Sisteas o Doíio do Tepo 4. Itrodução A resposta o tepo de u sistea de cotrolo é iportate dado que é este doíio que os sisteas opera. O étodo clássico da aálise da resposta o tepo ivestiga
AULA 17 A TRANSFORMADA Z - DEFINIÇÃO
Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.
GRÁFICOS DE CONTROLE PARA X e S
Setor de Tecologia Departaeto de Egeharia de Produção Prof. Dr. Marcos Augusto Medes Marques GRÁFICOS DE CONTROLE PARA X e S E duas situações os gráficos de cotrole X e S são preferíveis e relação aos
MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA
GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo
Resolução das Questões Objetivas
Resolução das Questões Objetivas Questão : Seja f : R R dada por f ( x) = µ x + 0x + 5, ode µ 0 Teos que f ( x ) > 0 para todo x R, se e soete se, i) µ > 0 ; ii) A equação µ x + 0x + 5 = 0 ão possui solução
Processamento Digital de Sinais. Notas de Aula. Transformada Discreta de Fourier DFT. Transformada Discreta de Fourier - DFT.
Trasformada Discreta de Fourier Trasformada Discreta de Fourier Trasformada Discreta de Fourier - DFT Processameto Digital de Siais otas de Aula DTFT: X(e jω ) = x[]e jω = É uma trasformada da variável
BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3.
BM&F Câara de Ativos s de Referêcia e Seus Liites de Variação Para a Deteriação do Túel de s do Sisbex - Versão 3.0-1 Itrodução. Neste docueto apresetaos u procedieto pelo qual as taxas de referêcia da
Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc
Diâica Estocástica Aula 11 Setebro de 2015 âia - Di Estoc - 2015 1 1 rocesso arkoviao e atriz estocástica 2 âia - Di Estoc - 2015 2 rocesso Markoviao 1 1 obtida a últia aula 1 robabilidade do estado o
PROPRIEDADE E EXERCICIOS RESOLVIDOS.
PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...
Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental.
Exercícios de DSP: 1) Determie se os siais abaixo são periódicos ou ão e para cada sial periódico, determie o período fudametal a x[ ] = cos( 0,15 π ) 1 18 b x [ ] = Re{ e } Im{ } jπ + e jπ c x[ ] = se(
Mais exercícios de 11.º ano: Escola Secundária de Francisco Franco. f(x) lim.
Escola Secudária de Fracisco Fraco Matemática A (metas curriculares) 11.º ao Eercícios saídos em eames acioais e em testes itermédios (desde 1998) Tema IV: fuções reais de variável real Parte 1: limites,
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Capítulo 2. Aproximações de Funções
EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar
Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)
Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC
comprimento do fio: L; carga do fio: Q.
www.fisicaexe.co.br Ua carga Q está distribuída uniforeente ao longo de u fio reto de copriento. Deterinar o vetor capo elétrico nos pontos situados sobre a reta perpendicular ao fio e que passa pelo eio
Princípios da Dualidade para Análise por Envoltória de Dados
Pricípios da Dualidade para Aálise por Evoltória de Dados Eo B. Mariao (EESC/USP) [email protected] Mariaa R. Aleida (EESC/USP) [email protected] Daisy A. N. Rebelatto (EESC/USP) [email protected]
Física IV para a Escola Politécnica (Engenharia Elétrica) TURMA 3
Física IV para a Escola Politécica (Egearia Elétrica) 43093 TURMA 3 Professor: Dr. Marcos A. G. Alvarez Departaeto de Física Nuclear (DFN) IFUSP Edifício Oscar Sala (sala 46) Escaio [email protected] IVRO:
ENGC33: Sinais e Sistemas II. 28 de novembro de 2016
Somatório de covolução ENGC33: Siais e Sistemas II Departameto de Egeharia Elétrica - DEE Uiversidade Federal da Bahia - UFBA 8 de ovembro de 6 Prof. Tito Luís Maia Satos / 57 Sumário Itrodução Revisão
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.
Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:
Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb)
Soluções da prova. Cálculo Diferecial e Itegral I o Eame - MEMec; MEEC; MEAmb de Juho de 00-9 horas I val.. i!! u!! do teorema das sucessões equadradas vem u 0 dado que ±!! 0. v / + l + / + l + /6 l Para
Vibrações em Sistemas Mecânicos
Notas de aulas Vibrações e Sisteas Mecâicos. 0......... Deslocaeto () 0 0 0-0 - 0-3 0 50 500 750 000 50 500 750 000 Node() E C /E F 0.005 Node() E C /E F 0.05 Node() E C /E F 0.5 Freq (Hz) Deslocaeto []
Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações.
obiações siles - Defiição obiações siles e co reetição - Teoria osidereos u cojuto X co eleetos distitos. No artigo Pricíios Multilicativos e Arrajos - Teoria, aredeos a calcular o úero de arrajos de eleetos
Conteúdos Programáticos de Matemática A 12º ano 2017/2018
Coteúdos Programáticos de Matemática A 12º ao 2017/2018 CONTEÚDOS PROGRAMÁTICOS CALENDARIZAÇÃO Cálculo Combiatório (CC12) Propriedades das operações sobre cojutos - Propriedades comutativa, associativa,
Aula 06 Transformadas z
Aula 06 Trasformadas Trasformadas Na aálise de sistemas cotíuos por vees é mais vatajoso o uso da frequêcia complexa s. No caso de sistemas discretos, uma ferrameta bastate comum usada para passar um sial
Projeto de Controladores Suplementares de Amortecimento Utilizando Redes Neurais Artificiais
Capus de Ilha Solteira PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Projeto de Cotroladores Supleetares de Aortecieto Utilizado Redes Neurais Artificiais MARCOS AMORIELLE FURINI Orietador: Prof. Dr.
Resposta em frequência
Rsposta frquêcia Nocatura a rsposta frquêcia é úti a caractrização d u sista LSI. Dfi d quato a apitud copa d ua pocia copa é atrada ao sr fitrada po sista. Epociais copas são autofuçõs d sistas LSI. Cosidrado
Síntese de Transformadores de Quarto de Onda
. Sítese de rasforadores de Quarto de Oda. Itrodução rasforadores de guia de oda são aplaete epregados o projeto de copoetes e oda guiada e são ecotrados e praticaete todas as cadeias alietadoras de ateas
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução
REVISÃO: ANÁLISE DE TENSÕES
REVISÃO: ANÁLISE DE ENSÕES Fadiga dos Materiais Metáicos Prof. Caros Batista ESADO DE ENSÃO EM UM PONO O estado gera de tesão e u oto de u coro e equiíbrio ode ser reresetado or 6 cooetes: O eso estado
SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa
Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos
QUESTÕES DISCURSIVAS Módulo
QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares
2 - PRINCÍPIO DE FUNCIONAMENTO DO GERADOR DE CORRENTE CONTINUA
2 - PRICÍPIO D FUCIOAMTO DO GRADOR D CORRT COTIUA 2.1 - A FORÇA LTROMOTRIZ IDUZIDA O pricípio de fucioameto do gerador de correte cotíua tem por base a Lei de Faraday que estabelece que, se o fluxo magético
SOLUÇÃO ANALÍTICA APROXIMADA PARA CONVECÇÃO FORÇADA LAMINAR TRANSIENTE DE FLUIDO NÃO-NEWTONIANO PARA PROBLEMAS COM MODELO PARABÓLICO-HIPERBÓLICO
Paper CIT04-0649 SOUÇÃO AAÍTICA APROXIMADA PARA COVECÇÃO FORÇADA AMIAR TRASIETE DE FUIDO ÃO-EWTOIAO PARA PROBEMAS COM MODEO PARABÓICO-HIPERBÓICO Jacques Cesar dos Satos (*) aboratório de Eergia Solar(ES)
Processamento Digital do Sinal
ISTITUTO POLITÉCICO DE BRAGAÇA ESCOLA SUPERIOR DE TECOLOGIA E GESTÃO Processameto Digital do Sial MATERIAL DE APOIO ÀS AULAS PRÁTICAS Eg. João Paulo Coelho /4 Processameto Digital de Sial 4º Ao de Eg.
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 8
59117 Física II Ondas, Fluidos e Terodinâica USP Prof. Antônio Roque Oscilações Forçadas e Ressonância Nas aulas precedentes estudaos oscilações livres de diferentes tipos de sisteas físicos. E ua oscilação
==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então
Departameto de Matemática - Escola Superior de ecologia - Istituto Politécico de Viseu Complemetos de Aálise Matemática Egeharia de Sistemas e Iformática Euciado e Resolução da a. Frequêcia de 5/6 Duração:
A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA
A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA A oção de fução hoogéea surge logo o prieiro ao dos cursos de liceciatura ode ua disciplia de Aálise Mateática esteja presete. Tal coo é apresetada, trata-se
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e
MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b
República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências
buso Seual as escolas Não dá para aceitar Por uma escola livre do SI República de Moçambique Miistério da Educação oselho Nacioal de Eames, ertificação e Equivalêcias ESG / 0 Eame de Matemática ª Época
CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS
Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie
