REVISÃO: ANÁLISE DE TENSÕES

Tamanho: px
Começar a partir da página:

Download "REVISÃO: ANÁLISE DE TENSÕES"

Transcrição

1 REVISÃO: ANÁLISE DE ENSÕES Fadiga dos Materiais Metáicos Prof. Caros Batista

2 ESADO DE ENSÃO EM UM PONO O estado gera de tesão e u oto de u coro e equiíbrio ode ser reresetado or 6 cooetes: O eso estado de tesão é reresetado or u cojuto diferete de cooetes se os eios são rotacioados. Fadiga dos Materiais Metáicos Prof. Caros Batista

3 PROJEÇÕES DE ENSÃO NUM PLANO QUALQUER Seja u ao quaquer ABC defiido u etraedro coo ostrado a figura. Direção ora ao ao Cosseos diretores: cos(,) = cos(,) = cos(,) = Nu ao quaquer, dado eos cosseos diretores,,, as rojeções da tesão são obtidas a artir dos 6 cooetes iiciais Fadiga dos Materiais Metáicos Prof. Caros Batista

4 Fadiga dos Materiais Metáicos Prof. Caros Batista PROJEÇÕES DE ENSÃO NUM PLANO QUALQUER Equações de Cauch a Fora Matricia: A tesão o ao ABC é escrita coo: k j i Escrevedo o equiíbrio do tetraedro e : da da da da Ficaos co: (Aaogaete ara as outras direções)

5 COMPONENES DA ENSÃO NUM PLANO QUALQUER A tesão u ao da ode ser escrita tabé e teros de seus cooetes ora e cisahate. = + + (rojeção do vetor a direção ) = A tesão cisahate o ao quaquer será cosiderada e teros de suas duas cooetes a direção de vetores utuaete eredicuares. Assi, cosidere u sistea de coordeadas, ode coicide co a direação de e e estão cotidos o ao obíquo. Os sisteas e se reacioa or eio do cojuto de cosseos diretores. A tesão é reescrita coo A tesão e são obtidas faedo as rojeções de, e as direções e. Fadiga dos Materiais Metáicos Prof. Caros Batista

6 Fadiga dos Materiais Metáicos Prof. Caros Batista COMPONENES DA ENSÃO NUM PLANO QUALQUER ' ' ' ' ' Eeo: ' ' '

7 EQUAÇÕES DE RANSFORMAÇÃO DA ENSÃO As eressões ara e são obtidas de aeira aáoga. Por eeo, faça a direção coicidir co o eio, escreva ovas eressões ara as rojeções e a artir deas obteha a tesão que será etão o vaor de coo segue: Fadiga dos Materiais Metáicos Prof. Caros Batista

8 Fadiga dos Materiais Metáicos Prof. Caros Batista ENSÕES PRINCIPAIS E OS INVARIANES DE ENSÃO Deostra-se, ara o estado triaia de tesão, que eiste aos utuaete eredicuares os quais a tesão cisahate é ua. Nestes aos, a tesão ora te vaores etreos, que são deoiados tesões riciais e deotados or e Votado ao tetraedro, suoha que o ao iciado da seja u ao ricia, isto é, a tesão coeta este ao terá a esa direção do vetor ora. Vaos chaá-a de. Lebrado as equações de Cauch: Ficaos co o seguite sistea iear hoogêeo:

9 Fadiga dos Materiais Metáicos Prof. Caros Batista ENSÕES PRINCIPAIS E OS INVARIANES DE ENSÃO Essas equações fora u sistea iear hoogêeo e,, que adite soução diferete da trivia soete se o seu deteriate for uo. Iguaado a ero o deteriate da atri icoeta e desevovedo, ve: I I I cujas raíes forece os vaores das tesões riciais,, Substituido essas tesões (ua de cada ve) o sistea de equações e usado a reação etre os cosseos diretores, deteria-se os cojutos de cosseos diretores, corresodetes às direções riciais.

10 Fadiga dos Materiais Metáicos Prof. Caros Batista ENSÕES PRINCIPAIS E OS INVARIANES DE ENSÃO I I I Os vaores de,,, as souções da equação, ão deede do sistea de coordeadas, ou seja, a equação forece as esas raíes quaquer que seja o sistea de eios,,. Cosequeteete, seus coeficietes deve ser sere os esos: são os Ivariates do Estado de esão. I I I

11 Fadiga dos Materiais Metáicos Prof. Caros Batista Resuo: esões Priciais e os Ivariates da esão I I I I I I

12 A EQUAÇÃO CÚBICA I I I Métodos de resoução: - etativa e erro - Método Nuérico - Regra de Carda Giroao Cardao (5-576) Fadiga dos Materiais Metáicos Prof. Caros Batista

13 O MÉODO DE CARDAN As raíes da fução (tesões riciais) são dadas or: Ode as costates são deteriadas coo: Fadiga dos Materiais Metáicos Prof. Caros Batista

14 Fadiga dos Materiais Metáicos Prof. Caros Batista AS DIREÇÕES PRINCIPAIS Os vaores dos cosseos diretores de ua dada direção ricia ode ser obtidos resovedo-se o sistea de equações, o qua a corresodete tesão ricia é substituída. Erega-se coo equação adicioa a soa dos quadrados dos cosseos diretores. No etato, e ve de resover siutaeaete duas equações ieares e ua equação de seguda orde, é referíve u rocedieto ais sies. O sistea iear é eresso a fora atricia coo:

15 AS DIREÇÕES PRINCIPAIS Os cofatores do deteriate da atri sobre eeetos da rieira iha são: Itroduido a otação: Os cosseos diretores são eressos coo: Fadiga dos Materiais Metáicos Prof. Caros Batista

16 EXEMPLO DE APLICAÇÃO Eeo: U eio de aço é iserido or eio de ajuste forçado e u cubo de ferro fudido. O eio é subetido ao oeto fetor M, ao torque e à força P. Cosidere que e u oto Q do cubo atue o estado de tesão reresetado o eeeto de voue. Cacue as tesões riciais e a orietação dos eios riciais e reação ao sistea de coordeadas origia. esor-tesão: 9 4, 7 6, 45 4, 7 4, 6, 8 6, 45, 8 MPa 8, Fadiga dos Materiais Metáicos Prof. Caros Batista

17 ENSÕES PRINCIPAIS: APLICAÇÃO 9 4, 7 6, 45 esor-tesão: ,,, MPa 6, 45, 8 8, Os ivariates são: I 7, I 7,8 I Resutado e: a 647,5,6MPa b 5,MPa c Do étodo de Carda, teos: R 9,MPa 4,576,6 Q 488,59 78,45 Reordeado:,6 9, 5, Fadiga dos Materiais Metáicos Prof. Caros Batista

18 DIREÇÕES PRINCIPAIS: APLICAÇÃO esor-tesão: 9 4, 7 6, 45 4, 7 4, 6, 8 6, 45, 8 MPa 8,,6 9, 5, Para a rieira tesão ricia segue que: a b c k 4,6,6 4 7, 6,45,8,8 8,,6 4 7, 4,6,6 6,45,8 / a b c,8 8,,6 7,546,99,49,5445 Resutado e:,66,868 Cacuado ara as deais tesões:,66,868,5,69,8,6855,, 784,6,56 Fadiga dos Materiais Metáicos Prof. Caros Batista

19 Fadiga dos Materiais Metáicos Prof. Caros Batista ENSÕES NUM PLANO OBLÍQUO Cosidere cohecidas as tesões riciais de u dado estado de tesão, e adita que os aos utuaete eredicuares seja os aos riciais. Etão, as eressões ara as rojeções da tesão e u ao quaquer se redue a: Obs.: Podeos escrever etão:

20 Fadiga dos Materiais Metáicos Prof. Caros Batista ENSÕES NUM PLANO OBLÍQUO A tesão ode ser escrita tabé e teros de suas cooetes ora ao ao e tagecia ao ao (teorea de Pitágoras): = + + Lebrado a eressão da tesão ora: Neste caso ea se redu a: Eadido a eressão de e isoado a tesão cisahate, chegaos a:

21 CÍRCULO DE MOHR PARA RÊS DIMENSÕES PLANOS PARALELOS AOS EIXOS PRINCIPAIS: PLANO DE INCLINAÇÃO ARBIRÁRIA: Fadiga dos Materiais Metáicos Prof. Caros Batista

22 ENSÕES DE CISALHAMENO PRINCIPAIS Eeo: Assi: á MAX,, Fadiga dos Materiais Metáicos Prof. Caros Batista

23 ESADO PLANO RECONSIDERADO RIDIMENSIONAL Fadiga dos Materiais Metáicos Prof. Caros Batista

24 ENSÕES NOS PLANOS OCAÉDRICOS Cosidere u eeeto de tesão orietado as direções riciais. U ao iciado ara o qua os três cosseos diretores seja iguais é deoiado Pao Octaédrico. oct oct Visto que as tesões octaédricas são dadas e fução dos Ivariates, segue que eas tabé ão varia, ou seja, quaquer reresetação de u estado de tesão dará os esos vaores ara as tesões octaédricas. Fadiga dos Materiais Metáicos Prof. Caros Batista

25 Aáise de Deforações: Reações esão-deforação: (Regie Eástico) Círcuo de Mohr das deforações Fadiga dos Materiais Metáicos Prof. Caros Batista

26 Fadiga dos Materiais Metáicos Prof. Caros Batista

O MÉTODO DE VARIAÇÃO DAS CONSTANTES

O MÉTODO DE VARIAÇÃO DAS CONSTANTES O MÉTODO DE VARIAÇÃO DAS CONSTANTES HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos. E o eso

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações.

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações. obiações siles - Defiição obiações siles e co reetição - Teoria osidereos u cojuto X co eleetos distitos. No artigo Pricíios Multilicativos e Arrajos - Teoria, aredeos a calcular o úero de arrajos de eleetos

Leia mais

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia SALVADOR-BA Forado pessoas para trasforar o udo. Tarefa: RESOLUÇÃO DA ª AVALIAÇÃO DE MATEMÁTICA ALUNOA: ª série do esio édio Elaboração: Prof. Octaar Marques Resolução: Profa. Maria Atôia Gouveia Tura:

Leia mais

VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS 3 MOMENTOS

VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS 3 MOMENTOS TECNOLOGIA EM CONSTRUÇÃO DE EDIFÍCIOS CONSTRUÇÕES EM CONCRETO ARMADO VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS MOMENTOS Apostia orgaizada peo professor: Ediberto Vitorio de Borja 6. ÍNDICE CÁLCULO DE MOMENTOS

Leia mais

= { 1, 2,..., n} { 1, 2,..., m}

= { 1, 2,..., n} { 1, 2,..., m} IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação

Leia mais

Matrizes e Polinômios

Matrizes e Polinômios Matrizes e oliôios Duas atrizes A, B Mat R) são seelhates quado existe ua atriz ivertível Mat R) tal que B = A Matrizes seelhates possue o eso poliôio característico, já que: det A λ ) = det A λ ) ) =

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

Síntese de Transformadores de Quarto de Onda

Síntese de Transformadores de Quarto de Onda . Sítese de rasforadores de Quarto de Oda. Itrodução rasforadores de guia de oda são aplaete epregados o projeto de copoetes e oda guiada e são ecotrados e praticaete todas as cadeias alietadoras de ateas

Leia mais

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log 0 IME "A ateática é o alfabeto co que Deus escreveu o udo" Galileu Galilei Questão 0 Cosidere log b a 4, co a e b úeros reais positivos. Deterie o valor de, úero real, para que a equação x 8 x log b ab

Leia mais

2.3 - Desenvolvimento do Potencial Gravitacional em Série de Harmônicos Esféricos

2.3 - Desenvolvimento do Potencial Gravitacional em Série de Harmônicos Esféricos . - Desevovieto do otecia avitacioa e Séie de Haôicos Esféicos O potecia gavitacioa de u copo que te distibuição de assa hoogêea e foa geoética sipes, e gea, aite ua epesetação ateática eata. Mas o potecia

Leia mais

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental.

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental. Exercícios de DSP: 1) Determie se os siais abaixo são periódicos ou ão e para cada sial periódico, determie o período fudametal a x[ ] = cos( 0,15 π ) 1 18 b x [ ] = Re{ e } Im{ } jπ + e jπ c x[ ] = se(

Leia mais

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos

Leia mais

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3.

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3. BM&F Câara de Ativos s de Referêcia e Seus Liites de Variação Para a Deteriação do Túel de s do Sisbex - Versão 3.0-1 Itrodução. Neste docueto apresetaos u procedieto pelo qual as taxas de referêcia da

Leia mais

1 o SIMULADO NACIONAL AFA - SISTEMA SEI

1 o SIMULADO NACIONAL AFA - SISTEMA SEI Istruções 1. Para a realização das provas do Siulado Nacioal AFA Sistea SEI, o usuário deverá estar cadastrado, e o seu cadastro, ativado.. E cojuto co esse arquivo de questões, está sedo dispoibilizado

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte I). Ativadades IV Profa. Dra. Letícia Maria Bolzai Poehls /0/00 Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas Resolução das Questões Objetivas Questão : Seja f : R R dada por f ( x) = µ x + 0x + 5, ode µ 0 Teos que f ( x ) > 0 para todo x R, se e soete se, i) µ > 0 ; ii) A equação µ x + 0x + 5 = 0 ão possui solução

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA ESOLUÇÃO D OV DE MTEMÁTIC DO VESTIUL 0 D FUVEST-FSE. O OF. MI NTÔNI C. GOUVEI M0 Dados e iteiros cosidere a ução deiida por para a No caso e que = = ostre que a igualdade se veriica. b No caso e que =

Leia mais

Equações Recorrentes

Equações Recorrentes Filipe Rodrigues de S oreira Graduado e Egeharia ecâica Istituto Tecológico de Aeroáutica (ITA) Julho 6 Equações Recorretes Itrodução Dada ua seqüêcia uérica, uitas vezes quereos deteriar ua lei ateática,

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

II Matrizes de rede e formulação do problema de fluxo de carga

II Matrizes de rede e formulação do problema de fluxo de carga Análise de Sisteas de Energia Elétrica Matrizes de rede e forulação do problea de fluxo de carga O problea do fluxo de carga (load flow e inglês ou fluxo de potência (power flow e inglês consiste na obtenção

Leia mais

LEIS DAS COLISÕES. ' m2. p = +, (1) = p1 ' 2

LEIS DAS COLISÕES. ' m2. p = +, (1) = p1 ' 2 LEIS DAS COLISÕES. Resuo Faze-se colidir, elástica e inelasticaente, dois lanadores que se ove quase se atrito nua calha de ar. Mede-se as velocidades resectivas antes e deois das colisões. Verifica-se,

Leia mais

FORÇA DE ORIGEM MAGNÉTICA NO ENTREFERRO

FORÇA DE ORIGEM MAGNÉTICA NO ENTREFERRO AOTILA DE ELETROMAGNETIMO I 141 15 ORÇA DE ORIGEM MAGNÉTICA NO ENTREERRO E u circuito aético o fuxo produzido peo seu capo deve percorrer u caiho fechado. e este circuito tiver etreferros, ees aparecerão

Leia mais

- Processamento digital de sinais Capítulo 4 Transformada discreta de Fourier

- Processamento digital de sinais Capítulo 4 Transformada discreta de Fourier - Processaeto digital de siais Capítulo Trasforada discreta de Fourier O que vereos 1 Itrodução Etededo a equação da DFT 3 Sietria da DFT Liearidade e agitude da DFT 5 Eio da frequêcia 6 Iversa da DFT

Leia mais

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores

Leia mais

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS C/007/MATEMATICA/ITAIME/MAT599ita(res)/ Cleo 5607 o Esio Médio Prova de Mateática (SIMULADO ITA/007) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Coo e y são iteiros, só podeos ter ( ) é u

Leia mais

Mecânica dos Sólidos II

Mecânica dos Sólidos II Curso de Egeharia Civil Uiversidade Estadual de Marigá Cetro de Tecologia Departameto de Egeharia Civil Mecâica dos Sólidos II Bibliografia: Beer, F. P.; Johsto, Jr. E. R.; DEWolf, J. T. Resistêcia dos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Valter B. Dantas. Geometria das massas

Valter B. Dantas. Geometria das massas Valter B. Dantas eoetria das assas 6.- Centro de assa s forças infinitesiais, resultantes da atracção da terra, dos eleentos infinitesiais,, 3, etc., são dirigidas para o centro da terra, as por siplificação

Leia mais

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc Diâica Estocástica Aula 11 Setebro de 2015 âia - Di Estoc - 2015 1 1 rocesso arkoviao e atriz estocástica 2 âia - Di Estoc - 2015 2 rocesso Markoviao 1 1 obtida a últia aula 1 robabilidade do estado o

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geoetria Analítica e Álgebra Linear Reta e Plano Professor: Lui Fernando Nunes, Dr. Índice Geoetria Analítica e Álgebra Linear ii Estudo da Reta e do Plano... -. A Reta no Espaço... -.. Equação

Leia mais

Hidráulica Geral (ESA024A)

Hidráulica Geral (ESA024A) Faculdade de Egeharia epartaeto de Egeharia Saitária e Abietal Hidráulica Geral (ESA04A) Prof Hoero Soares º seestre 0 Terças de 0 às h Quitas de 08 às 0 h Uiversidade Federal de Juiz de Fora - UFJF Faculdade

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então Departameto de Matemática - Escola Superior de ecologia - Istituto Politécico de Viseu Complemetos de Aálise Matemática Egeharia de Sistemas e Iformática Euciado e Resolução da a. Frequêcia de 5/6 Duração:

Leia mais

Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos.

Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos. VARIÁVEIS DE ESTADO Defiições MODELAGEM E DINÂMICA DE PROCESSOS Profa. Ofélia de Queiroz Ferades Araújo Estado: O estado de um sistema diâmico é o cojuto míimo de variáveis (chamadas variáveis de estado)

Leia mais

Condução Bidimensional em Regime Estacionário

Condução Bidimensional em Regime Estacionário Codução Bidiesioal e Regie Estacioário Euações de Difereças Fiitas E certos casos os étodos aalíticos pode ser usados a obteção de soluções ateáticas eatas para probleas de codução bidiesioal e regie estacioário.

Leia mais

PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 3º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 3º TRIMESTRE TIPO A PROVA DE FÍSICA º ANO - ª MENSAL - º TRIMESTRE TIPO A 0) Aalise as afirativas abaixo. I. A lete atural do osso olho (cristalio) é covergete, ois gera ua iage virtual, eor e direita a retia. II. Istruetos

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Eenta Noções Básicas sobre Erros Zeros Reais de Funções Reais Resolução de Sisteas Lineares Introdução à Resolução de Sisteas Não-Lineares Interpolação Ajuste de funções

Leia mais

META: Apresentar o conceito de módulo de números racionais e sua representação

META: Apresentar o conceito de módulo de números racionais e sua representação Racioais META: Apresetar o coceito de ódulo de úeros racioais e sua represetação decial. OBJETIVOS: Ao fi da aula os aluos deverão ser capazes de: Idetificar a fora decial de u úeros racioal. Idetificar

Leia mais

Análise de Sistemas no Domínio do Tempo

Análise de Sistemas no Domínio do Tempo CAPÍTULO 4 Aálise de Sisteas o Doíio do Tepo 4. Itrodução A resposta o tepo de u sistea de cotrolo é iportate dado que é este doíio que os sisteas opera. O étodo clássico da aálise da resposta o tepo ivestiga

Leia mais

comprimento do fio: L; carga do fio: Q.

comprimento do fio: L; carga do fio: Q. www.fisicaexe.co.br Ua carga Q está distribuída uniforeente ao longo de u fio reto de copriento. Deterinar o vetor capo elétrico nos pontos situados sobre a reta perpendicular ao fio e que passa pelo eio

Leia mais

III Introdução ao estudo do fluxo de carga

III Introdução ao estudo do fluxo de carga Análise de Sisteas de Potência (ASP) ntrodução ao estudo do fluxo de carga A avaliação do desepenho das redes de energia elétrica e condições de regie peranente senoidal é de grande iportância tanto na

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Capítulo 15 Oscilações

Capítulo 15 Oscilações Capítulo 15 Oscilações Neste capítulo vaos abordar os seguintes tópicos: Velocidade de deslocaento e aceleração de u oscilador harônico siples Energia de u oscilador harônico siples Exeplos de osciladores

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Um professor de Matemática escreve no quadro os n primeiros termos de uma progressão aritmética: 50, 46, 42,..., a n

Um professor de Matemática escreve no quadro os n primeiros termos de uma progressão aritmética: 50, 46, 42,..., a n Questão 0 U professor de Mateática escreve no quadro os n prieiros teros de ua progressão aritética: 50, 6,,, a n Se esse professor apagar o décio tero dessa seqüência, a édia aritética dos teros restantes

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Proposta de Exame de Matemática A 12.º ano

Proposta de Exame de Matemática A 12.º ano Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versões 1/3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versões 1/3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versões / Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais