Simetrias na Mecânica Quântica

Tamanho: px
Começar a partir da página:

Download "Simetrias na Mecânica Quântica"

Transcrição

1 Simetrias na Mecânica Quântica Prof. 26 de maio de 2010

2 Definição de Simetria na Mecânica Quântica G(a) elemento de um grupo G de transformações contínuas, ˆT(G(a)) operador unitário. G(a) M.Q. ˆT(G(a)), Invariância da Hamiltoniana pelas transformações de G, ˆT (G(a))ĤˆT(G(a)) = Ĥ [ˆT(G(a)),Ĥ] = 0, para qualquer elemento G(a) do grupo G. Nesse caso dizemos que G é um grupo de simetria da Hamiltoniana.

3 Simetrias e Leis de Conservação G grupo que depende de r parâmetros, a 1,a 2,...,a r. Limite de uma transformação infinitesimal: ˆT(G(a)) = 1 i r a kˆx k, k=1 ˆx k operador hermiteano, gerador do grupo G. Condição de invariância se reduz à, [Ĥ,ˆx k] = 0. Em virtude das equações de Heisenberg, iħ dˆx k dt (t) = [ˆx k(t),ĥ], temos que ˆx k (t) é uma constante do movimento, dˆx k dt (t) = 0. Análogo ao caso de rotações e translações. Operador momento gerador das translações. Operador momento angular gerador das rotações. Invariância da Hamiltoniana por essas transformações, implica que esses observáveis são constantes do movimento.

4 Propiedade das constantes de movimento. g k autovetor de ˆx k com autovalor g k, ˆx k g k = g k g k. Suponha que no instante t 0 o sistema esteja no estado g k. Se ˆx k é uma constante do movimento, [Ĥ,ˆx k ] = 0, o estado do sistema no instante t é um autovetor de ˆx k com o mesmo autovalor: g k,t = Û(t,t 0 ) g k e ˆx k g k,t = g k g k,t.

5 Simetrias e degenerescência Se E é um autovetor de Ĥ com autovalor E, Ĥ E = E E, os vetores de estado ˆT(G(a)) E são autovetores de Ĥ com o mesmo autovalor, ĤˆT(G(a)) E = ˆT(G(a))Ĥ E = E ˆT(G(a)) E. Espaço dos vetores de estado degenerados ˆT(G(a)) E invariante pela ação dos operadores do grupo, o que define uma representação do grupo. Essa representação, em geral, é uma representação irredutível indicando que a ordem da degenerescência é igual a dimensão das representações irredutíveis.

6 Exemplo: Grupo das Rotações, O(3). a) Elementos do grupo: matrizes ortogonais, R(φ, n), que dependem de três parâmetros. b) Correspondência com a M.Q.: c) Invariância da Hamiltoniana: d) Geradores do grupo: R(φ,n) M.Q. ˆD(R(φ,n)) = e i ħ φĵ n. ˆD (R(φ,n))Ĥ ˆD(R(φ,n)) = Ĥ. ˆD(R(dφ,n)) = 1 i dφ Ĵ n. ħ e) Constantes do movimento: [Ĵ k,ĥ] = 0.

7 f) Degenerescência dos níveis de energia como consequência da invariância rotacional. Se Ĥ E = E E, ˆD(R(φ,n)) E são autovetores de Ĥ com mesmo autovalor. Ĥ, Ĵ 2 e Ĵ z conjunto completo de observáveis compatíveis, Ĥ Ejm = E Ejm, Ĵ 2 Ejm = ħ 2 j(j+1) Ejm, Ĵ z Ejm = ħm Ejm. Em geral, estados degenerados são autovetores de Ĵ 2 com o mesmo autovalor: Então de Ĵ 2 ˆD(R(φ,n)) E = ħ 2 j(j +1)ˆD(R(φ,n)) E. ˆD(R(φ,n)) E = m Ejm jm ˆD(R(φ, n)) E, concluímos que a ordem da degenerescência é igual a 2j +1. A dimensão da representação irredutível de momento angular igual a j. Note que como os estados Ejm são degenerados, os níveis de energia não dependem de m.

8 Simetrias discretas Na Mecânica Quântica, propriedades de simetria associadas não só a transformações contínuas (translação, rotação) mas a transformações discretas (inversão espacial, inversão temporal) são igualmente importantes. 1 Inversão espacial: Reflexão do sistema em torno de um ponto, identificado com a origem do sistema de coordenadas. Inversão espacial operador unitário no espaço de vetores de estado, o operador paridade: α π = ˆπ α, ˆπ ˆπ = ˆπˆπ = ˆ1. Ação de ˆπ nos vetores de estado: x α π 2 = x α 2 escolha de fase x α π = x α. Consequência: π α ˆx α π = α ˆx α igual a α ˆπ ˆxˆπ α = α ˆx α Como igualdade válida para qualquer α, ˆπ ˆxˆπ = ˆx.

9 De x ˆπ α = x α vemos que ˆπ 2 = ˆ1, consequentemente ˆπ = ˆπ, mostrando que ˆπ éum operador hermitiano.concluindo, determinamos como o operador posição se transforma por inversão espacial. Como o operador momento se transforma por inversão espacial? ˆπˆT(a) = ˆT( a)ˆπ, ˆT(a) = e i ħˆp a, então ˆπ ˆpˆπ = ˆp. Transformação do operador momento angular: Momento angular orbital, ˆL = ˆx ˆp, ˆπ ˆLˆπ = ˆL. Spin se transforma do mesmo modo, Ĵ = ˆL+Ŝ, ˆπ Ĵˆπ = Ĵ. Como no caso da translação podemos deduzir como o operador momento angular se transforma por rotações verificando que ˆπ ˆD(R) = ˆD(R)ˆπ.

10 Classificação dos operadores de acordo com: i) As propriedades de transformação por inversão espacial: a) ˆπ ˆπ = Â,  operador par por inversão espacial. b) ˆπ ˆπ = Â,  operador ímpar por inversão espacial. ii) As propriedades de transformação por rotações: a) ˆD (R)Ô ˆD(R) = Ô, Ô operador escalar por rotações. b) ˆD (R)ˆV k ˆD(R) = l R klv l, ˆV operador vetorial por rotações. Operadores escalares, pares por inversão espacial, operadores escalares, ímpares por inversão espacial: pseudo-escalares. Operadores vetoriais ímpares por inversão espacial, operadores vetoriais polares. Operadores vetoriais pares por inversão espacial, operadores vetoriais axiais ou pseudo-vetores.

11 Autovetores e autovalores do operador paridade Equação de autovalores: ˆπ λ = λ λ. Como ˆπ 2 = ˆ1, autovalores iguais a ±1. Função de onda de um vetor de estado de paridade positiva função par de x; Função de onda de um vetor de estado de paridade negativa função ímpar de x. Prova dessa propriedade, ˆπ α = λ α, x ˆπ α = λ x α, ψ α ( x) = λψ α (x). Então se λ = 1, ψ α (x) é uma função par de x, se λ = 1, uma função ímpar de x.

12 Exemplo: Hamiltoniana invariante por rotações e por inversão espacial Vamos considerar uma partícula num campo central. Ĥ, ˆL 2 e ˆL z conjunto completo de observáveis que comutam.operador paridade compatível com esses observáveis. A função de onda dos estados estacionários é: e x Elm = R El (r)y lm (θ,φ) x ˆπ Elm = x Elm = R El (r)y lm (π θ,φ+π) = ( 1) l R El (r)y lm (θ,φ). que é igual a, x ˆπ Elm = ( 1) l ˆ x Elm. Assim podemos concluir que ˆπ Elm = ( 1) l Elm mostrando que estados com l par tem paridade positiva, ímpar, negativa.

13 Degenerescência: Mostre que se [Ĥ,ˆπ] = 0 e E n um autovetor de Ĥ, Ĥ E n = E n E n temos: a) Se E n é um autovetor não-degenerado, E n é um autovetor do operador paridade. Prova: De Ĥ E n = E n E n segue que Ĥˆπ E n = E nˆπ E n, isto é, E n e ˆπ E n são autoestados de Ĥ com mesmo autovalor. Como E n autovalor não-degenerado estados devem ser idênticos: ˆπ E n = λ E n, λ = ±1. b) E n um autovalor degenerado. Procedendo como em a) concluimos que ˆπ E n é autovetor com o mesmo autovalor. Nesse caso existem duas possibilidades: 1 E n e ˆπ E n os mesmos estados. E n um autovetor do operador paridade, ˆπ E n = λ E n, λ = ±1. 2 E n e ˆπ E n linearmente independentes. Podemos construir combinações lineares desses dois estados de modo que sejam autoestados de ˆπ:

14 ±E = ˆP ± E E ˆP ± E 1/2, ˆP +, ˆP projetores nos estados de paridade positiva e negativa, respectivamente. 1± ˆπ ˆP ± =. 2 Exemplo 1: Partícula livre Ĥ = ˆp2 2m, [Ĥ,ˆπ] = 0, [ˆp,ˆπ] = 0, ˆp e ˆπ observáveis incompatíveis. Auto-estados de ˆp não são, em geral, auto-estados de ˆπ, ˆπ p = p, p e p são estados degenerados e podemos construir auto-estados de ˆπ e Ĥ como mostrado acima.

15 Exemplo 2: Poço duplo simétrico Ĥ S = E S S, Ĥ A = E A A, ψ S,A (x) 2 = ψ S,A ( x) 2 R = 1 2 ( S + A ), concentrado à direita, L = 1 2 ( S A ), concentrado à esquerda. ˆπ R = L Vetor de estado no instante t se o sistema está no estado R no instante inicial: R,t = 1 2 (e i ħ E St S +e i ħ E At A ). Probabilidade de achar a partícula no estado R no instante t: R R,t 2 = cos 2 πt ħ, T 0 = 2π. T 0 E A E S

16 Tunelamento através da barreira. Tempo inversamente proporcional à diferença de energia. Exemplo: molécula de amônia. Altura da barreira. Autovetores degenerados. Estado fundamental não necessariamente autovetor de ˆπ. Quebra espontânea de simetria. Estados R e L auto-estados degenerados. Exemplo: moléculas orgânicas, isômeros óticos. T anos. Regras de Seleção: α e β, auto-estados de ˆπ, ˆπ α = λ α α, ˆπ β = λ β β. Sejam  even e  odd operadores pares e ímpares por inversão espacial, então ˆπ  evenˆπ =  even e ˆπ  oddˆπ =  odd,

17 i) α Â even β = λ α λ β α Â even β ii) α Â odd β = λ α λ β α Â odd β ou i) α Â even β = 0 se λ α λ β = 1 ii) α Â odd β = 0 se λ α λ β = 1 Conclusão: Transição para operadores pares não-nula entre estados de mesma paridade, para operadores ímpares paridades opostas. Não-conservação da paridade: Interações fracas não conservam a paridade!

Simetrias na Mecânica Quântica

Simetrias na Mecânica Quântica Simetrias na Mecânica Quântica Prof. 7 de junho de 2011 Definição de Simetria na Mecânica Quântica G(a) elemento de um grupo G de transformações contínuas, G(a) M.Q. ˆT(G(a)), ˆT(G(a)) operador unitário.

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas Equação de Schrödinger em 3D: 2 = 1 r 2 # % r $ r2 r & (+ ' 1 r 2 senθ # θ senθ & % (+ $ θ ' 1 r 2 sen 2 θ 2 φ 2 Podemos, então, escrever a eq. de Schrödinger

Leia mais

Não serão aceitas respostas sem justificativa:

Não serão aceitas respostas sem justificativa: Primeira Prova de Conceitos de Mecânica Quântica -(,5) Uma partícula de massa m encontra-se no estado ψ(x,t)= A exp[ω(mx /ħ+it)], onde A e a são constantes reais e positivas. a- Normalize ψ(x,t); b- Calcule

Leia mais

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 1

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 1 Universidade de São Paulo em São Carlos 9514 Mecânica Quântica Aplicada Prova 1 Nome: Questão 1: Sistema de dois níveis (3 pontos) Considere um sistema de dois estados 1 e ortonormais H do sistema seja

Leia mais

Simetria em Mecânica Quântica

Simetria em Mecânica Quântica Simetria em Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br CF703 Física Quântica I Simetria em Mecânica Quântica Simetrias em física

Leia mais

Teoria de Perturbações Dependente do Tempo

Teoria de Perturbações Dependente do Tempo Emerson J. V. Passos Mecânica Quântica I Pós-graduação Universidade de São Paulo Instituto de Física 1 o semestre de 2012 Hamiltoniano Dependente do Tempo Até agora consideramos hamiltonianos que não dependem

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

Os Postulados da Mecânica Quântica

Os Postulados da Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o

Leia mais

Equação de Schrödinger em 3D

Equação de Schrödinger em 3D Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração

Leia mais

Bilineares do Campo de Dirac. Analogamente:

Bilineares do Campo de Dirac. Analogamente: Teoria Quântica de Campos I 133 ( eq. 133.1 ) Analogamente: ( eq. 133.2 ) Bilineares do Campo de Dirac Claramente, qualquer grandeza observável vai ter que ser composta do produto de um número par de campos

Leia mais

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica 1 Introdução. Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o livro texto. Antes iremos fazer um paralelo entre

Leia mais

Minicurso: Dinâmica Quântica. Aula 01

Minicurso: Dinâmica Quântica. Aula 01 Curso de Verão 2015 Minicurso: Dinâmica Quântica Aula 01 Prof. Márcio Varella Departamento de Física geral mvarella@if.usp.br Grupo de Física Molecular e Modelagem Interações com Fótons, Elétrons e Prótons

Leia mais

Simetrias C, P e T para férmions

Simetrias C, P e T para férmions Teoria Quântica de Campos I 152 ( eq. 152.1 ) No entanto a corrente axial: só é conservada se o férmion em questão não tiver massa: Simetrias C, P e T para férmions ( eq. 152.2 ) Além da simetria de Lorentz

Leia mais

Lista Considere um oscilador harmonico tridimencional com o potencial, resolve a Equação de Schrödinger independente no tempo

Lista Considere um oscilador harmonico tridimencional com o potencial, resolve a Equação de Schrödinger independente no tempo Lista 8. Considere um oscilador harmonico tridimencional com o potencial, V = m 2 ( ω 2 x x 2 + ω 2 yy 2 + ω 2 zz 2), onde ω x, ω y e ω z representam as frequências deste oscilador (clássico) nas direções,

Leia mais

JORNADA DE FÍSICA TEÓRICA INSTITUTO DE FÍSICA TEÓRICA U.N.E.S.P. 19 a

JORNADA DE FÍSICA TEÓRICA INSTITUTO DE FÍSICA TEÓRICA U.N.E.S.P. 19 a JORNADA DE FÍSICA TEÓRICA 2010 INSTITUTO DE FÍSICA TEÓRICA U.N.E.S.P. 19 a 23-07-2010 Monday, July 19, 2010 1 CAMPOS CLÁSSICOS, QUÂNTICOS, DE CALIBRE E POR AÍ AFORA JORNADA DE FÍSICA TEÓRICA 2010 Instituto

Leia mais

CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II. q exp( q 2 ) ( 2 π. 2 (2q 2 1) exp( q 2 )

CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II. q exp( q 2 ) ( 2 π. 2 (2q 2 1) exp( q 2 ) CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II 1) Dadas as funções ψ 1 (q) e ψ 2 (q), definidas no intervalo < q < + : ψ 1 (q) = ( 2 π ) 1/2 q exp( q 2 ) Calcule: a) (ψ 1, ψ 2 ); b)

Leia mais

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por: Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular

Leia mais

Teoria Clássica de Campos

Teoria Clássica de Campos Teoria Quântica de Campos I 7 No passo (1) o que estamos fazendo é quantizar (transformar em operadores) uma função definida em todo espaço (um campo) e cuja equação de movimento CLÁSSICA é de Dirac ou

Leia mais

produto completamente antissimétrico Definindo a terminologia, dado um bilinear texto pseudo-vetor ou vetor axial tensor antissimétrico

produto completamente antissimétrico Definindo a terminologia, dado um bilinear texto pseudo-vetor ou vetor axial tensor antissimétrico E exigindo a normalização: Teoria Quântica de Campos I 136 Rigorosamente: Temos a relação de completeza: Que leva a uma eq. equivalente a 135.3: ( eq. 136.1 ) Dada a base 135.4, não precisamos nos preocupar

Leia mais

Momento Angular. Química Teórica e Estrutural. P.J.S.B. Caridade & U. Miranda. 18/11/ /11/2013, Aula 6

Momento Angular. Química Teórica e Estrutural. P.J.S.B. Caridade & U. Miranda. 18/11/ /11/2013, Aula 6 Momento Angular Química Teórica e Estrutural P.J.S.B. Caridade & U. Miranda 18/11/2013 21/11/2013, Aula 6 Química Teórica & Estrutural (2013) Caridade & Ulises 1 Momento angular orbital Em mecânica clássica

Leia mais

Fundamentos da Mecânica Quântica

Fundamentos da Mecânica Quântica Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio

Leia mais

Fundamentos da Mecânica Quântica

Fundamentos da Mecânica Quântica Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio

Leia mais

Equação de autovalores para o spin. Ŝ z = m s ~ Ŝ 2 = s (s + 1) ~ 2. "i= Autoestados de S z. Ŝ z = ~ #i= Ŝ z "i = ~ 2 "i Ŝ z #i = ~ 2 #i

Equação de autovalores para o spin. Ŝ z = m s ~ Ŝ 2 = s (s + 1) ~ 2. i= Autoestados de S z. Ŝ z = ~ #i= Ŝ z i = ~ 2 i Ŝ z #i = ~ 2 #i Equação de autovalores para o spin Ŝ z = m s ~ Ŝ = s (s + ) ~ Ŝ = Ŝ x + Ŝ y + Ŝ z Ŝ z = ~ 0 0 Autoestados de S z "i= #i= 0 0 Ŝ z "i = ~ "i Ŝ z #i = ~ #i Equação de autovalores para o spin Ŝ z = ~ 0 0 Ŝ

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro Mecânica Quântica Spin 1/ e a formulação da M. Q. Parte II A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 10 de Maio de 01 Mais dois postulados, agora

Leia mais

CONTEÚDO PROGRAMÁTICO EMENTA

CONTEÚDO PROGRAMÁTICO EMENTA UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. GAL. RODRIGO OTÁVIO JORDÃO RAMOS, 3000 JAPIIM CEP: 69077-000 - MANAUS-AM, FONE/FAX (92) 3305-2829 CONTEÚDO PROGRAMÁTICO

Leia mais

Mecânica Clássica 1 - Lista de natal - Ho Ho Ho Professor: Gabriel T. Landi

Mecânica Clássica 1 - Lista de natal - Ho Ho Ho Professor: Gabriel T. Landi Mecânica Clássica 1 - Lista de natal - Ho Ho Ho Professor: Gabriel T. Landi O campo vetorial 1 Aquecimento: quadri-potencial e os campos elétrico e magnético O objeto fundamental do eletromagnetismo é

Leia mais

No caso do campo, mesmo dentro de um volume finito, a energia total dada pela soma de todos estes modos zero é infinita: ( compare com 33.

No caso do campo, mesmo dentro de um volume finito, a energia total dada pela soma de todos estes modos zero é infinita: ( compare com 33. número de partículas Teoria Quântica de Campos I 34 pois veremos que cada um destes modos de excitação do campo corresponde a uma partícula (de momento k) Espaço de Fock O espaço de Hilbert construído

Leia mais

n, l, m l, ms (1) quando estes quatro números quânticos são dados, o estado físico do sistema (no caso, um elétron) é então especificado.

n, l, m l, ms (1) quando estes quatro números quânticos são dados, o estado físico do sistema (no caso, um elétron) é então especificado. Introdução. Consideramos nos textos anteriores sistemas quantum mecânicos que possuem vários níveis de energia mas somente um elétron orbital, ou seja, consideramos até o presente momento átomos hidrogenóides.

Leia mais

OBSERVÁVEIS COMPATÍVEIS Mecânica Quântica I ( ) - Capítulo 04

OBSERVÁVEIS COMPATÍVEIS Mecânica Quântica I ( ) - Capítulo 04 SUPERPOSIÇÃO E OBSERVÁVEIS COMPATÍVEIS Mecânica Quântica I (1108045) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2014.2 1 / 59 Sumário Superposição Princípio da superposição Interpretação do espaço

Leia mais

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido ÁTOMO DE HIDROGÊNIO Primeiro sistema tratado quanticamente por Schrödinger Modelo de Bohr Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento

Leia mais

Não é permitido nenhum tipo de consulta!

Não é permitido nenhum tipo de consulta! INSTRUÇÕES de PRÊMIO IFT-ICTP PARA JOVENS FÍSICOS Não escreva seu nome em nenhum lugar da prova. Em cada das seis folhas de questões, escreva o número do seu RG. Verifique que você tem as seis folhas de

Leia mais

1 O Átomo de Hidrogênio

1 O Átomo de Hidrogênio O modelo de Bohr para o átomo de hidrogênio, embora forneça valores corretos para as energias dos estados atômicos e do espectro da radiação emitida, não pode ser correto do ponto de vista da mecânica

Leia mais

Lista Definimos uma rotação em termos de um vetor unitário que difine o plano da rotação e o ângulo em torno deste vetor.

Lista Definimos uma rotação em termos de um vetor unitário que difine o plano da rotação e o ângulo em torno deste vetor. Lista 4 1. Definimos uma rotação em termos de um vetor unitário que difine o plano da rotação e o ângulo em torno deste vetor. = ( ) (a) Mostre que a rotação própria (o que não envolve inversão dos eixos,

Leia mais

Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica

Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Quântica Química Quântica Prof a. Dr a. Carla Dalmolin A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Clássica O movimento de uma partícula é governado pela Segunda Lei de Newton:

Leia mais

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2 Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos

Leia mais

Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin

Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin Partícula na Caixa Química Quântica Prof a. Dr a. Carla Dalmolin Caixa unidimensional Caixa tridimensional Degenerescência Partícula no anel (mov. de rotação) Partícula na Caixa Partícula numa caixa unidimensional

Leia mais

Mecânica Quântica: uma abordagem (quase) conceitual

Mecânica Quântica: uma abordagem (quase) conceitual Mecânica Quântica: uma abordagem (quase) conceitual Carlos Eduardo Aguiar Programa de Pós-Graduação em Ensino de Física Instituto de Física - UFRJ IF-UFRJ, fevereiro de 04 Sumário Dificuldades na aprendizagem

Leia mais

CF100 - Física Moderna II. 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018

CF100 - Física Moderna II. 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018 CF100 - Física Moderna II 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018 1 Átomos Multieletrônicos 2 Partículas Idênticas 3 Na física quântica, o princípio da incerteza impede a observação

Leia mais

Aula de Física Atômica e molecular. Operadores em Mecânica Quântica Prof. Vicente

Aula de Física Atômica e molecular. Operadores em Mecânica Quântica Prof. Vicente Aula de Física Atômica e molecular Operadores em Mecânica Quântica Prof. Vicente Definição Seja f uma quantidade física que caracteriza o estado de um sistema quântico. Os valores que uma dada quantidade

Leia mais

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) =

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = SEGUNDA PROVA - F789 NOME: RA:. Considere uma partícula de spin. Seja S seu spin e L seu momento angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = r, ± Ψ na base r, ± de autoestados

Leia mais

Princípios Gerais da Mecânica Quântica

Princípios Gerais da Mecânica Quântica Princípios Gerais da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ)

Leia mais

Variáveis Dinâmicas e Operadores

Variáveis Dinâmicas e Operadores Variáveis Dinâmicas e Operadores Variável Dinâmica é qualquer função de x e p: K = p2 2m U = U(x) E = p2 2m + U(x) L = r p Só estudamos sistemas conservativos em MQ. Qual o valor de ω(x, p) (uma VD qualquer)

Leia mais

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 2

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 2 Universidade de São Paulo em São Carlos.7.04 Mecânica Quântica Aplicada Prova Nome: Questão : Método variacional (.5 pontos) Considere o oscilador harmônico descrito pelo hamiltoniano H = + m dx mω x.

Leia mais

Exame de Seleção. Doutorado em Física. 1º Semestre de ª Prova 14/02/2017. Mecânica Clássica e Mecânica Quântica

Exame de Seleção. Doutorado em Física. 1º Semestre de ª Prova 14/02/2017. Mecânica Clássica e Mecânica Quântica UNIVERSIDADE FEDERAL DO MARANHÃO FUNDAÇÃO Instituída nos termos da Lei nº 5.152, de 21/10/1996 São Luís Maranhão CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleção

Leia mais

Operadores Tensoriais

Operadores Tensoriais Operadores Tensoriais Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br CF70 Física Quântica I Operadores Tensoriais Operadores Vetoriais Como os operadores

Leia mais

OPERADORES HERMITIANOS Mecânica Quântica I ( ) - Capítulo 03

OPERADORES HERMITIANOS Mecânica Quântica I ( ) - Capítulo 03 ESPAÇO DE FUNÇÕES E OPERADORES HERMITIANOS Mecânica Quântica I (1108045) - Capítulo 03 I. Paulino* *UAF/CCT/UFCG - Brasil 2015.2 1 / 47 Sumário Conceitos Preparatórios Partícula numa caixa Princípio da

Leia mais

Campo Escalar Complexo

Campo Escalar Complexo Finalmente consideremos: Teoria Quântica de Campos I 60 operador na representação de Schödinger, basta partir de 59.2 e usar lembrando que: É uma superposição de vários estados de uma partícula (cada um

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Fundamentos de Química Quântica

Fundamentos de Química Quântica Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Professora: Melissa Soares Caetano Partícula na caixa Sistema ideal

Leia mais

Momento Angular. 1 Regras de comutação do momento angular. 1.1 Como representamos rotações no espaço tridimensional. V x. V z

Momento Angular. 1 Regras de comutação do momento angular. 1.1 Como representamos rotações no espaço tridimensional. V x. V z Momento Angular 1 Regras de comutação do momento angular e rotações. 1.1 Como representamos rotações no espaço tridimensional. Matriz de rotação. Considere um vetor V cujas componentes numa dada base são

Leia mais

O Método de Hartree-Fock

O Método de Hartree-Fock O Método de Hartree-Fock CF740 Tópicos Especiais de Física Atômica e Molecular Cálculos de Estrutura Eletrônica Utilizando Funcionais de Densidade Departamento de Física Universidade Federal do Paraná

Leia mais

b) (4 pt) Escreva a carga conservada em termos da Lagrangiana e a função f j (x).

b) (4 pt) Escreva a carga conservada em termos da Lagrangiana e a função f j (x). Mecânica Clássica ) Considere uma Lagrangiana L(x j, d dt xj ) onde j = a 3 que seja invariante sobre a transformação δx j = f j (x). Esta simetria implica a existência de uma carga conservada. a) ( pt)

Leia mais

Momento Angular. 8.1 Álgebra do Momento Angular

Momento Angular. 8.1 Álgebra do Momento Angular Capítulo 8 Momento Angular Neste capítulo vamos estudar os autovalores e autovetores do momento angular. Este problema também pode ser analisado com o uso do método de operadores, o que faremos na primeira

Leia mais

7.1 Representação de Heisenberg

7.1 Representação de Heisenberg Capítulo 7 Representação de Heisenberg e Simetrias Quando apresentamos os postulados da Mecânica Quântica definimos de forma arbitrária que os estados evoluem no tempo ao passo que os observáveis são constantes.

Leia mais

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais

Leia mais

FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y )

FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y ) FNC376N: ista 3 31 de março de 5 Tipler - Capítulo 7 7-7 Considere a função de onda ψ = A r a e r/a cos θ, onde A é uma constante e a = /µkze é o raio de Bohr dividido por Z a) Mostre que éla é uma solução

Leia mais

Mestrado e Doutorado em Física

Mestrado e Doutorado em Física UNIVERSIDADE FEDERAL DO MARANHÃO FUNDAÇÃO Instituída nos termos da Lei nº 5.152, de 21/10/1996 São Luís Maranhão CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleção

Leia mais

(loops de férmions geram traços) temos que trazer o último campo para a primeira posição e então aplicar as derivadas:

(loops de férmions geram traços) temos que trazer o último campo para a primeira posição e então aplicar as derivadas: (Espaço das posições, Euclid.) ( eq. 144.3 ) Teoria Quântica de Campos I 144 ( eq. 144.1 ) (Espaço das posições, Euclid.) (Mink.) ( eq. 144.2 ) A importância do ordamento do campo fermiônico cria uma importante

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

2. No instante t = 0, o estado físico de uma partícula livre em uma dimensão é descrito pela seguinte função de onda:

2. No instante t = 0, o estado físico de uma partícula livre em uma dimensão é descrito pela seguinte função de onda: Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Física Exame de Seleção - Data: 03/08/2011 Nome do Candidato: Nível: Mestrado Doutorado 1. No cálculo da

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento)

CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento) CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento) Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Ementa: Motivação:

Leia mais

Tópicos da História da Física Clássica

Tópicos da História da Física Clássica Tópicos da História da Física Clássica Leis de Conservação Victor O. Rivelles Instituto de Física da Universidade de São Paulo Edifício Principal, Ala Central, sala 354 e-mail: rivelles@fma.if.usp.br http://www.fma.if.usp.br/~rivelles

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

Mecânica Quântica:

Mecânica Quântica: Mecânica Quântica: 2016-2017 5 a Série 1. Considere o movimento de uma partícula, no caso unidimensional, em que esta é sujeita a um potencial que é nulo na região x a e innito em x > a. Num determinado

Leia mais

Átomos polieletrónicos

Átomos polieletrónicos Átomos polieletrónicos Química Teórica e Estrutural P.J.S.B. Caridade & U. Miranda 2/12/2013 5/11/2013, Aula 8 Química Teórica & Estrutural (2013) Caridade & Ulises 1 Átomo de hidrogénio O Hamiltoniano

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/ e de Dois Níveis Bruno Felipe Venancio 8 de abril de 014 1 Partícula de Spin 1/: Quantização do Momento Angular 1.1

Leia mais

Eq. de Dirac com campo magnético

Eq. de Dirac com campo magnético Eq. de Dirac com campo magnético Rafael Cavagnoli GAME: Grupo de Médias e Altas Energias Eletromagnetismo clássico Eq. de Schrödinger Partícula carregada em campo mag. Eq. de Dirac Partícula carregada

Leia mais

Capítulo II Relatividade Newtoniana

Capítulo II Relatividade Newtoniana Capítulo II Relatividade Newtoniana A mecânica newtoniana é baseada nas três leis de Newton, (1) a lei da inércia, (2) a lei da força e (3) a lei da ação e reação, válidas nos referenciais inerciais. Esses

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

Física Quântica. Aula 7: Equação de Schrödinger, Potenciais Simples I, Transições. Pieter Westera

Física Quântica. Aula 7: Equação de Schrödinger, Potenciais Simples I, Transições. Pieter Westera Física Quântica Aula 7: Equação de Schrödinger, Potenciais Simples I, Transições Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/quantica.html A Equação de Schrödinger

Leia mais

Física Quântica. Aula 6: Operadores, Equação de Schrödinger. Pieter Westera

Física Quântica. Aula 6: Operadores, Equação de Schrödinger. Pieter Westera Física Quântica Aula 6: Operadores, Equação de Schrödinger Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/quantica.html Como determinar a função de onda? Física

Leia mais

O que é Supersimetria?

O que é Supersimetria? O que é Supersimetria? Victor O. Rivelles Instituto de Física Universidade de São Paulo e-mail:rivelles@fma.if.usp.br http://www.fma.if.usp.br/~rivelles Convite à Física 11/08/10 Simetria Senso impreciso

Leia mais

Simetrias e Leis de Conservação

Simetrias e Leis de Conservação Mecânica Quântica II 2002 Conteúdo Conteúdo 1 1 Simetrias e Leis de Conservação 3 1.1 Revisão de Mecânica Clássica.............................. 3 1.2 Revisão de Propriedades das Matrizes.........................

Leia mais

Centro de Ciências Exatas Departamento de Física Ano Letivo

Centro de Ciências Exatas Departamento de Física Ano Letivo Centro de Ciências Exatas Departamento de Física Ano Letivo - 2014 PLANO DE CURSO CÓDIGO 2FIS030 NOME MECÂNICA QUANTICA A CURSO MESTRADO EM FÍSICA CARGA HORÁRIA TP TO- 90 TAL - 90 Anual Semestral SEMESTRE

Leia mais

Fundamentos de Química Quântica

Fundamentos de Química Quântica Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Aula 3 Professora: Melissa Soares Caetano Átomo de Hidrogênio Um núcleo

Leia mais

( eq. 12.1) No caso de um campo com várias componentes, se a transformação for linear em φ, podemos escrever:

( eq. 12.1) No caso de um campo com várias componentes, se a transformação for linear em φ, podemos escrever: Temos então a corrente conservada: Teoria Quântica de Campos I 12 ( eq. 12.1) No caso de um campo com várias componentes, se a transformação for linear em φ, podemos escrever: De forma que : ( eq. 12.2)

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

Universidade Estadual de Santa Cruz

Universidade Estadual de Santa Cruz Universidade Estadual de Santa Cruz PROFÍSICA Programa de Pós-graduação em Física Seleção 2009. Prova Escrita 2/0/2009 Candidato (nome legível): - Esta prova consta de oito questões distribuídas da seguinte

Leia mais

Quantização por Integrais de Trajetória:

Quantização por Integrais de Trajetória: Teoria Quântica de Campos I 14 Representações Fermiônicas: é possível mostrar que existem representações impossíveis de se obter através do simples produto de Λ s. Em especial o objeto: ( eq. 14.1 ) Matrizes

Leia mais

PGF MECÂNICA QUÂNTICA I (2010) Resolução Comentada da Lista de Problemas 5 Eduardo T. D. Matsushita

PGF MECÂNICA QUÂNTICA I (2010) Resolução Comentada da Lista de Problemas 5 Eduardo T. D. Matsushita PGF51 - MECÂNICA QUÂNTICA I (1) Resolução Coentada da Lista de Probleas 5 Eduardo T. D. Matsushita 1. Considere ua partícula de carga e no capo elétrico de ua carga puntifore de carga igual a Ze. A hailtoniana

Leia mais

Teoria Quântica de Campos

Teoria Quântica de Campos Teoria Quântica de Campos I 1 Teoria Quântica de Campos (escopo do curso e um pouco de história) (Weinberg cap 1, Peskin 2.1, Nastase 1) Objetivo: uma teoria Quântica e Relativística (no sentido restrito)

Leia mais

Representação grande

Representação grande Capítulo 5 Representação grande canônica 5.1 Introdução Distribuição de probabilidades Vimos no Capítulo 1 que um sistema constituído por partículas que interagem por meio de forças conservativas em contato

Leia mais

Teoria de Grupos e Simetria Cristalina

Teoria de Grupos e Simetria Cristalina Teoria de Grupos e Simetria Cristalina Teorema de Bloch Tiago de Campos Resumo Neste texto serão apresentados conceitos fundamentais para o entendimento de estruturas cristalinas bem como suas simetrias.

Leia mais

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Operadores e Função de Onda para Muitos Elétrons Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Livro texto: Modern Quantum Chemistry Introduction to Advanced Elecronic Structure Theory

Leia mais

Postulados da Mecânica Quântica

Postulados da Mecânica Quântica Postulados da Mecânica Quântica Química Quântica Prof a. Dr a. Carla Dalmolin Operadores Propriedades Princípio da Incerteza Princípios da Mecânica Quântica A função de onda contém toda a informação que

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 016 Respostas esperadas Parte 1 Estas são sugestões de possíveis respostas Outras possibilidades também podem ser consideradas

Leia mais

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá MOMENTO ANGULAR Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 Roteiro 1 Quando todas as partículas de um corpo rígido se movem ao longo de trajetórias que

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

(e) apenas as afirmações (II) e (III) são verdadeiras.

(e) apenas as afirmações (II) e (III) são verdadeiras. Nas questões da prova em que está fixado um sistema de coordenadas Σ = (O, E, quando for necessário, considera-se que E é uma base ortonormal positiva. 1Q 1. Seja V um espaço vetorial e x 1, x 2,, x q,

Leia mais

A Experiência de Stern-Gerlach e o Spin do Elétron

A Experiência de Stern-Gerlach e o Spin do Elétron UFPR 28 de Abril de 2014 Figura: Placa Comemorativa. ela foi realizada em 1922; ela investiga os possíveis valores do momento de dipolo magnético, µ, de um átomo de prata; ela explora a dinâmica do dipolo

Leia mais

Gases quânticos sem interação

Gases quânticos sem interação UFABC - Mecânica Estatística Curso 2018.1 Prof. Germán Lugones CAPÍTULO 6 Gases quânticos sem interação!1 Regime clássico e regime quântico Para um gás ideal clássico em equilíbrio térmico a uma temperatura

Leia mais

1 Auto vetores e autovalores

1 Auto vetores e autovalores Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo

Leia mais

FÍSICA-MATEMÁTICA RUDI GAELZER (INSTITUTO DE FÍSICA - UFRGS)

FÍSICA-MATEMÁTICA RUDI GAELZER (INSTITUTO DE FÍSICA - UFRGS) FÍSICA-MATEMÁTICA RUDI GAELZER (INSTITUTO DE FÍSICA - UFRGS) Apostila preparada para as disciplinas de Física- Matemática ministradas para os Cursos de Bacharelado em Física do Instituto de Física da Universidade

Leia mais

Universidade Estadual de Santa Cruz (UESC) Segunda prova de seleção para ingresso em 2012/2. Nome: Data: 13/08/2012

Universidade Estadual de Santa Cruz (UESC) Segunda prova de seleção para ingresso em 2012/2. Nome: Data: 13/08/2012 Universidade Estadual de Santa Cruz (UESC) Programa de Pós-Graduação em Física Segunda prova de seleção para ingresso em 2012/2 Nome: Data: 13/08/2012 1 Seção A: Mecânica Clássica Uma nave espacial cilíndrica,

Leia mais