A eq. de Schrödinger em coordenadas esféricas
|
|
|
- Isaque Gama da Costa
- 8 Há anos
- Visualizações:
Transcrição
1 A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva às seguintes equações: e As autofunções Y lm são os harmônicos esféricos e satisfazem: e Com, e 1
2 Paridade Descreve o comportamento de uma função quando de uma operação de inversão de coordenadas: x x; y y; e z z. No caso de coordenadas polares esféricas essa inversão é um pouco mais complexa: r r; θ π θ; e φ π + φ. 2
3 No caso dos harmônicos esféricos, ficamos com: Que mantém seu módulo, mas pode mudar o sinal. As autofunções de θ são dadas pelos polinômios: sendo os P l conhecidos como polinômios de Legendre. Nesse caso, a operação de paridade produz uma mudança de sinal, uma vez que: pois Os polinômios de Legendre têm a propriedade de serem compostos de potências pares de ζ para l par e potências ímpares para l ímpar. Portanto: 3
4 E, assim, os P lm comportam-se como: Portanto, a dependência das autofunções de θ é: E, assim, a paridade dos harmônicos esféricos fica: Dessa forma, vemos que os estados estacionários, além das propriedades associadas ao momento angular, têm paridade bem definida, que é determinada apenas por l: estados com l par, têm paridade par e com l ímpar, paridade ímpar. Isso vai ser importante mais tarde. 4
5 Quantização da energia Até agora só tratamos da parte angular, que dependia apenas da simetria do problema, ou seja, do fato da força ser central. A dinâmica depende da forma de V(r), e se manifesta na solução da parte radial: que pode ser escrita de forma equivalente como: 2 ψ(r) = 1 r 2 = 1 r # ψ & % r $ r2 ( r ' 2 r 2 ( rψ) que é análoga à eq. de Schrödinger em 1D. Definindo novamente um potencial efetivo: ficamos com uma forma análoga àquela que nos definiu as propriedades - Física Moderna 1 Aula das 24 funções de onda ψ(x). 5
6 Portanto as soluções rr(r) para um potencial V eff (r) devem apresentar as mesmas propriedades que as ψ(x) para um potencial V(x). Alguns cuidados são necessários, pois x varia em [, ] e 1D, enquanto r varia em [0, ] em 3D. Isso nos leva a concluir que a paridade não se aplica à dependência em r, ficando restrita à parte angular. Como no caso em x, a eq. de Schrödinger deve apresentar uma família de soluções apropriadas, correspondendo a um conjunto de energias permitidas. Uma solução com energia E será aceitável se houver uma função R(r) que seja contínua, unívoca e finita no intervalo [0, ]. A dependência explícita de V eff com l é importante, pois mostra que a forma da eq. diferencial muda com a escolha de l. Isso mostra que cada l deve ter uma sequência de soluções para E e R(r) e que elas devem depender de um par de índices, correspondentes a dois números quânticos: e 6
7 Então podemos reescrever a equação da parte radial como uma equação de autovalores: Assim, as soluções estacionárias devem apresentar a seguinte estrutura: E podemos notar que o nosso problema 3D requer, como esperado, o aparecimento de 3 números quânticos. Como vimos, l e m estão associados à parte angular da função de onda: e E Ψ deve ter paridade bem definida, pois deve obedecer: na transformação 7
8 E, finalmente: e podemos assumir que n indica os níveis de energia para um dado l, de tal forma que as energias cresçam com n, como no caso 1D. Sabemos que a energia de um estado aumenta com o número de nós da função. Isso deve também ser verdade para rr(r), pois satisfazem equações análogas. Assim, n deve ser um número quântico dos nós radiais, indicando o número de nós na função rr(r). Então podemos tirar uma primeira conclusão a respeito do problema de forças centrais: devem existir funções de onda que sejam autofunções simultâneas da energia, do quadrado do momento angular e de sua componente z. Isso significa que podemos determinar essas 3 quantidades ao mesmo tempo e com incerteza nula. 8
9 Devemos também notar que o número quântico m não aparece como índice da energia quantizada. Isso é assim porque ele não aparece na equação diferencial e portanto as soluções correspondentes não podem depender dele. Isso indica a existência de uma degenerescência, uma vez que E nl não depende de m. Para cada valor de E nl existem 2l + 1 funções de onda diferentes, uma para cada possível valor de m. Essa degenerescência é mais uma consequência da simetria rotacional da força central. A força não provê uma direção natural para a escolha do eixo z, e, portanto, observáveis como a energia não podem depender de m, o número quântico associado a essa escolha. 9
10 Uma observação importante, de caráter geral, pode ser tirada examinando a eq. radial para r pequeno: 2 dos termos à esquerda vão a infinito se r 0. Vamos assumir que a energia potencial varie mais lentamente do que r 2 (caso do potencial coulombiano), de forma que possamos desprezar o termo V(r) para r 0. A solução radial próxima da origem deve ter a forma: se. Substituindo, temos: para 10
11 Esses resultados mostram que, se V(r) é bem comportado, na origem o comportamento da função é dominado pela parte centrífuga, que depende de l. Note que essa parte é sempre repulsiva e tende a afastar a função de onda da origem. 11
12 Tomemos um potencial linear em r e analisemos o caso l = 0. Queremos as soluções radiais, rr(r), que devem satisfazer: As soluções analíticas não são triviais, de forma que vamos fazer uma análise gráfica: Limite Clássico 12
13 Observáveis Determinação de probabilidades: medidas de Ψ(r,θ,φ,t) 2 num dω em torno de uma certa orientação θ, em um número grande de sistemas. Mas o elemento de volume em coordenadas esféricas é: Pela condição de normalização, temos que: Portanto: espaço espaço Ω Pela propriedade de normalização dos harmônicos esféricos, temos que: 13
14 O que nos permite introduzir uma densidade de probabilidade radial, dada por: sujeita à condição de normalização: P nl é interpretada como a probabilidade da partícula ser encontrada em uma casca esférica de espessura dr a uma distância r da origem. Notem o aparecimento do fator r 2 na definição de P nl, que faz com que a densidade de probabilidade radial tenda a zero quando r o faz. Isso se deve ao fato de que o volume da casca esférica tende a zero com r 2. A densidade de probabilidade apresenta uma estrutura espacial interessante, que é independente de φ e de t. Ψ n m 2 = R n 2 ( r) Θ ( θ) m 2 Essa distribuição, nas variáveis r e θ, forma uma distribuição volumétrica de probabilidade, cuja configuração no espaço é estacionária e simétrica em relação ao eixo z. 14
15 Essa nuvem de probabilidade apresenta superfícies nodais, que correspondem aos zeros das duas funções cujo produto forma a densidade de probabilidade. Nós de R nl ocorrem para certos valores de r para cada n e l e produzem superfícies esféricas com densidade zero. Nós na função de θ ocorrem em ângulos definidos (também para cada n e l) e produzem superfícies cônicas com densidade zero, em torno do eixo z. Essas superfícies sem cruzam (em ângulos retos) e dividem a nuvem em regiões que se tornam mais numerosas com o aumento dos números quânticos. 15
16 Átomos com 1 elétron Parte radial da eq. de Schrödinger, com autovalor de energia E: Vamos inicialmente nos concentrar nos casos em que l = m = 0, o que nos restringe aos harmônicos esféricos Y 00 (que são constantes): Como a solução deve tender a 0, quando r, podemos tentar uma função que decaia exponencialmente: Temos, então, que: e 16
17 Substituindo na equação: Essa igualdade vale para qualquer r, desde que o coeficiente de 1/r se anule: O que fornece um valor para o parâmetro: Que pode ser escrito em termos do raio de Bohr: onde O que também define os autovalores da energia: Coincide com a expressão de Bohr para o estado fundamental do H. 17
18 Escrevendo em termos da energia de Rydberg, E 0 : onde Assim, a função de onda para o estado fundamental pode ser escrita como:. Como podemos identificar a função radial: E a energia: Lembrando que: Ela vai aparecer bastante! podemos verificar a constante de normalização: 18
19 19
Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:
Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular
Equação de Schrödinger em 3D
Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração
A eq. de Schrödinger em coordenadas esféricas
A eq. de Schrödinger em coordenadas esféricas Equação de Schrödinger em 3D: 2 = 1 r 2 # % r $ r2 r & (+ ' 1 r 2 senθ # θ senθ & % (+ $ θ ' 1 r 2 sen 2 θ 2 φ 2 Podemos, então, escrever a eq. de Schrödinger
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS DE UM ELÉTRON Primeira Edição junho de 2005 CAPÍTULO 08 ÁTOMOS DE UM ELÉTRON ÍNDICE 8.1- Introdução 8.2- Força Central 8.3- Equação
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS Edição de agosto de 2008 CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS ÍNDICE 8.1- Introdução 8.2- Problema da Força Central
Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido
ÁTOMO DE HIDROGÊNIO Primeiro sistema tratado quanticamente por Schrödinger Modelo de Bohr Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento
O spin do elétron. Vimos, na aula 2, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com 2 valores, com propriedades de momento angular.
O spin do elétron Vimos, na aula, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com valores, com propriedades de momento angular. Analogia com o momento angular orbital e e com e foram observadas
FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y )
FNC376N: ista 3 31 de março de 5 Tipler - Capítulo 7 7-7 Considere a função de onda ψ = A r a e r/a cos θ, onde A é uma constante e a = /µkze é o raio de Bohr dividido por Z a) Mostre que éla é uma solução
Problemas de Duas Partículas
Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,
O ÁTOMO DE HIDROGÊNIO
O ÁTOMO DE HIDROGÊNIO Alessandra de Souza Barbosa 04 de dezembro de 013 O átomo de hidrogênio Alessandra de Souza Barbosa CF37 - Mecânica Quântica I /36 Sistema de duas particulas um elétron e um próton;
Fundamentos de Química Quântica
Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Professora: Melissa Soares Caetano Partícula na caixa Sistema ideal
Não serão aceitas respostas sem justificativa:
Primeira Prova de Conceitos de Mecânica Quântica -(,5) Uma partícula de massa m encontra-se no estado ψ(x,t)= A exp[ω(mx /ħ+it)], onde A e a são constantes reais e positivas. a- Normalize ψ(x,t); b- Calcule
1 O Átomo de Hidrogênio
O modelo de Bohr para o átomo de hidrogênio, embora forneça valores corretos para as energias dos estados atômicos e do espectro da radiação emitida, não pode ser correto do ponto de vista da mecânica
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,
O poço de potencial finito
O poço de potencial finito A U L A 13 Meta da aula Aplicar o formalismo quântico ao caso de um potencial V(x) que tem a forma de um poço (tem um valor V 0 para x < -a/ e para x > a/, e um valor 0 para
Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica
Mecânica Quântica Química Quântica Prof a. Dr a. Carla Dalmolin A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Clássica O movimento de uma partícula é governado pela Segunda Lei de Newton:
Equação de Schrödinger
Maria Inês Barbosa de Carvalho Equação de Schrödinger Apontamentos para a disciplina Física dos Estados da Matéria 00/0 Licenciatura em Engenharia Electrotécnica e de Computadores Faculdade de Engenharia
Física Quântica. Aula 10: Equação de Schrödinger em Coordenadas Esféricas, Átomo de Hidrogênio. Pieter Westera
Física Quântica Aula 10: Equação de Schrödinger em Coordenadas Esféricas, Átomo de Hidrogênio Pieter Westera [email protected] http://professor.ufabc.edu.br/~pieter.westera/quantica.html A Equação
PROPRIEDADES ONDULATÓRIAS DO ELÉTRON
MODELO QUÂNTICO PROPRIEDADES ONDULATÓRIAS DO ELÉTRON EINSTEIN: usou o efeito fotoelétrico para demonstrar que a luz, geralmente imaginada como tendo propriedades de onda, pode também ter propriedades de
B) [N] é uma constante de normalização indicando que a probabilidade de encontrar o elétron em qualquer lugar do espaço deve ser unitária. R n,l (r) é
QUÍMICA I AULA 04: ESTRUTURA ELETRÔNICA DOS ÁTOMOS TÓPICO 05: ORBITAL ATÔMICO 5.1 A EQUAÇÃO DE SCHRODINGER E O ÁTOMO DE HIDROGÊNIO: Como o elétron tem propriedades ondulatórias, ele pode ser descrito como
O ÁTOMO DE HIDROGÊNIO
FÍSICA PARA ENGENHARIA ELÉTRICA José Fernando Fragalli Departamento de Física Udesc/Joinville O ÁTOMO DE HIDROGÊNIO A elegância, a riqueza, a complexidade e a diversidade dos fenômenos naturais que decorrem
Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin
Partícula na Caixa Química Quântica Prof a. Dr a. Carla Dalmolin Caixa unidimensional Caixa tridimensional Degenerescência Partícula no anel (mov. de rotação) Partícula na Caixa Partícula numa caixa unidimensional
Exame de Ingresso na Pós-graduação
Exame de Ingresso na Pós-graduação Instituto de Física - UFF Profissional - 09 de Junho de 009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das seções. A duração da prova é de 3 (três)
O poço quadrado finito
O poço quadrado infinito FNC375N: ista 8 5//4. Um próton se encontra num poço infinito de largura. Compute a energia do estado fundamental para (a), nm, o tamanho aproximado de uma molécula, e (b) fm,
Valores esperados. ψ (x)xψ(x)dx. ψ ψ dx. xp(x)dx P(x)dx. Vimos que: x = = ψ xψ dx. No caso geral de uma função de x: f (x) = f (x) =
Vimos que: x = + Valores esperados ψ (x)xψ(x)dx xp(x)dx P(x)dx = ψ xψ dx ψ ψ dx No caso geral de uma função de x: f (x) = f (x) = + ψ (x) ˆf (x)ψ(x)dx Para o momento e a energia: ˆp = i x e Ê = i t. 4300375
F 789 A - MECÂNICA QUÂNTICA II -Prof. Eduardo Granado - PROVA 1 (01/04/2015) (θ,ϕ), em que u k,l. (r). Nesta equação, E k,l e l (l+1)ħ 2 são os
F 789 A - MECÂNICA QUÂNTICA II -Prof. Eduardo Granado - PROVA 1 (01/04/2015) 1) Considere um sistema de duas partículas de massa m 1 e m 2 que interagem através de um potencial central V(r), onde r é a
Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2
Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos
Átomo de Hidrogênio 1
Átomo de Hidrogênio 1 Potencial central Solução: separação de variáveis satisfaz a equação para qualquer valor de m l. g() deve satisfazer a condição m l deve ser inteiro. 3 Solução: separação de variáveis
Fundamentos da Mecânica Quântica
Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio
UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 12. Barreira de potencial, efeito túnel, poço finito, e oscilador harmônico
UFABC - Física Quântica - Curso 2017.3 Prof. Germán Lugones Aula 12 Barreira de potencial, efeito túnel, poço finito, e oscilador harmônico 1 Barreira de potencial Uma barreira de potencial é descrita
O Método de Hartree-Fock
O Método de Hartree-Fock CF740 Tópicos Especiais de Física Atômica e Molecular Cálculos de Estrutura Eletrônica Utilizando Funcionais de Densidade Departamento de Física Universidade Federal do Paraná
O oscilador harmônico simples quântico
1 / 18 O oscilador harmônico simples quântico Prof. Dr. Vicente Pereira de Barros Instituto Federal de Educação Ciência e Tecnologia de São Paulo - Campus Itapetininga 29/05/2014 2 / 18 Introdução Introdução
4 e 6/Maio/2016 Aulas 17 e 18
9/Abril/016 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda
Função de Onda e Equação de Schrödinger
14/08/013 Função de Onda e Equação de Schrödinger Prof. Alex Fabiano C. Campos, Dr A Função de Onda (ψ) A primeira formulação para esta nova interpretação da Mecânica, a Mecânica Quântica, teoria foi proposta
Comportamento ondulatório da matéria
Louis de Broglie investigou as propriedades ondulatórias da na década de 30. Ele supôs que o e-, em seu movimento ao redor do núcleo, tina associado a ele um λ. Ele igualou as duas expressões conecidas
UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 8. A equação de Schrödinger
UFABC - Física Quântica - Curso 2017.3 Prof. Germán Lugones Aula 8 A equação de Schrödinger 1 A equação de Schrödinger Na primeira parte do curso, introduzimos a dualidade onda-partícula. Usando as relações
Modelos Atômicos e Princípios Quânticos Parte II
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE QUÍMICA DEPARTAMENTO DE QUÍMICA INORGÂNICA QUÍMICA INORGÂNICA I Modelos Atômicos e Princípios Quânticos Parte II Prof. Fabio da Silva Miranda e-mail: [email protected]
6. Mecânica Quântica
6. Mecânica Quântica Sumário A função de onda A equação de Schrödinger Partícula em uma caixa Poço de potencial Barreira de potencial e o efeito túnel Oscilador harmônico A função de onda Ψ descreve uma
24/Abr/2014 Aula /Abr/2014 Aula 15
/Abr/014 Aula 15 Ondas de matéria; comprimento de onda de de Broglie. Quantização do momento angular no modelo de Bohr. Difracção e interferência. Função de onda; representação matemática do pacote de
Física Quântica. Aula 8: Potenciais Simples II: Oscilador Harmônico, Degrau de Potencial. Pieter Westera
Física Quântica Aula 8: Potenciais Simples : Oscilador Harmônico, Degrau de Potencial Pieter Westera [email protected] http://professor.ufabc.edu.br/~pieter.westera/quantica.html Receita de Bolo
Cap. 39 Mais ondas de matéria
Cap. 39 Mais ondas de matéria Ondas em cordas e ondas de matéria; Energia de um elétron confinado (1D); Mudanças de energia; Função de onda de um elétron confinado (1D); Elétron em poço finito; Outras
Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis
Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/ e de Dois Níveis Bruno Felipe Venancio 8 de abril de 014 1 Partícula de Spin 1/: Quantização do Momento Angular 1.1
Fundamentos de Química Quântica
Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Aula 3 Professora: Melissa Soares Caetano Átomo de Hidrogênio Um núcleo
Lista de Exercícios 1: Eletrostática
Lista de Exercícios 1: Eletrostática 1. Uma carga Q é distribuída uniformemente sobre um fio semicircular de raio a, que está no plano xy. Calcule a força F com que atua sobre uma carga de sinal oposto
Estrutura atômica. Modelo quântico do átomo
Estrutura atômica Modelo quântico do átomo Um bom modelo deve ser capaz de explicar propriedades atômicas, propriedades periódicas, ligação química Mecânica quântica - mecânica ondulatória Elétrons como
A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier
A Estrutura Eletrônica dos Átomos Prof. Fernando R. Xavier UDESC 2015 Estrutura Atômica, Antencedentes... Modelos de Demócrito, Dalton, Thomson, etc 400 a.c. até 1897 d.c. Nascimento da Mecânica Quântica
O degrau de potencial. Caso I: energia menor que o degrau
O degrau de potencial. Caso I: energia menor que o degrau A U L A 8 Meta da aula Aplicar o formalismo quântico ao caso de uma partícula quântica que incide sobre um potencial V(x) que tem a forma de um
Campo Escalar Complexo
Finalmente consideremos: Teoria Quântica de Campos I 60 operador na representação de Schödinger, basta partir de 59.2 e usar lembrando que: É uma superposição de vários estados de uma partícula (cada um
Aplicação do Método Variacional na Mecânica Quântica:
Aplicação do Método Variacional na Mecânica Quântica: Átomo de Hélio Milena Menezes Carvalho 1 1 Instituto de Física de São Carlos, Universidade de São Paulo E-mail: [email protected] 1. Introdução
Física IV - FAP2204 Escola Politécnica GABARITO DA PS 15 de dezembro de 2009
PS Física IV - FAP2204 Escola Politécnica - 2009 GABARITO DA PS 15 de dezembro de 2009 Questão 1 Considere os campos elétrico E = (0,E y,0) e magnético B = (0,0,B z ) onde E y (x,t) = A e a(x ct) e B z
FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela
FF-296: Teoria do Funcional da Densidade I Ronaldo Rodrigues Pela Tópicos O problema de 1 elétron O princípio variacional Função de onda tentativa Átomo de H unidimensional Íon H2 + unidimensional Equação
Física Moderna II - FNC376
Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto o. Semestre de 008 Conteúdo (P) Cap. 7, 8 e 9 Eisberg (/ do 9.7), Cap. 7 do Tipler, Cap. 7 e parte
Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change
Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E
h mc 2 =hν mc 2 =hc/ λ
Louis de Broglie investigou as propriedades ondulatórias da matéria na década de 30. Ele supôs que o e-, em seu movimento ao redor do núcleo, tinha associado a ele um λ. Ele igualou as duas expressões
13/Maio/2016 Aula 20. Átomo de hidrogénio Modelo de Bohr Modelo quântico. Números quânticos. 11/Maio/2016 Aula 19
11/Maio/2016 Aula 19 Aplicações: - nanotecnologias; - microscópio por efeito de túnel. Equação de Schrödinger a 3 dimensões. 13/Maio/2016 Aula 20 Átomo de hidrogénio Modelo de Bohr Modelo quântico. Números
Desenvolvimento. Em coordenadas esféricas:
Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de
Problemas de Mecânica Quântica Ano lectivo 2007/2008 Engenharia Biomédica, IST
Problemas de Mecânica Quântica Ano lectivo 2007/2008 Engenharia Biomédica, IST Potenciais unidimensionais, poço de potencial, efeito de túnel, oscilador linear harmónico 1. Gasiorowicz 4.8 Ajudas: (a)
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.1 Vibrações de uma membrana Como mencionado na aula passada, pode-se deduzir
AS ONDAS ESTACIONÁRIAS
AS ONDAS ESTACIONÁRIAS Comportamento de um elétron em um átomo: semelhante ao de uma onda estacionária tridimensional. Onda estacionária: não se movimenta em uma única direção (ao contrário de uma onda
Bilineares do Campo de Dirac. Analogamente:
Teoria Quântica de Campos I 133 ( eq. 133.1 ) Analogamente: ( eq. 133.2 ) Bilineares do Campo de Dirac Claramente, qualquer grandeza observável vai ter que ser composta do produto de um número par de campos
+ E p. ψ(x) = E. ψ(x)
Erwin Schrödinger: E c E p = E E c. ψ(x) E p. ψ(x) = E. ψ(x) h 8π m d ψ(x) dx E p. ψ(x) = E. ψ(x) Equação de onda a uma dimensão (x), independente do tempo: que traduz o comportamento de uma partícula
Momento Angular. 8.1 Álgebra do Momento Angular
Capítulo 8 Momento Angular Neste capítulo vamos estudar os autovalores e autovetores do momento angular. Este problema também pode ser analisado com o uso do método de operadores, o que faremos na primeira
Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros
Operadores e Função de Onda para Muitos Elétrons Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Livro texto: Modern Quantum Chemistry Introduction to Advanced Elecronic Structure Theory
FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela
FF-296: Teoria do Funcional da Densidade I Ronaldo Rodrigues Pela Tópicos HF Dois elétrons N elétrons Thomas Fermi Átomo de Hélio 1D Energia exata: 3,154 H Vamos resolver este problema usando o método
Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2
Mecânica Analítica Dinâmica Hamiltoniana Licenciatura em Física Prof. Nelson Luiz Reyes Marques Princípio de Hamilton O caminho real que uma partícula percorre entre dois pontos 1 e 2 em um dado intervalo
A teoria de Hartree. r r. r r
A teoria de Hartree Vimos, na aula 4, a proposta de Hartree: tratamento autoconsistente Ou seja, V(r) obtido a posteriori, a partir das distribuições de carga dos e -, deve concordar com o V(r) usado para
Aula de Física Atômica e molecular. Operadores em Mecânica Quântica Prof. Vicente
Aula de Física Atômica e molecular Operadores em Mecânica Quântica Prof. Vicente Definição Seja f uma quantidade física que caracteriza o estado de um sistema quântico. Os valores que uma dada quantidade
Física Quântica. Aula 11: Spin do Elétron, Princípio de Exclusão de Pauli. Pieter Westera
Física Quântica Aula 11: Spin do Elétron, Princípio de Exclusão de Pauli Pieter Westera [email protected] http://professor.ufabc.edu.br/~pieter.westera/quantica.html Quantização do Momento Angular
