Teoria de Grupos e Simetria Cristalina

Tamanho: px
Começar a partir da página:

Download "Teoria de Grupos e Simetria Cristalina"

Transcrição

1 Teoria de Grupos e Simetria Cristalina Teorema de Bloch Tiago de Campos Resumo Neste texto serão apresentados conceitos fundamentais para o entendimento de estruturas cristalinas bem como suas simetrias. Utilizando considerações de teoria de grupos sera possível provar um dos teoremas mais importantes da Física do Estado Sólido, o teorema de Bloch. Primeiramente será introduzido o conceito de grupo pontual, fundamental para a classificação de moléculas e redes cristalinas, a partir de operações e elementos de simetria e em seguida o conceito de grupo espacial, importante para resolução da equação de Schrödinger de um elétron. 1 Grupos Pontuais Definindo o que são elementos de simetria e operações de simetria. Operação de Simetria equivalente à inicial. Consiste em mover um corpo de tal maneira que sua posição final, após o movimento, seja Elemento de Simetria É uma entidade geométrica (um ponto, uma reta ou um plano) com relação a qual se efetua uma ou mais operações de simetria. No estudo de sistemas finitos, tais como moléculas, aglomerados moleculares, sólidos com defeitos, etc., existem somente quatro tipos de operações (ou elementos). Em um cristal, as operações de translações também devem ser incluídas. Os Quatros Tipos de Elementos de Simetria e Operações Elementos Plano de Simetria Centro de Simetria Eixo Próprio Eixo Impróprio Operações Reflexão no plano Inversão de todos os átomos através de um centro Uma ou mais rotações ao redor do eixo Sequência de rotação seguida de reflexão em um plano perpendicular ao eixo de rotação 1.1 Grupos Pontuais Cristalográficos As operações de simetria de um corpo (molécula, sólido, etc) satisfazem as quatro propriedades que definem um grupo (Ver [1] capítulo 2). Existem 32 grupos pontuais na natureza, os quais exaurem todas as possíveis simetrias de um cristal. (Ver [1] capítulo 3) 2 Grupos Espaciais 2.1 Conceitos Matemáticos Fundamentais Operações de Simetria dos Grupos Espaciais Todas as provas serão omitidas e podem ser encontradas em [2] capítulo 9. 1

2 3 Teorema de Bloch 2 Definição 1 O grupo pontual e as operações de simetria que levam o cristal nele mesmo é chamado grupo espacial Uma notação comum para o grupo espacial é: {R α τ} (1) onde R α denota as operações de simetria do grupo pontual e τ denota as operações de translações. Rotações puras ou translações puras são casos especiais do grupo espacial: {ε 0} =identidade; {α 0} =rotações puras ou outras operações do grupo pontual; {0 τ} =translações puras pelo vetor τ. Definição 2 O resultado da multiplicação de dois grupos pontuais é: {β τ }{α τ} = {βα β τ + τ }, onde {α τ} é o primeiro grupo espacial e {β τ } o segundo. Definição 3 O inverso de {α τ} é: {α τ} 1 = {α 1 α 1 τ} O subgrupo Translação Teorema Todos os elementos do grupo espacial G que são da forma {ε τ} constituem o grupo translação T. Aqui T é um subgrupo de G e define a rede de Bravais Grupos Espacias Simórficos e Não-Simórficos O grupo espacial G consiste de todas as operações {R α τ} que deixam um dada rede de Bravais invariante. Podemos escrever as operações do grupo espacial da seguinte forma: {R α τ} = {R α R n + τ α } = {ε R n }{R α τ α } (2) onde R n é um vetor geral da rede de Bravais e o vetor τ α ou é zero ou uma tranlação que não seja uma tranlação primitiva da rede de Bravais. Definição 4 Se, com a escolha adequada da origem na rede direta, todos os elementos do grupo G são da forma {R α τ} = {R α R n } = {ε R n }{R α 0} então o grupo espacial G é chamado de simples ou simórfico. Se, para qualquer escolha de origem na rede direta, τ α 0 para pelo menos uma operação {R α τ}, então G é chamado de grupo espacial não-simórfico. 2.2 Redes de Bravais e Grupos Espaciais Podemos introduzir as 14 redes de Bravais (ver [2] capítulo 9 seção 9.2) que denotam as possíves redes cristalográficas em 3D, e os 230 grupos espaciais (73 simórficos e 157 não-simórficos) que podem ser formadas posicionando diferentes estruturas atômicas em direfentes sítios da rede. Os requerimentos de simetria translacional limitam os possíveis ângulos de rotação de uma rede de Bravais. Quando simetrias de rotação ocorrem em um cristal várias restrições no ângulo de rotação são impostas pelas simultâneas ocorrências da repetição da célula unitária através das rotações e translações. 3 Teorema de Bloch 3.1 Grupos Espaciais no Espaço Recíproco Quando passamos de moléculas para cristais, as propriedades físicas serão descritas pelas relações de dispersões no espaço recíproco, ao invés dos níves de energia no espaço direto. Um das grandes contribuições da Teoria de Grupos para a Física do Estado Sólido é relacionada com as simetrias e degenerescências da relação de dispersão, especialmente em pontos de alta simetria da zona de Brillouin.

3 3 Teorema de Bloch 3 A classificação das propriedades de simetria no espaço recíproco envolve o grupo da onda plana, tal grupo é importante porque é com ele que as simetrias do grupo pontual e as simetrias de translação são incorporadas ao formalismo que descreve a relação de dispersão. 3.2 Espaço Recíproco Definição 5 O conjunto de todos os vetores de onda K m que geram ondas planas com a periodicidade de uma rede de Bravais definem a rede recíproca e os K m são chamados de vetores da rede recíproca. A relação: exp[i K m ( r + R n )] = exp[i K m r] (3) é válida para todo r, com R n sendo os vetores que definem a rede direta e K m os vetores que definem a rede recíproca, com isso: exp i K m R n = 1 (4) Considerando R m = n i a i e Km = m jbj (i, j = 1, 2, 3) com a i e b j sendo, respectivamente, os vetores primitivos de translação e os vetores recíprocos primitivos de translação, temos: b j a i = 2πδ ij (5) 3.3 Subgrupo Translação Para o subgrupo translação T que é um subgrupo do grupo espacial G, considere o operador de translação ˆP {ε τ} referente ao elemento {ε τ} do grupo de translação, então: ˆP {ε τ} ψ( r) = ψ( r + τ) (6) e como todas as operações de translações comutam umas com as outras, as translações formam um grupo abeliano. Definição 6 unitários a i Como as operações de translação τ podem ser escritas em termos de translações sobre os vetores τ = n i a i (7) podemos pensar nos operadores de projeção em cada direção a i como operadores que comutam: {ε τ} = {ε τ 1 }{ε τ 2 }{ε τ 3 } (8) onde τ i = n i a i Representações para o Grupo Translação Em um subgrupo cíclico, todos os elementos de simetria comutam uns com os outros, e o grupo é abeliano e têm representações irredutíveis na forma de matrizes unidimensionais. O número de representações irredutíveis de um grupo cíclico é igual ao número de elementos do grupo e cada elemento é uma classe por si só. Cada representação irredutível pode ser escrita como vetores de fase ou caracteres da forma exp(ik i n i a i ). Aqui k i = 2πm i /L i, com m i inteiro e L i o tamanho do cristal na direção a i. Existem da ordem de representações irredutíveis e neste contexo o vetor de onda k serve como um número quântico para o operador de translação.

4 3 Teorema de Bloch O Teorema de Bloch Teorema Se uma autofunção ψ k se transforma como uma das representações irredutíveis (índice k) do grupo translação, então ψ k ( r) obedece a relação: ˆP {ε τ} ψ k ( r) = ψ k ( r + τ) = exp(i k τ) ψ k ( r) (9) ψ k ( r) pode ser escrito na forma: ψ k ( r) = exp(i k r) u k ( r) (10) e u k ( r + τ) = u k ( r) tem a simetria da rede direta de Bravais. Prova: Como o grupo translação é abeliano, todos os elementos do grupo comutam entre si e as representações irredutíveis são unidimensionais. Podemos escrever as condições periódicas de contorno como: {ε τ 1 + NL 1 } = {ε τ 1 } (11) onde N é um inteiro e L 1 é o comprimento do cristal ao longo da direção a i. Isto resulta na representação matricial unidimensional para o operador de translação τ = n i a i D k1 (n 1 a 1 ) = exp(ik 1 n 1 a 1 ) = exp(ik 1 τ 1 ) (12) desde que ˆP R ψ k ( r) = D k (R)ψ k ( r) (13) onde R denota um elemento de simetria, k 1 = 2πm 1 /L 1 corresponde à m 1 -ésima representação irredutível e m 1 = 1, 2,..., L 1 /a 1. Para algum m 1 existe um único k 1 de forma que cada representação irredutível tem índice m 1 ou k 1. Agora, estendendo este argumento para 3 dimensões, temos para um translação geral τ = 3 n i a i (14) O carater ou representação matricial da (m 1 m 2 m 3 )-ésima representação irredutível é: i=1 desde que D k1 (n 1 a 1 )D k2 (n 2 a 2 )D k3 (n 3 a 3 ) = exp(ik 1 n 1 a 1 ) exp(ik 2 n 2 a 2 ) exp(ik 3 n 3 a 3 ) = exp(i k τ) (15) Então, da nossa fórmula inicial ˆPR ψ j ( r) = α ψ αd(r) αj, temos {ε τ} = {ε τ 1 }{ε τ 2 }{ε τ 3 } (16) ˆP {ε τ} ψ k ( r) = exp(i k τ) ψ k ( r) = ψ k ( r) exp(i k τ) = ψ k ( r + τ) (17) já que as representações são todas unidimensionais. Este resultado é o Teorema de Bloch e geralmente se escreve τ = R n. Esta demostração mostra que o fator de fase exp(i k τ) é autovalor do operador de translação ˆP {ε τ}. Pelo teorema de Bloch, podemos escrever ψ k ( r) = exp(i k r) u k ( r), onde u k ( r) exibe toda a simetria translacional do cristal e portanto: ψ k ( r + R n ) = exp[i k ( r + R n )] u k ( r + R n ) = exp(i k R n ) [exp(i k r) u k ( r)] (18)

5 3 Teorema de Bloch 5 Referências [1] Introdução à Teoria de Grupos - Adalberto Fazzio e Kazunori Watari. [2] Group Theory: Application to Physics of Condensed Matter - M.S. Dresselhaus, G. Dresselhaus, A. Jorio.

Aula-07 - Física de Materiais - 29/08/2005. Continuação da formação das Faixas de Energia em um Sólido.

Aula-07 - Física de Materiais - 29/08/2005. Continuação da formação das Faixas de Energia em um Sólido. Aula-07 - Física de Materiais - 29/08/2005 Continuação da formação das Faixas de Energia em um Sólido. A Molécula Infinita. Agora vamos fazer um tratamento de uma molécula não gigante, mas infinita! E

Leia mais

Cristalografia para não-cristalógrafos

Cristalografia para não-cristalógrafos Cristalografia para não-cristalógrafos Interpretando a Estrutura Cristalina dos Materiais MC-7 01, 02 e 03 de Agosto de 2018 (14:00-16:00h) Leonardo H. R. Dos Santos Departamento de Química UFMG leonardohrs@ufmg.br

Leia mais

ORDEM. Periocidade. SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico de átomos, moléculas ou iões, formando uma estrutura cristalina regular

ORDEM. Periocidade. SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico de átomos, moléculas ou iões, formando uma estrutura cristalina regular Capítulo I ESTRUTURA CRISTALINA DE SÓLIDOS ORDEM curto alcance médio alcance longo alcance Periocidade unidimensional bidimensional tridimensional SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico

Leia mais

Capítulo II Relatividade Newtoniana

Capítulo II Relatividade Newtoniana Capítulo II Relatividade Newtoniana A mecânica newtoniana é baseada nas três leis de Newton, (1) a lei da inércia, (2) a lei da força e (3) a lei da ação e reação, válidas nos referenciais inerciais. Esses

Leia mais

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Operadores e Função de Onda para Muitos Elétrons Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Livro texto: Modern Quantum Chemistry Introduction to Advanced Elecronic Structure Theory

Leia mais

Rede Recíproca. CF086 - Introdução a Física do Estado Sólido 1

Rede Recíproca. CF086 - Introdução a Física do Estado Sólido 1 Rede Recíproca CF086 - Introdução a Física do Estado Sólido 1 Recordando... Redes de Bravais: conjunto de pontos do espaço que respeitam duas definições 1. Conjunto (infinito) de pontos do espaço com uma

Leia mais

CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS

CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS Profa. Renata Diniz renata.diniz@ufjf.edu.br Departamento de Química ICE Universidade Federal de Juiz de Fora I - Difração de Raios X Radiação X Fenômeno de Difração

Leia mais

Capítulo 1 - Cristais

Capítulo 1 - Cristais 1. Cristais 1.1. Introdução O materiais no estado sólido podem apresentar estruturas cristalinas ou amorfas. Na estrutura cristalina os átomo (moléculas) apresentam um ordenamento periódico nas posições

Leia mais

Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais

Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais MA33 - Introdução à Álgebra Linear Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT -

Leia mais

Introdução à Física do Estado Sólido

Introdução à Física do Estado Sólido Introdução à Física do Estado Sólido Escritório: Edifício Alessandro Volta, Bloco C, sala 210. Fone: 3091-7041 (celular:98346-3882) e-mail: lassali@if.usp.br IFUSP 2º Semestre/2018 Introdução à Física

Leia mais

Física de Semicondutores. Sexta aula FÔNONS

Física de Semicondutores. Sexta aula FÔNONS Física de Semicondutores Sexta aula FÔNONS Resumo das aulas anteriores Cálculo dos auto-estados e auto-energias dos elétrons em um semicondutor é complicado, devido ao grande número de átomos. Simetria

Leia mais

Equação de Schrödinger em 3D

Equação de Schrödinger em 3D Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração

Leia mais

UNIVERSIDADE FEDERAL DO ABC BC-1105: MATERIAIS E SUAS PROPRIEDADES

UNIVERSIDADE FEDERAL DO ABC BC-1105: MATERIAIS E SUAS PROPRIEDADES UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES Estrutura Cristalina - direções e planos cristalográficos - alotropia

Leia mais

Introdução à teoria de grupos e aplicação no grafeno

Introdução à teoria de grupos e aplicação no grafeno Ana Paula Costa e Silva Introdução à teoria de grupos e aplicação no grafeno Uberlândia 2018 Ana Paula Costa e Silva Introdução à teoria de grupos e aplicação no grafeno Trabalho de conclusão de curso

Leia mais

Física de Semicondutores. Aula 10 Defeitos Aproximação de massa efetiva

Física de Semicondutores. Aula 10 Defeitos Aproximação de massa efetiva Física de Semicondutores Aula 10 Defeitos Aproximação de massa efetiva Aula anterior: Cálculo dos níveis de energia de impurezas rasas H U r E r 0 onde H 0 é o Hamiltoniano de um elétron no potencial do

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

FÍSICA-MATEMÁTICA RUDI GAELZER (INSTITUTO DE FÍSICA - UFRGS)

FÍSICA-MATEMÁTICA RUDI GAELZER (INSTITUTO DE FÍSICA - UFRGS) FÍSICA-MATEMÁTICA RUDI GAELZER (INSTITUTO DE FÍSICA - UFRGS) Apostila preparada para as disciplinas de Física- Matemática ministradas para os Cursos de Bacharelado em Física do Instituto de Física da Universidade

Leia mais

Aula de Física Atômica e molecular. Operadores em Mecânica Quântica Prof. Vicente

Aula de Física Atômica e molecular. Operadores em Mecânica Quântica Prof. Vicente Aula de Física Atômica e molecular Operadores em Mecânica Quântica Prof. Vicente Definição Seja f uma quantidade física que caracteriza o estado de um sistema quântico. Os valores que uma dada quantidade

Leia mais

2.2.1 Efeito Hall e Magnetoresistência Condutividade Elétrica AC Corrente Elétrica em um Campo Magnético

2.2.1 Efeito Hall e Magnetoresistência Condutividade Elétrica AC Corrente Elétrica em um Campo Magnético Conteúdo 1 Revisão de Física Moderna 1 1.1 Equação de Schrödinger; Autoestados e Valores Esperados.. 1 1.2 O Poço de Potencial Innito:Quantização da Energia.............................. 7 1.3 O Oscilador

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PMT 3100 - Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014 ESTRUTURA DOS SÓLIDOS

Leia mais

Espectroscopia no infravermelho e Raman

Espectroscopia no infravermelho e Raman Espectroscopia no infravermelho e Raman Tópicos Especiais em Química XII Métodos Físicos em Química Inorgânica Prof. Edson Nossol Uberlândia, 14/03/2017 Bibliografia Simetria de moléculas e cristais. Gelson

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

Conceitos Primitivos: são conceitos adotados sem definição.

Conceitos Primitivos: são conceitos adotados sem definição. Geometria Plana Geometria Espacial Conceitos Primitivos: são conceitos adotados sem definição. 1. Ponto P Características: Não possui dimensão Sua representação geométrica é indicada por letra maiúscula

Leia mais

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por: Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular

Leia mais

Não serão aceitas respostas sem justificativa:

Não serão aceitas respostas sem justificativa: Primeira Prova de Conceitos de Mecânica Quântica -(,5) Uma partícula de massa m encontra-se no estado ψ(x,t)= A exp[ω(mx /ħ+it)], onde A e a são constantes reais e positivas. a- Normalize ψ(x,t); b- Calcule

Leia mais

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG 1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos

Leia mais

(Mini) Apostila de Teoria de Grupos. Dimiter Hadjimichef

(Mini) Apostila de Teoria de Grupos. Dimiter Hadjimichef (Mini) Apostila de Teoria de Grupos Dimiter Hadjimichef Porto Alegre 2012 1. Teoria de Grupos 1.1 Muitas definições... Definição 1: Grupo Um conjunto G = {a,b,c,...} é dito formar um grupo se existir uma

Leia mais

O Método de Hartree-Fock

O Método de Hartree-Fock O Método de Hartree-Fock CF740 Tópicos Especiais de Física Atômica e Molecular Cálculos de Estrutura Eletrônica Utilizando Funcionais de Densidade Departamento de Física Universidade Federal do Paraná

Leia mais

Eixos Cristalográficos e Sistemas Cristalinos

Eixos Cristalográficos e Sistemas Cristalinos Universidade de São Paulo Instituto de Química de São Carlos Departamento de Química e Física Molecular Eixos Cristalográficos e Sistemas Cristalinos SQM 409 - Cristalografia Prof. Dr. Maria Teresa do

Leia mais

Física do Estado Sólido: Sólidos Condutores

Física do Estado Sólido: Sólidos Condutores Física do Estado Sólido: Sólidos Condutores Trabalho de Física Moderna II Professor Marcelo Gameiro Munhoz 7 de maio de 2012 André E. Zaidan Cristiane Calil Kores Rebeca Bayeh Física do Estado Sólido -

Leia mais

Molécula de água. σ v : σ v ': 0 1. (h 1 +h 2 ) (h 1 +h 2 ) (h 1 +h 2 ) (h 1 +h 2 ) (h 1 +h 2 ) (h 1 h 2 ) (h 1 h 2 ) (h 1 h 2 ) (h 1 h 2 ) (h 1 h 2 )

Molécula de água. σ v : σ v ': 0 1. (h 1 +h 2 ) (h 1 +h 2 ) (h 1 +h 2 ) (h 1 +h 2 ) (h 1 +h 2 ) (h 1 h 2 ) (h 1 h 2 ) (h 1 h 2 ) (h 1 h 2 ) (h 1 h 2 ) Orientação da molécula: H 2 Elementos de simetria: C 2 = z σ v = plano z σ v ' = plano z Aplicação das operações de simetria sobre os orbitais do átomo de O: 2p z (O) 2p z (O) 2p z (O) 2p z (O) 2p z (O)

Leia mais

Célula Unitária e 14 Retículos de Bravais

Célula Unitária e 14 Retículos de Bravais Universidade de São Paulo Instituto de Química de São Carlos Departamento de Química e Física Molecular Célula Unitária e 14 Retículos de Bravais SQM 409 - Cristalografia Prof. Dr. Maria Teresa do Prado

Leia mais

ESTRUTURA DOS SÓLIDOS

ESTRUTURA DOS SÓLIDOS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais ESTRUTURA DOS SÓLIDOS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia 2º semestre de

Leia mais

Descrições Espaciais e Transformações

Descrições Espaciais e Transformações 4 o Engenharia de Controle e utomação FCI / 29 rof. Maurílio J. Inácio Descrição de posição e orientação O estudo de robótica envolve constantemente a localização de objetos (as partes e ferramentas) em

Leia mais

η η < η j + η 0 de outro modo η η η η φ φ φ δ = δ φ, η [ η, η ]

η η < η j + η 0 de outro modo η η η η φ φ φ δ = δ φ, η [ η, η ] BASE TEÓRICA Este capítulo apresenta a formulação teórica do elemento finito utilizando funções spline. Com este objetivo descrevem-se primeiro as funções que definem os deslocamentos no elemento. A partir

Leia mais

Matrizes. Lino Marcos da Silva

Matrizes. Lino Marcos da Silva Matrizes Lino Marcos da Silva lino.silva@univasf.edu.br Introdução Chamamos de matriz a uma tabela de elementos dispostos em linhas e colunas. Por exemplo, ao recolhermos os dados população, área e distância

Leia mais

INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano

INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano 1 INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano Exercícios - transformações lineares determinante e

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas Equação de Schrödinger em 3D: 2 = 1 r 2 # % r $ r2 r & (+ ' 1 r 2 senθ # θ senθ & % (+ $ θ ' 1 r 2 sen 2 θ 2 φ 2 Podemos, então, escrever a eq. de Schrödinger

Leia mais

Simetrias na Mecânica Quântica

Simetrias na Mecânica Quântica Simetrias na Mecânica Quântica Prof. 26 de maio de 2010 Definição de Simetria na Mecânica Quântica G(a) elemento de um grupo G de transformações contínuas, ˆT(G(a)) operador unitário. G(a) M.Q. ˆT(G(a)),

Leia mais

2. Modelo do Átomo Isolado

2. Modelo do Átomo Isolado CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS II - Estruturas Cristalinas 1. Intensidade e fase da radiação espalhada 2. Modelo do Átomo Isolado Profa. Renata Diniz renata.diniz@ufjf.edu.br Departamento de

Leia mais

Quantização de um campo fermiônico

Quantização de um campo fermiônico Teoria Quântica de Campos II 54 p linhas ( eq. 54.1 ) Um exemplo trivial seria: Quantização de um campo fermiônico (Nastase 12 e 13; Peskin 3.1-3.4 [campo clássico], 3.5 [quant. canônica], 9.5 [quant.

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

06 - VIBRAÇÕES DA REDE CRISTALINA: FÔNONS

06 - VIBRAÇÕES DA REDE CRISTALINA: FÔNONS 06 - VIBRAÇÕES DA REDE CRISTALINA: FÔNONS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro do Capítulo: Vibrações da Rede Cristalina Modelo Clássico das Vibrações

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS DE UM ELÉTRON Primeira Edição junho de 2005 CAPÍTULO 08 ÁTOMOS DE UM ELÉTRON ÍNDICE 8.1- Introdução 8.2- Força Central 8.3- Equação

Leia mais

Molécula de água C 2 : ( σ v : σ v ': ( 0 1 1

Molécula de água C 2 : ( σ v : σ v ': ( 0 1 1 CQ832 - moléculas poliatômicas Prof. Dr. Flávio M. Matsumoto 1 Orientação da molécula: z O H 2 Elementos de simetria: H 1 C 2 = z σ v = plano z σ v ' = plano z Molécula de água Aplicação das operações

Leia mais

ROBÓTICA TRANSFORMAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA TRANSFORMAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial TRANSFORMAÇÕES MATRICIAIS https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II. q exp( q 2 ) ( 2 π. 2 (2q 2 1) exp( q 2 )

CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II. q exp( q 2 ) ( 2 π. 2 (2q 2 1) exp( q 2 ) CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II 1) Dadas as funções ψ 1 (q) e ψ 2 (q), definidas no intervalo < q < + : ψ 1 (q) = ( 2 π ) 1/2 q exp( q 2 ) Calcule: a) (ψ 1, ψ 2 ); b)

Leia mais

O que é Supersimetria?

O que é Supersimetria? O que é Supersimetria? Victor O. Rivelles Instituto de Física Universidade de São Paulo e-mail:rivelles@fma.if.usp.br http://www.fma.if.usp.br/~rivelles Convite à Física 11/08/10 Simetria Senso impreciso

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS Edição de agosto de 2008 CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS ÍNDICE 8.1- Introdução 8.2- Problema da Força Central

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,

Leia mais

Lista Considere um oscilador harmonico tridimencional com o potencial, resolve a Equação de Schrödinger independente no tempo

Lista Considere um oscilador harmonico tridimencional com o potencial, resolve a Equação de Schrödinger independente no tempo Lista 8. Considere um oscilador harmonico tridimencional com o potencial, V = m 2 ( ω 2 x x 2 + ω 2 yy 2 + ω 2 zz 2), onde ω x, ω y e ω z representam as frequências deste oscilador (clássico) nas direções,

Leia mais

h mc 2 =hν mc 2 =hc/ λ

h mc 2 =hν mc 2 =hc/ λ Louis de Broglie investigou as propriedades ondulatórias da matéria na década de 30. Ele supôs que o e-, em seu movimento ao redor do núcleo, tinha associado a ele um λ. Ele igualou as duas expressões

Leia mais

Helena Melo. Departamento de Matemática Universidade dos Açores

Helena Melo. Departamento de Matemática Universidade dos Açores Helena Melo Departamento de Matemática Universidade dos Açores ISOMETRIA É uma transformação que preserva a distância entre pontos. Preserva: Colinearidade e ordem dos pontos Amplitude da ângulos Relações

Leia mais

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12 Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação

Leia mais

Teoria de Bandas 2 Elétrons Quase Livres. CF086 - Introdução a Física do Estado Sólido 1

Teoria de Bandas 2 Elétrons Quase Livres. CF086 - Introdução a Física do Estado Sólido 1 Teoria de Bandas 2 Elétrons Quase Livres CF086 - Introdução a Física do Estado Sólido 1 Introdução O modelo de elétrons livres fornece alguns resultados interessantes, mas existem pontos não explicados.

Leia mais

Molécula de água. σ v : σ v ': ( 0 1

Molécula de água. σ v : σ v ': ( 0 1 QUIM7031 - moléculas poliatômicas Prof Dr Flávio M Matsumoto - 1 Molécula de água Orientação da molécula z O H 2 H 1 Aplicação das operações de simetria, em notação matricial E: 0 1( h 1 h 2 = ( h 1 h

Leia mais

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Espaço Recíproco e a Esfera de Ewald Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Índices de Miller Índices de Direções Espaço Recíproco Esfera de Ewald Esfera Limite Número de

Leia mais

Simetria em Mecânica Quântica

Simetria em Mecânica Quântica Simetria em Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br CF703 Física Quântica I Simetria em Mecânica Quântica Simetrias em física

Leia mais

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Prof. Alex G. Dias Prof. Alysson F. Ferrari Eletrostática Neste curso trataremos da parte estática do eletromagnetismo. Ou seja:

Leia mais

CAPíTULO 1. Vetores e tensores Notação indicial

CAPíTULO 1. Vetores e tensores Notação indicial CAPíTULO 1 Vetores e tensores 1.1. Notação indicial A notação indicial é uma simplificação da notação de uma somatória. Por exemplo, seja a somatória de 3 monômios a i b i (a i multiplicado por b i ) com

Leia mais

Visualização por Computador: Teoria, Prática e Aplicações

Visualização por Computador: Teoria, Prática e Aplicações Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,

Leia mais

Partículas: a dança da matéria e dos campos. Aula 14 Simetrias Simetrias 2. Grupos e suas propriedades 3. Rotações no espaço-tempo

Partículas: a dança da matéria e dos campos. Aula 14 Simetrias Simetrias 2. Grupos e suas propriedades 3. Rotações no espaço-tempo Partículas: a dança da matéria e dos campos Aula 4 Simetrias - 3. Simetrias. Grupos e suas propriedades 3. Rotações no espaço-tempo Simetrias Já discutimos o uso de simetria em arte e a importância desse

Leia mais

Formalismo microcanônico ( ensemble microcanônico) Formalismo canônico ( ensemble canônico)

Formalismo microcanônico ( ensemble microcanônico) Formalismo canônico ( ensemble canônico) Formalismo microcanônico ( ensemble microcanônico) sist(j) estado j f j = Ω j Ω Formalismo canônico ( ensemble canônico) reservatório de temperatura tot res sistema f j = Ω res+sist(j) Ω tot sist(j) Física

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

Rede de Bravais. Cap 1 KITTEL Cap 4 ASHCROFT- MERMIN (todo) Cap 7 ASHCROFT- MERMIN (parte) Cap 4 IVAN

Rede de Bravais. Cap 1 KITTEL Cap 4 ASHCROFT- MERMIN (todo) Cap 7 ASHCROFT- MERMIN (parte) Cap 4 IVAN Rede de Bravais Cap 1 KITTEL Cap 4 ASHCROFT- MERMIN (todo) Cap 7 ASHCROFT- MERMIN (parte) Cap 4 IVAN Veremos hoje Rede de Bravais.. Vetores primitivos Redes 2D e 3D Célula unitária primitiva célula primitiva

Leia mais

Transformada Z. Transformada Z

Transformada Z. Transformada Z Semelhante ao apresentado anteriormente, entre a relação das transformadas de Fourier e de Laplace, será visto que a generalização da representação senoidal complexa de um sinal de tempo discreto pela

Leia mais

Física do Estado Sólido

Física do Estado Sólido Física do Estado Sólido 2003-2004 Folha 3 - Estruturas cristalinas. Indique a rede subjacente aos desenhos da fig.. Encontre três conjuntos distintos de vectores fundamentais primitivos para cada um dos

Leia mais

Reconstrução Geométrica a Partir de Imagens TIC

Reconstrução Geométrica a Partir de Imagens TIC Reconstrução Geométrica a Partir de Imagens TIC-10.073 Aulas 2 e 3 Conteúdo Geometria Projetiva 2D Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2016.1/tic-10.073

Leia mais

Princípios Gerais da Mecânica Quântica

Princípios Gerais da Mecânica Quântica Princípios Gerais da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ)

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO. b) cos (α + β) = cos (α) cos (β) sen (α) sen (β) e (valor: 10,0 pontos)

QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO. b) cos (α + β) = cos (α) cos (β) sen (α) sen (β) e (valor: 10,0 pontos) Questão nº QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO i( + β) e = cos( + β) + isen( + β ) () i iβ e. e = (cos + isen ). (cos β + isen β) = =coscos β +i sensen β +isencos β +icossen β

Leia mais

ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO -

ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO - ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO - MATEMÁTICA 8º Ano Professora: Patrícia Isidoro Antes de Começar para recordar Posição relativa de duas retas no plano Retas Concorrentes Perpendiculares Oblíquas

Leia mais

estrutura atômica cristalino

estrutura atômica cristalino Aula 0b estrutura atômica cristalina ZEA 1038 Ciência e Tecnologia dos Materiais Prof. João Adriano Rossignolo Profa. Eliria M.J.A. Pallone estrutura atômica cristalino 1 CRISTAL ESTRUTURA CRISTALINA Muitos

Leia mais

Fundamentos da Mecânica Quântica

Fundamentos da Mecânica Quântica Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio

Leia mais

3 IMPLEMENTAÇÃO DO ELEMENTO FINITO

3 IMPLEMENTAÇÃO DO ELEMENTO FINITO 3 IMPLEMEAÇÃO DO ELEMEO FIIO este capítulo apresentam-se as considerações mais importantes para a implementação do elemento finito generalizado com funções spline. 3.1. Hipóteses Cinemáticas a formulação

Leia mais

ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS

ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS Prof. Dr.: Anael Krelling 1 CONCEITOS FUNDAMENTAIS Materiais sólidos podem ser classificados de acordo com a regularidade com que os seus átomos ou íons

Leia mais

aula6 Curvas de Hermite 2016/2 IC / UFF Criadas por Charles Hermite ( ) https://pt.wikipedia.org/wiki/charles_hermite

aula6 Curvas de Hermite 2016/2 IC / UFF Criadas por Charles Hermite ( ) https://pt.wikipedia.org/wiki/charles_hermite Criadas por Charles Hermite (1822-1901) https://pt.wikipedia.org/wiki/charles_hermite aula6 Vetor é : Na matemática - um elemento com de um espaço vetorial Em Física em oposição as grandezas escalares,

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Operadores e Função de Onda para Muitos Elétrons Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Aproximação de Hartree-Fock A maior preocupação da química quântica é encontrar e descrever

Leia mais

Tópicos de Física Clássica I Aula 9 O teorema de Noether; constantes de movimento

Tópicos de Física Clássica I Aula 9 O teorema de Noether; constantes de movimento Tópicos de Física Clássica I Aula 9 O teorema de Noether; constantes de movimento a c tort Suponha um lagrangiano associado a uma partícula que tem apenas um grau de liberdade (g = 1): L = L(q, q, t).

Leia mais

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica 1 Introdução. Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o livro texto. Antes iremos fazer um paralelo entre

Leia mais

Comportamento ondulatório da matéria

Comportamento ondulatório da matéria Louis de Broglie investigou as propriedades ondulatórias da na década de 30. Ele supôs que o e-, em seu movimento ao redor do núcleo, tina associado a ele um λ. Ele igualou as duas expressões conecidas

Leia mais

Eq. de Dirac com campo magnético

Eq. de Dirac com campo magnético Eq. de Dirac com campo magnético Rafael Cavagnoli GAME: Grupo de Médias e Altas Energias Eletromagnetismo clássico Eq. de Schrödinger Partícula carregada em campo mag. Eq. de Dirac Partícula carregada

Leia mais

4-FUNDAMENTOS DA MECÂNICA QUÂNTICA - PARTE 3

4-FUNDAMENTOS DA MECÂNICA QUÂNTICA - PARTE 3 TE069-Física de Semicondutores 4-FUNDAMENTOS DA MECÂNICA QUÂNTICA - PARTE 3 PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro do Capítulo: Moléculas e Ligações Químicas

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado

Leia mais

Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial

Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial 9 de abril de 2017 1. Dados os pontos R = (1, 2) e S = ( 2, 2) (a) Encontrar as coordenadas do vetor que tem origem no ponto R e o extremos

Leia mais

FÍSICA DA MATÉRIA CONDENSADA 2009/10 Folha 1 I Redes e Estruturas Cristalinas

FÍSICA DA MATÉRIA CONDENSADA 2009/10 Folha 1 I Redes e Estruturas Cristalinas FÍSICA DA MATÉRIA CONDENSADA 2009/10 Folha 1 I Redes e Estruturas Cristalinas 1 - Indicar a rede subjacente aos desenhos das figuras la) e lb). Encontrar três conjuntos de vectores fundamentais primitivos

Leia mais

A Experiência de Stern-Gerlach e o Spin do Elétron

A Experiência de Stern-Gerlach e o Spin do Elétron UFPR 28 de Abril de 2014 Figura: Placa Comemorativa. ela foi realizada em 1922; ela investiga os possíveis valores do momento de dipolo magnético, µ, de um átomo de prata; ela explora a dinâmica do dipolo

Leia mais

Lista de exercícios 11 Representação Matricial de Aplicações Lineares

Lista de exercícios 11 Representação Matricial de Aplicações Lineares Universidade Federal do Paraná Algebra Linear Olivier Brahic Lista de exercícios Representação Matricial de Aplicações Lineares Exercício : Para cada transformação linear seguinte, encontre a representação

Leia mais

Física da Matéria Condensada

Física da Matéria Condensada Física da Matéria Condensada II Redes e estruturas cristalinas 1. Indique a rede subjacente aos desenhos das figuras 1 e 2. Encontre três conjuntos de vectores fundamentais primitivos para a fig. 1 e dois

Leia mais