Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Tamanho: px
Começar a partir da página:

Download "Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br"

Transcrição

1 Biologia Estrutural Espaço Recíproco e a Esfera de Ewald Prof. Dr. Walter Filgueira de Azevedo Jr.

2 Resumo Índices de Miller Índices de Direções Espaço Recíproco Esfera de Ewald Esfera Limite Número de reflexões Referências

3 Índices de Miller Consideremos uma cela unitária, como mostrada na figura ao lado, as conclusões referentes à esta cela unitária, no que tange às propriedades dos índices de Miller, valem para os outros sistemas cristalinos, com exceção do sistema hexagonal, que não discutiremos aqui. Na análise do fenômeno de difração de raios X, uma atenção especial é dada para o conjunto de planos paralelos que difratam. Tal conjunto de planos paralelos, num retículo cristalino, pode ser representado por um conjunto de inteiros, relacionados aos interceptos com os eixos x, y e z. Para simplificar a explicação consideremos os seguintes exemplos. x z y

4 Índices de Miller O plano ilustrado ao lado intercepta o eixo x na posição 1, e é paralelo aos eixos y e z. Os índices de Miller desse plano obtém-se com o inverso dos interceptos aos eixos x, y e z. Os interceptos são 1,, ; e o inverso é 1, 0, 0, assim o índice de Miller do plano em cinza mostrado ao lado é (100). Na verdade estes índices indicam a família de planos paralelos a ele e que interceptam o eixo x em a, 2, 3, 4,... z (100) y x 1

5 Índices de Miller O plano ao lado intercepta o eixo x em 1, o eixo y em 1 e é paralelo ao eixo z. O índice de Miller é (110). z (110) 1 y x 1

6 Índices de Miller O plano ao lado intercepta o eixo x em 1, o eixo y em 1 e o eixo z em 1. O índice de Miller é (111). z 1 (111) 1 y x 1

7 Índices de Miller O plano ao lado intercepta o eixo x em 1, o eixo z em 1 e é paralelo ao eixo y. O índice de Miller é (101). z 1 (101) 1 y x 1

8 Índices de Miller O plano ao lado intercepta o eixo y em 1, o eixo z em 1 e é paralelo ao eixo x. O índice de Miller é (011). z 1 (011) 1 y x 1

9 Índices de Miller O plano ao lado intercepta o eixo x em 1/2, o eixo y em 1 e é paralelo ao eixo x. O índice de Miller é (210). z ½ (210) 1 y x

10 Índices de Miller O plano ao lado intercepta o eixo x em 1/4, o eixo y em 1 e é paralelo ao eixo x. O índice de Miller é (410). z ¼ (410) 1 y x

11 Índices de Miller Ao lado temos a indicação dos planos (100), paralelo ao plano yz, (010) paralelo ao plano xz e (001) paralelo ao plano xy. z (001) (100) (010) y x

12 Índices de Miller Na figura ao lado temos um plano interceptando o eixo y em ½ e paralelo ao plano xy, determinamos os índices de Miller invertendo-se o intercepto em y, assim temos (020). z (020) ½ y x

13 Índices de Miller Na figura ao lado temos um plano interceptando o eixo y em 1/4 e paralelo ao plano xy, determinamos os índices de Miller invertendo-se o intercepto em y, assim temos (040). z (040) 1/4 y x

14 Índices de Miller Toda vez que o plano corta a origem, coordenadas 0,0,0; temos que lembrar que esta representação refere-se a um cristal, onde temos repetição da cela unitária em três dimensões, como mostrado ao lado. z 1 y O plano equivalente corta o eixo x em 1 e o eixo y em -1, sendo paralelo à z, os índice de Miller são (1-1 0), a notação cristalográfica usa uma barra sobre números negativos: (110) x

15 Índices de Miller A cela unitária ao lado tem parâmetros de cela unitária a = 4 Å, b = 8 Å e c = 3 Å, consideremos um plano que intercepta a cela unitária em x = 1 Å, y = 4 Å e z = 3 Å. Determinaremos o índices de Miller do plano seguindo-se o seguinte algoritmo. 2) Tomemos os interceptos nos eixo x, y e z: x = 1 Å, y = 4 Å e z = 3 4) Calculemos a fração do eixo de cada intercepto: ¼, 4/8 e 3/3 ou seja, ¼, ½, 1 3) Invertemos essas frações, como segue: 4, 2, 1. Os índices de Miller desse plano são (421) x z 3 Å c = 3 Å 1 Å a = 4 Å 4 Å b = 8 Å y

16 Índices de Direções Vetores perpendiculares a planos cristalinos de índice de Miller (hkl) recebem índices da direção [hkl], em notação cristalográfica, qualquer direção, indicada por [hkl] representa a direção de um vetor perpendicular ao plano (hkl). Na cela unitária ao lado temos as direções [100], [010] e [001] indicadas, essas direções são perpendiculares aos planos (100), (010) e (001), respectivamente. x [100] z [001] (001) (100) (010) [010] y

17 Espaço Recíproco Ponto do espaço recíproco O espaço recíproco pode ser definido como um conjunto de pontos, onde cada ponto é determinado como segue: considere normais a todos os planos do espaço (hkl), saindo de um ponto O, considerado como origem. Cada normal aos plano (hkl) finaliza em um ponto, a uma distância d hkl * = 1/d hkl, onde d hkl é a distância interplanar dos planos (hkl), este conjunto de pontos (terminações das normais) é que formam o espaço recíproco. Vamos ilustrar em duas dimensões. y O Ponto do espaço direto x (110)

18 Espaço Recíproco Ponto do espaço recíproco Consideremos o espaço direto, representado abaixo, vamos determinar alguns pontos do espaço recíproco. Seja o plano (100), representado pela linha vermelha, consideremos uma origem arbitrária, indicada por O. Vamos traçar um vetor de O, perpendicular ao plano (110), o tamanho deste vetor é d 110*, assim temos um ponto do espaço recíproco no final deste vetor. y O Ponto do espaço direto d hkl * x (110)

19 Espaço Recíproco Para os planos (120) e (130) temos os pontos indicados. Resumindo, aplicando-se sucessivamente este processo, teremos um conjunto de pontos dos espaço recíproco, para cada plano do espaço direto, ou seja, temos uma correspondência entre os potenciais planos refletores e pontos do espaço recíproco. O Ponto do espaço recíproco Ponto do espaço direto y x (130) (110) (120)

20 Espaço Recíproco As propriedades geométricas de um retículo recíproco são as inversas do retículo cristalino. Consideremos uma cela unitária com parâmetros relativamente grandes (a, b, c), como o parâmetros de cela unitária de cristais de proteínas. A cela recíproca (a *, b *, c * ) é pequena (propriedade recíproca). a z c c * a * b * b y x

21 Espaço Recíproco Agora temos uma cela unitária direta relativamente pequena (a,b,c) a cela recíproca é grande (a *, b *, c * ). c * z c a b * a * b y x

22 Espaço Recíproco O espaço recíproco é um artefato matemático criado para auxiliar na interpretação do processo de difração de raios X. O espaço recíproco, determinado pelos eixos recíprocos a *, b *, c * e ângulos α *, β * e γ* está relacionado com o espaço direto, representado pelos eixos a, b, c e ângulos α, β e γ. A dimensão do espaço recíproco é o inverso do comprimento, consequentemente suas unidades são inversas das unidades de comprimento(m -1, cm -1, Å -1 e outras). As equações abaixo relacionam os eixos diretos com os recíprocos. a * = bc sen α V b * = ac sen β V c * = ab sen γ V V = 1/V * = abc(1 cos 2 α - cos 2 β - cos 2 γ + 2 cos α.cos β.cos γ ) 1/2 V * = 1/V = abc(1 cos 2 α * - cos 2 β * - cos 2 γ * + 2 cos α *.cos β *.cos γ * ) 1/2

23 Espaço Recíproco Os ângulos α *, β *, γ* e α, β, γ são dados pelas seguintes equações. cos α * = cos β cos γ - cos α sen β sen γ cos α= cos β * cos γ * - cos α * sen β * sen γ * cos β * = cos α cos γ - cos β sen α sen γ cos β * = cos α * cos γ * - cos β * sen α * sen γ * cos γ * = cos α cos β - cos γ sen α sen β cos γ * = cos α * cos β * - cos γ * sen α * sen β *

24 Esfera de Ewald Podemos interpretar o fenômeno da difração de raios X por um cristal considerando-se uma esfera centrada no cristal, de raio 1/λ, como mostra a figura, essa esfera é chamada esfera de Ewald. P P Feixe difratado Retículo recíproco Feixe de raios X C Cristal S (vetor do espaço recíproco) O Feixe direto 1/λ Esfera de Ewald

25 Esfera de Ewald Toda vez que um ponto do retículo recíproco cruza a esfera de Ewald, temos a produção de um ponto de difração. Na figura abaixo um ponto do retículo recíproco é representado por intesecção das linhas. P P Feixe difratado Retículo recíproco Feixe de raios X C Cristal S (vetor do espaço recíproco) O Feixe direto 1/λ Esfera de Ewald

26 Esfera de Ewald O ponto P produz um ponto de difração, ao girarmos o cristal giramos o retículo recíproco, trazendo novos pontos em condição de difração, como o ponto P. P Feixe difratado P Retículo recíproco Feixe de raios X C Cristal S (vetor do espaço recíproco) O Feixe direto 1/λ Esfera de Ewald

27 Esfera de Ewald O resultado líquido de girarmos o cristal é que podemos registra diversos pontos de difração. Normalmente, em coleta de dados, que usa a geometria da câmara de oscilação, este recurso é usado para obtenção de diversos pontos por cada imagem medida. Feixe de raios X C P P Cristal Feixe difratado Retículo recíproco S (vetor do espaço recíproco) O Feixe direto 1/λ Esfera de Ewald

28 Esfera de Ewald O módulo de vetor de espalhamento é d (espaçamento interplanar), a partir da análise da figura podemos determinar a relação entre o ângulo, d e o comprimento de onda (λ), como segue. P P Feixe difratado Retículo recíproco Feixe de raios X C Cristal S (vetor do espaço recíproco) O Feixe direto 1/λ Esfera de Ewald

29 Esfera de Ewald Considere o triângulo APO, pela geometria da figura temos que o ângulo PÂO é, assim temos: Feixe difratado sen = S 2/λ P P Retículo recíproco Feixe de raios X A C Cristal S (vetor do espaço recíproco) O Feixe direto 1/λ Esfera de Ewald

30 Esfera de Ewald P é um ponto do espaço recíproco, assim seu comprimento é 1/d hkl, onde hkl são os índices dos planos relacionados com P. Assim temos: sen = S 2/λ = 1/d hkl 2/λ P P Feixe difratado Retículo recíproco Feixe de raios X A C Cristal S (vetor do espaço recíproco) O Feixe direto 1/λ Esfera de Ewald

31 Esfera de Ewald Ou seja: 2.d sen = λ Feixe difratado P P Retículo recíproco Feixe de raios X A C Cristal S (vetor do espaço recíproco) O Feixe direto 1/λ Esfera de Ewald

32 Esfera de Ewald Experimentalmente observamos que os pontos do retículo recíproco apresentam volume, ou seja, eles ficam em condição de difração um certo tempo, durante a rotação do retículo recíproco. Isto deve-se a fatores como a mosaicidade do cristal, ou seja, há uma leve desordem, o que não traz todas as celas unitárias em condição de difração, para um dado ponto do retículo, ao mesmo tempo. Feixe de Raios X Esfera de Ewald Retículo recíproco

33 Esfera de Ewald Podemos pensar no ponto do retículo recíproco como um nódulo, que durante a rotação do retículo recíproco entra em condição de difração (cruza a esfera de Ewald), fica um certo tempo nesta situação, durante a rotação e depois sai de condição de difração. Na animação ao lado temos um nódulo do retículo recíproco que entra em condição de difração, fica um certa tempo, e depois cessa a difração. O detector indica o registro da intensidade difratada por meio da coloração azul. Fonte:

34 Esfera de Ewald A câmara de oscilação, ou rotação, é o principal instrumento usado para o registro do padrão de difração de raios X de cristais de macromoléculas biológicas. O diagrama esquemático abaixo ilustra as principais características da câmara de oscilação. Retículo recíproco Fonte de raios X Cristal Cabeça goniométrica Placa de imagem Padrão registrado na placa de imagem

35 Esfera Limite Ao girarmos o cristal, e consequentemente o retículo recíproco, podemos varrer uma ampla região do espaço recíproco. O número total de pontos do retículo recíproco, que podem cruzar a esfera de Ewald, pode ser determinado a partir da esfera limite. Girar o retículo recíproco é equivalente a girarmos a esfera de Ewald, que gera então uma esfera limite de raio 2/λ. Feixe de Raios X Esfera de Ewald 1/λ Retículo recíproco /λ Esfera limite

36 Esfera Limite Os pontos do retículo reciproco dentro do volume da esfera limite podem ser trazidos em condição de difração. A determinação do número total de pontos que podem gerar padrões de difração de raios X é determinado dividindo-se o volume da esfera limite pelo volume da cela unitária recíproca, considerandose que a cela unitária é primitiva. Feixe de Raios X 1/λ Retículo recíproco /λ Esfera de Ewald Esfera limite

37 Esfera Limite Seja N o número de reflexões potencialmente gerados para uma esfera limite de raios 2/λ. Retículo recíproco N = V esfera limite V * N = 4/3 π (2/λ) 3 V * Feixe de Raios X /λ Sabemos que: V * =1/V cell, onde V cell é o volume da cela unitária, assim temos: Esfera de Ewald 2/λ N = 32 π V cell 3 λ 3 Esfera limite

38 Número de Reflexões Consideremos uma cela unitária ortorrômbica de dimensões 40 x 60 x 80 Å, que difrata a 2,5 Å de resolução, o volume da cela unitária é V cell = = Å 3. Usando-se a equação do número de reflexões temos: N = 32 π V 3 λ 3 = 32 π / 3.(2,5) 3 = reflexões Felizmente, por razões de simetria não é necessário coletar todas essas reflexões, 1/8 dos dados de difração de raios X, ou próximo disso normalmente é suficiente para o grupo espacial ortorrômbico primitivo ou aproximadamente reflexões.

39 Referências Drenth, J. (1994). Principles of Protein X-ray Crystallography. New York: Springer- Verlag. Rhodes, G. (2000). Crystallography Made Crystal Clear. 2 nd ed.san Diego: Academic Press. Stout, G. H. & Jensen, L. H. (1989). X-Ray Structure Determination. A Practical Guide. 2nd ed. New York: John Wiley & Sons.

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Cálculo da Densidade Eletrônica Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Introdução Cálculo da densidade eletrônica Densidade eletrônica de um cristal unidimensional Densidade

Leia mais

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Ondas e Lei de Bragg Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Fenômenos Ondulatórios Pulso de Ondas Ondas Onda Eletromagnética Radiação Eletromagnética Interferência Representação

Leia mais

Biologia Estrutural. Solução do Problema da Fase. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Solução do Problema da Fase. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Solução do Problema da Fase Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Introdução Problema da fase Função de Patterson Aplicação da função de Patterson Método da Substituição

Leia mais

ESTRUTURA DOS SÓLIDOS

ESTRUTURA DOS SÓLIDOS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais ESTRUTURA DOS SÓLIDOS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia 2º semestre de

Leia mais

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PMT 3100 - Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014 ESTRUTURA DOS SÓLIDOS

Leia mais

Capítulo 1 - Cristais

Capítulo 1 - Cristais 1. Cristais 1.1. Introdução O materiais no estado sólido podem apresentar estruturas cristalinas ou amorfas. Na estrutura cristalina os átomo (moléculas) apresentam um ordenamento periódico nas posições

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

estrutura atômica cristalino

estrutura atômica cristalino Aula 0b estrutura atômica cristalina ZEA 1038 Ciência e Tecnologia dos Materiais Prof. João Adriano Rossignolo Profa. Eliria M.J.A. Pallone estrutura atômica cristalino 1 CRISTAL ESTRUTURA CRISTALINA Muitos

Leia mais

Introdução aos Materiais A Estrutura em Sólidos Cristalinos Metais DEMEC TM229 Prof. Adriano Scheid

Introdução aos Materiais A Estrutura em Sólidos Cristalinos Metais DEMEC TM229 Prof. Adriano Scheid Introdução aos Materiais A Estrutura em Sólidos Cristalinos Metais DEMEC TM229 Prof. Adriano Scheid Introdução: Diversas propriedades dos sólidos estão relacionadas à Estrutura Cristalina. Não somente

Leia mais

ORDEM. Periocidade. SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico de átomos, moléculas ou iões, formando uma estrutura cristalina regular

ORDEM. Periocidade. SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico de átomos, moléculas ou iões, formando uma estrutura cristalina regular Capítulo I ESTRUTURA CRISTALINA DE SÓLIDOS ORDEM curto alcance médio alcance longo alcance Periocidade unidimensional bidimensional tridimensional SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

O Elétron como Onda. Difração de Bragg

O Elétron como Onda. Difração de Bragg O Elétron como Onda Em 1924, de Broglie sugeriu a hipótese de que os elétrons poderiam apresentar propriedades ondulatórias além das suas propriedades corpusculares já bem conhecidas. Esta hipótese se

Leia mais

Mineralogia Óptica. T3- As Indicatrizes dos Minerais PEM-6020

Mineralogia Óptica. T3- As Indicatrizes dos Minerais PEM-6020 Mineralogia Óptica T3- As dos Minerais PEM-6020-2010- Definições Indicatriz: é uma figura geométrica tridimensional que mostra os valores dos índices de refração nas diferentes direções do interior de

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Célula Unitária e 14 Retículos de Bravais

Célula Unitária e 14 Retículos de Bravais Universidade de São Paulo Instituto de Química de São Carlos Departamento de Química e Física Molecular Célula Unitária e 14 Retículos de Bravais SQM 409 - Cristalografia Prof. Dr. Maria Teresa do Prado

Leia mais

04 - DIFRAÇÃO DE RAIO X E DETERMINAÇÃO DA ESTRUTURA CRISTALINA

04 - DIFRAÇÃO DE RAIO X E DETERMINAÇÃO DA ESTRUTURA CRISTALINA 04 - DIFRAÇÃO DE RAIO X E DETERMINAÇÃO DA ESTRUTURA CRISTALINA PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro do Capítulo: Por que utilizar Raios X para determinar

Leia mais

Índices de Miller - Planos

Índices de Miller - Planos Os índices de Miller (hkl) definem a orientação de um plano de átomos na célula unitária. Os índices de Miller são definidos pela intersecção desse plano com os eixos do sistema de coordenadas da célula.

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 9 (entregar em 11-03-011)

Leia mais

TÓPICOS EM CARACTERIZAÇÃO DE MATERIAIS DIFRAÇÃO DE RAIOS X

TÓPICOS EM CARACTERIZAÇÃO DE MATERIAIS DIFRAÇÃO DE RAIOS X TÓPICOS EM CARACTERIZAÇÃO DE MATERIAIS DIFRAÇÃO DE RAIOS X Histórico Raios X: São emissões eletromagnéticas; Busca (desde 1887): Heinrich Rudolf Hertz : ele produziu as primeiras ondas eletromagnéticas

Leia mais

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010 1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,

Leia mais

Estrutura física da matéria Difração de elétrons

Estrutura física da matéria Difração de elétrons O que você pode aprender sobre este assunto... - Reflexão de Bragg - Método de Debye-Scherer - Planos de rede - Estrutura do grafite - Ondas de matéria - Equação de De Broglie Princípio: Elétrons acelerados

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - ula 2 1. Vetores. 2. Distâncias. 3. Módulo de um vetor. Roteiro 1 Vetores Nesta seção lembraremos brevemente os vetores e suas operações básicas. Definição de vetor. Vetor determinado

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03 Parte II

ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03 Parte II UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE MATERIAIS - PGCEM ESTRUTURA DOS SÓLIDOS

Leia mais

G1 de Álgebra Linear I Gabarito

G1 de Álgebra Linear I Gabarito G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (

Leia mais

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2).

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2). Lista II: Retas, Planos e Distâncias Professora: Ivanete Zuchi Siple. Equação geral do plano que contém o ponto A = (,, ) e é paralelo aos vetores u = (,, ) e v = (,, ).. Achar a equação do plano que passa

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Richard J. D. Tilley. tradução Fábio R. D. de Andrade. cristais e estruturas cristalinas

Richard J. D. Tilley. tradução Fábio R. D. de Andrade. cristais e estruturas cristalinas Richard J. D. Tilley tradução Fábio R. D. de Andrade Cristalografia cristais e estruturas cristalinas Crystal and crystal structures Copyright original 2006 John Wiley & Sons Ltd, Sussex, Inglaterra Copyright

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

1 Segmentos orientados e vetores, adição e multiplicação

1 Segmentos orientados e vetores, adição e multiplicação MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Fotografia de vários cristais de fluorita CaF 2 3-0

Fotografia de vários cristais de fluorita CaF 2 3-0 Arranjos Atômicos Fotografia de vários cristais de fluorita CaF 2 3-0 Conceito de Cristalinidade Cristalinidade corresponde a forma de organização da estrutura em um modelo ordenado e repetitivo de longo

Leia mais

Difração de raios-x ESTRUTURA!! Outra técnica me dá informação sobre. Não confundir com fluorescência

Difração de raios-x ESTRUTURA!! Outra técnica me dá informação sobre. Não confundir com fluorescência Difração de raios-x Outra técnica me dá informação sobre ESTRUTURA!! Não confundir com fluorescência Pra que serve, e como é. l l l l Técnica para se determinar estrutura de sólidos cristalinos. Conhecer

Leia mais

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza Geometria Analítica Superfícies Prof Marcelo Maraschin de Souza Superfícies Quadráticas A equação geral do 2º grau nas três variáveis x,y e z ax 2 + by 2 + cz 2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Bacharelado Engenharia Civil. Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz

Bacharelado Engenharia Civil. Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz Bacharelado Engenharia Civil Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz Cálculo Vetorial Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para

Leia mais

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Biologia Estrutural. Simetria. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br. 2006 Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Simetria. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br. 2006 Dr. Walter F. de Azevedo Jr. Biologia Estrutural Simetria Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Características dos Cristais Características dos Cristais de Proteínas Elementos de Simetria Rede, Retículo e Empacotamento

Leia mais

TP064 - CIÊNCIA DOS MATERIAIS PARA EP. FABIANO OSCAR DROZDA

TP064 - CIÊNCIA DOS MATERIAIS PARA EP. FABIANO OSCAR DROZDA TP064 - CIÊNCIA DOS MATERIAIS PARA EP FABIANO OSCAR DROZDA fabiano.drozda@ufpr.br 1 AULA 03 ESTRUTURA DOS SÓLIDOS CRISTALINOS 2 BREVE REVISÃO AULA PASSADA LIGAÇÕES QUÍMICAS Ligações primárias ou fortes

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Questão 1 Questão Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em 10 setores iguais numerados, como mostra a figura. A figura mostra um sistema rotativo de irrigação sobre

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Curso de Engenharia Civil Física Geral e Experimental I Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para representar

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial

Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial 9 de abril de 2017 1. Dados os pontos R = (1, 2) e S = ( 2, 2) (a) Encontrar as coordenadas do vetor que tem origem no ponto R e o extremos

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados. 14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

Introdução a Engenharia e Ciência dos Materiais

Introdução a Engenharia e Ciência dos Materiais Introdução a Engenharia e Ciência dos Materiais Estrutura Cristalina Prof. Vera L Arantes 2014 25/3/2014 ESTRUTURA CRISTALINA 2 ARRANJO ATÔMICO Por que estudar? As propriedades de alguns materiais estão

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG

TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG Pretende-se realizar a experiência clássica de Thomas Young e utilizar o padrão de interferência de duas fontes pontuais

Leia mais

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA 03/01/2013 - GGM - UFF Dirce Uesu Pesco CÔNICAS Equação geral do segundo grau a duas variáveis x e y onde A, B e C não são simultaneamente

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Vetores. Grandeza Escalar precisa somente de um número e sua unidade.

Vetores. Grandeza Escalar precisa somente de um número e sua unidade. Vetores Grandeza Escalar precisa somente de um número e sua unidade. Grandeza Vetorial precisa de módulo, direção e sentido para ficar perfeitamente representado. VETOR É o ente matemático que nos ajuda

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2 VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

1. 3 2. 4 3. 4 4. 5 5. 6 6. 8 7. 9 8. 12 9. 16 10. 17 11. O

1. 3 2. 4 3. 4 4. 5 5. 6 6. 8 7. 9 8. 12 9. 16 10. 17 11. O 1 DIFRAÇÃO DE RAIOS X Prof. Dr. Walter Filgueira de Azevedo Jr. Laboratório de Sistemas Biomoleculares. Departamento de Física-Instituto de Biociências, Letras e Ciências Exatas-UNESP, São José do Rio

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

Geometria Analítica. Cônicas. Prof. Vilma Karsburg

Geometria Analítica. Cônicas. Prof. Vilma Karsburg Geometria Analítica Cônicas Prof. Vilma Karsburg Cônicas Sejam duas retas e e g concorrentes em O e não perpendiculares. Considere e fixa e g girar 360 em torno de e, mantendo constante o ângulo entre

Leia mais

MAP2110 Matemática e Modelagem

MAP2110 Matemática e Modelagem 1 Reta e Plano MAP2110 Matemática e Modelagem Folha de Estudos 4 1 o semestre de 2010 Prof. Claudio H. Asano 1.1 Encontre as equações paramétricas e simétricas da reta que passa pelos pontos A e B. Em

Leia mais

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000? PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos

Leia mais

Áreas de atuação da Biomecânica. Métodos de análise : quantitativo e qualitativo

Áreas de atuação da Biomecânica. Métodos de análise : quantitativo e qualitativo Aula 3: cinemática Relembrando... Áreas de atuação da Biomecânica Métodos de análise : quantitativo e qualitativo Modelos Biomecânicos Aula 3: cinemática Cinemática Análise 2D/ 3D Vetor Operações vetoriais

Leia mais

Fundamentos físicos da Sismoestratigrafia

Fundamentos físicos da Sismoestratigrafia Fundamentos físicos da Sismoestratigrafia Ondas em meios sólidos elásticos Uma onda é uma perturbação da matéria que se propaga em uma direção, ou seja, as partículas em um determinado ponto de um meio

Leia mais

INTERFERÊNCIA E DIFRAÇÃO DA LUZ

INTERFERÊNCIA E DIFRAÇÃO DA LUZ INTERFERÊNCIA E DIFRAÇÃO DA LUZ INTRODUÇÃO A luz é uma onda eletromagnética; portanto é constituída por campos elétrico e magnético que oscilam, periodicamente, no tempo e no espaço, perpendiculares entre

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais