Índices de Miller - Planos
|
|
|
- Isabella Gesser Peres
- 9 Há anos
- Visualizações:
Transcrição
1 Os índices de Miller (hkl) definem a orientação de um plano de átomos na célula unitária. Os índices de Miller são definidos pela intersecção desse plano com os eixos do sistema de coordenadas da célula. Exemplo: Para uma célula cúbica de parâmetro de rede a, o plano que intercepta os três eixos nos vértices da célula (x=y=z=a) terá os índices (111).
2 Se um plano for paralelo a um dos eixos, nunca o poderá interceptar, pelo que se conta como infinito ( ) e o correspondente índice de Miller será zero (0). Para um plano que intersecte os eixos x e y mas seja paralelo a z, o índice de Miller respectivo será (110).
3 Se um plano intersectar os eixos numa fracção do parâmetro de rede, o correspondente índice de Miller será o seu inverso. Exemplo: Para um plano que intersecte o eixo x em 1/2a, o eixo y em a e seja paralelo a z, o índice de Miller correspondente será (210)
4 Os índices de Miller são sempre números inteiros. Se um plano interceptar os eixos numa fracção do parâmetro de rede, mas o seu inverso não for um número inteiro, como por exemplo 3/2 ou 4/3, há que reduzir todos os índices ao menor inteiro. Exemplo: (3/2 4/3 1) (3/2 4/3 1) x 2 = (3 8/3 2) (3 8/3 2) x 3= (986)
5 Se um plano interseptar os eixos no lado negativo os índices de Miller são contabilizados como negativos e terão um sinal menos sobre o índice negativo. Para um plano paralelo a x e que intersecte o eixo y em a e z em 1/2a, o índice de Miller respectivo será (012)
6 Se um plano passar na origem (0,0,0), deve escolher-se uma nova origem noutro vértice da célula (vértice da célula adjacente). Neste caso o plano intersectará os eixos em 1 ou -1.
7 Regras para determinar os índices de Miller de um plano: Não se tomam planos que passem na origem, pelo que há que escolher uma origem fora do plano em causa. Toma-se as posições dos pontos em que o plano intersecta os eixos x, y, z. Determina-se o inverso. Reduz-se tudo ao mesmo denominador. Coloca-se entre parentesis curvos, colocando barras sobre os índices negativos. (hkl)
8 Em sistemas não cúbicos, os índices são determinados do mesmo modo, independentemente dos ângulos dos eixos e dos parâmetros de rede a, b, c.
9 No sistema hexagonal introduz-se mais um eixo no plano da base devido à simetria do sistema hexagonal. a 3 =-(a 1 +a 2 ) Introduz-se um quarto índice: i=-(h+k) (hkil)
10 Índices de Direcções Regras para determinar os índices de uma direcção: As direcções passam na origem. Toma-se o comprimento do vector em termos de a, b, c. Reduz-se aos maiores números inteiros. Coloca-se entre parentesis rectos, colocando barras sobre os índices negativos. [hkl]
11 Índices de Miller Devido à natureza periódica das estruturas cristalinas, os planos de átomos podem ser identificados em diferentes direcções na rede cristalina. Estes planos contêm diferentes arranjos dos átomos, o que se traduz por diferentes densidades planares. Cada estrutura cristalina apresenta diferentes planos em diferentes direcções, característicos dessa estrutura. A descrição desses planos característicos, pode ser usada como meio alternativo de especificar uma dada estrutura.
12 Determinação da estrutura A 2D, podemos identificar famílias de planos com diferentes direcções. Cada família de planos está separada por um espaçamento d específico.
13 Determinação da estrutura Para uma dada estrutura, a especificação do espaçamento d permite identificar um plano específico, pelo que cada estrutura tem uma colecção característica de espaçamentos d. A medição dos valores de d de uma estrutura desconhecida, permite-nos determinar a sua estrutura. Este método está na base da determinação de estruturas por Difracção de Raios X.
14 Difracção de Raios X - Cristal
15 Difracção de Raios X - Vidro
estrutura atômica cristalino
Aula 0b estrutura atômica cristalina ZEA 1038 Ciência e Tecnologia dos Materiais Prof. João Adriano Rossignolo Profa. Eliria M.J.A. Pallone estrutura atômica cristalino 1 CRISTAL ESTRUTURA CRISTALINA Muitos
ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS
ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS Prof. Dr.: Anael Krelling 1 CONCEITOS FUNDAMENTAIS Materiais sólidos podem ser classificados de acordo com a regularidade com que os seus átomos ou íons
UNIVERSIDADE FEDERAL DO ABC BC-1105: MATERIAIS E SUAS PROPRIEDADES
UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES Estrutura Cristalina - direções e planos cristalográficos - alotropia
Física da Matéria Condensada
Física da Matéria Condensada II Redes e estruturas cristalinas 1. Indique a rede subjacente aos desenhos das figuras 1 e 2. Encontre três conjuntos de vectores fundamentais primitivos para a fig. 1 e dois
ESTRUTURA DOS SÓLIDOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais ESTRUTURA DOS SÓLIDOS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia 2º semestre de
ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03 Parte II
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE MATERIAIS - PGCEM ESTRUTURA DOS SÓLIDOS
SISTEMA HEXAGONAL SIMPLES
SISTEMA HEXAGONAL SIMPLES Os metais não cristalizam no sistema hexagonal simples porque o fator de empacotamento é muito baixo Entretanto, cristais com mais de um tipo de átomo cristalizam neste sistema
Introdução a Engenharia e Ciência dos Materiais
Introdução a Engenharia e Ciência dos Materiais Estrutura Cristalina Prof. Vera L Arantes 2014 25/3/2014 ESTRUTURA CRISTALINA 2 ARRANJO ATÔMICO Por que estudar? As propriedades de alguns materiais estão
ORDEM. Periocidade. SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico de átomos, moléculas ou iões, formando uma estrutura cristalina regular
Capítulo I ESTRUTURA CRISTALINA DE SÓLIDOS ORDEM curto alcance médio alcance longo alcance Periocidade unidimensional bidimensional tridimensional SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico
FÍSICA DA MATÉRIA CONDENSADA 2009/10 Folha 1 I Redes e Estruturas Cristalinas
FÍSICA DA MATÉRIA CONDENSADA 2009/10 Folha 1 I Redes e Estruturas Cristalinas 1 - Indicar a rede subjacente aos desenhos das figuras la) e lb). Encontrar três conjuntos de vectores fundamentais primitivos
Capítulo 6 Estrutura dos materiais
Capítulo Estrutura dos materiais. O Molibdénio (Mo) apresenta estrutura cristalina cúbica de corpo centrado (CCC) sendo o seu raio atómico 0, nm. O peso atómico do Mo é 95,94 g/mol e a sua densidade é
PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PMT 3100 - Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014 ESTRUTURA DOS SÓLIDOS
TP064 - CIÊNCIA DOS MATERIAIS PARA EP. FABIANO OSCAR DROZDA
TP064 - CIÊNCIA DOS MATERIAIS PARA EP FABIANO OSCAR DROZDA [email protected] 1 AULA 03 ESTRUTURA DOS SÓLIDOS CRISTALINOS 2 BREVE REVISÃO AULA PASSADA LIGAÇÕES QUÍMICAS Ligações primárias ou fortes
Capítulo 5 Estrutura dos materiais
Capítulo 5 Estrutura dos materiais *. O Molibdénio (Mo) apresenta estrutura cristalina cúbica de corpo centrado (CCC) sendo o seu raio atómico e o seu peso atómico 0,nm e 95,94g/mol, respectivamente. Número
Capítulo 5 Estrutura dos materiais
Capítulo 5 Estrutura dos materiais *. O vanádio (V) apresenta estrutura cúbica de corpo centrado (CCC), sendo o parâmetro da rede 0,04nm e o peso atómico 50,94g/mol. O número de Avogadro é N 0 0 A =, /
Física do Estado Sólido
Física do Estado Sólido 2003-2004 Folha 3 - Estruturas cristalinas. Indique a rede subjacente aos desenhos da fig.. Encontre três conjuntos distintos de vectores fundamentais primitivos para cada um dos
Capítulo 1 - Cristais
1. Cristais 1.1. Introdução O materiais no estado sólido podem apresentar estruturas cristalinas ou amorfas. Na estrutura cristalina os átomo (moléculas) apresentam um ordenamento periódico nas posições
Estrutura Cristalina dos Sólidos (Arranjos Atômicos)
Estrutura Cristalina dos Sólidos (Arranjos Atômicos) INTRODUÇÃO As propriedades dos materiais dependem dos arranjos dos seus átomos. Esses arranjos podem ser classificados em: Estruturas moleculares: agrupamento
4.4 Secções planas de superfícies e sólidos
4.4 Secções planas de superfícies e sólidos Geometria Descritiva 2006/2007 e sólidos Quando um plano intersecta uma superfície geométrica determina sobre ela uma linha plana que pertence à superfície A
Introdução aos Materiais A Estrutura em Sólidos Cristalinos Metais DEMEC TM229 Prof. Adriano Scheid
Introdução aos Materiais A Estrutura em Sólidos Cristalinos Metais DEMEC TM229 Prof. Adriano Scheid Introdução: Diversas propriedades dos sólidos estão relacionadas à Estrutura Cristalina. Não somente
ESTRUTURA CRISTALINA 1
ESTRUTURA CRISTALINA ARRANJAMENTO ATÔMICO Por que estudar? As propriedades de alguns materiais estão diretamente associadas à sua estrutura cristalina (ex: magnésio e berílio que têm a mesma estrutura
2 Características e propriedades de um sistema cúbico
Características e propriedades de um sistema cúbico 17 2 Características e propriedades de um sistema cúbico Nesse capítulo serão apresentadas as características e propriedades de um sistema cúbico necessárias
Ciência dos Materiais Lista de Exercícios II - Estrutura dos Sólidos Cristalinos
1. Qual a diferença entre estrutura atômica e estrutura cristalina? 2. Considere os sistemas cristalinos (a) Cúbico Simples (CS), (b) Cúbico de Faces Centradas (CFC) e (c) Cúbico de Corpo Centrado (CCC).
Estruturas cristalinas - Reticulado cristalino
Página 1 de 9 MENU PRINCIPAL CONTEUDO TÉCNICO DOWNLOAD CONTATO ENTRETENIMENTO LOGIN search.... Home PAINEL Ciência dos Materiais Estruturas cristalinas - Reticulado cristalino Estruturas cristalinas -
ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS
ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS Prof. M.Sc.: Anael Krelling 1 CONCEITOS FUNDAMENTAIS Materiais sólidos podem ser classificados de acordo com a regularidade com que os seus átomos ou íons
Rede Recíproca. CF086 - Introdução a Física do Estado Sólido 1
Rede Recíproca CF086 - Introdução a Física do Estado Sólido 1 Recordando... Redes de Bravais: conjunto de pontos do espaço que respeitam duas definições 1. Conjunto (infinito) de pontos do espaço com uma
Física dos Materiais FMT0502 ( )
Física dos Materiais FMT0502 (4300502) 1º Semestre de 2010 Instituto de Física Universidade de São Paulo Professor: Antonio Dominguesdos Santos E-mail: [email protected] Fone: 3091.6886 http://plato.if.usp.br/~fmt0502n/
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais. Unidade 4 ESTRUTURA DOS SÓLIDOS CRISTALINOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais Unidade 4 ESTRUTURA DOS SÓLIDOS CRISTALINOS PMT 3100 - Fundamentos de Ciência e Engenharia dos Materiais
UNIDADE 4 Estrutura dos Sólidos Cristalinos
UNIDADE 4 Estrutura dos Sólidos Cristalinos 1. Calcular a densidade teórica (em g/cm 3 ) dos seguintes metais: a) Fe- b) Al DADOS Estrutura Cristalina Raio Atômico (nm) Massa Molar (g/mol) Fe- CCC 0,1241
O espectro eletromagnético
Difração de Raios X O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Raios Absorção, um fóton de energia é absorvido promovendo
Descoberta dos Raios-X
Descoberta dos Raios-X 1895 - Wilhelm Conrad Roentgen Experimentos com tubo de raios catódicos brilho em um cristal fluorescente perto do tubo mesmo mantendo o tubo coberto Raios invisíveis, natureza desconhecida:
REGRAS GERAIS DE GEOMETRIA DESCRITIVAII 2010
1 Isabel coelho 20. SECÇÕES PLANAS 20.1 Secções planas em poliedros 20.1.2 Secções planas produzidas por planos paralelos aos planos das bases A figura da secção será paralela à figura da base. Identificar
UNIDADE 4 - ESTRUTURA CRISTALINA
UNIDADE 4 - ESTRUTURA CRISTALINA 4.1. INTRODUÇÃO Em geral, todos os metais, grande parte dos cerâmicos e certos polímeros cristalizam-se quando se solidificam. Os átomos se arranjam em uma estrutura tridimensional
Estrutura de Sólidos Cristalinos. Profa. Dra Daniela Becker
Estrutura de Sólidos Cristalinos Profa. Dra Daniela Becker Bibliografia Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. LTC, 5ed., cap 3, 2002. Shackelford, J.F. Ciências dos Materiais,
Ciência de Materiais. LEGI. Ano lectivo ESTRUTURA CRISTALINA
1. I) Desenhe em cubos unitários os planos com os seguintes índices de Miller: a) ( 1 0 1) b) ( 0 3 1) c) ( 1 2 3) II) Desenhe em cubos unitários as direcções com os seguintes índices: a) [ 1 0 1] b) [
LISTA DE EXERCÍCIOS 6 1 (UNIDADE III INTRODUÇÃO À CIÊNCIA DOS MATERIAIS)
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CENTRO DE ENGENHARIAS DEPARTAMENTO DE ENGENHARIA E TECNOLOGIA DISCIPLINA: QUÍMICA APLICADA À ENGENHARIA PROFESSOR: FREDERICO RIBEIRO DO CARMO Estrutura cristalina
Sistema de coordenadas
Sistema de coordenadas Sistema de coordenadas Coordenadas cartesianas Coordenadas polares Transformação sistema de coordenadas Coordenadas relativas Sistema de coordenadas cartesianas Sistema de coordenadas
Estrutura Cristalina
Estrutura Cristalina Para todos os tipos de sólidos (metálicos, iónicos, covalentes ou moleculares), a energia de ligação é máxima para uma distância de equílibrio específica r 0. Um sistema de átomos
Capítulo 3 - Geometria Analítica
1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico
Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores
Tarefa nº_. MATEMÁTICA Geometria Nome: 11º Ano Data / / 1. Num referencial o.n. Oxyz, qual das seguintes condições define uma recta paralela ao eixo Oz? (A) x = y = 1 (C) z = 1 (B) (x, y, z) = (1,,0) +
Fotografia de vários cristais de fluorita CaF 2 3-0
Arranjos Atômicos Fotografia de vários cristais de fluorita CaF 2 3-0 Conceito de Cristalinidade Cristalinidade corresponde a forma de organização da estrutura em um modelo ordenado e repetitivo de longo
Vectores e Geometria Analítica
Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário
A4 Estrutura cristalina perfeição
A4 Estrutura cristalina perfeição TEM Muitos dos materiais aplicados em engenharia têm estrutura cristalina: os átomos do material estão dispostos de modo regular e repetitivo Estrutura cristalina A célula
30 Exercícios Resolvidos CAPÍTULO 3 ESTRUTURA CRISTALINA
IFRS - Mestrado em Tecnologia e Engenharia de Materiais DISCIPLINA: Ciência dos Materiais PROFESSOR: Juliano Toniollo ALUNO: PAULO CESAR FRITZEN 30 Exercícios Resolvidos CAPÍTULO 3 ESTRUTURA CRISTALINA
2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019
Função do 2 o grau: Equação e Inequação 2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de graduação da ESALQ Patricia Araripe e Pollyane Vieira 15 de fevereiro de 2019 Definição (1) (Função) Dados
EXAME DE GEOMETRIA DESCRITIVA A - Código 708 / ª Fase EXERCÍCIO 1
EXERCÍCIO 1 Determine as projecções do ponto I, resultante da intersecção da recta r com o plano r. - a recta r contém o ponto T, do eixo x, com zero de abcissa; - a projecção horizontal da recta r define
Física III-A /2 Lista 7: Leis de Ampère e Biot-Savart
Física III-A - 2018/2 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA Definição: Toda função do tipo: f(x) = ax + b (x ϵ IR) São funções
Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart
Física III-A - 2018/1 Lista 7: Leis de Ampère e Biot-Savart Prof. Marcos Menezes 1. Considere mais uma vez o modelo clássico para o átomo de Hidrogênio discutido anteriormente. Supondo que podemos considerar
III- AS INDICATRIZES DOS MINERAIS
Mineralogia Óptica, Nardy, A.J.R; Machado, F.B, cap.iii, pag.21 III- AS INDICATRIZES DOS MINERAIS Minerais isotrópicos e anisotrópicos uniaxiais Definição: Indicatriz é uma figura geométrica tridimensional
Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:
Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,
Introdução à Física do Estado Sólido
Introdução à Física do Estado Sólido Escritório: Edifício Alessandro Volta, Bloco C, sala 210. Fone: 3091-7041 (celular:98346-3882) e-mail: [email protected] IFUSP 2º Semestre/2018 Introdução à Física
INTRODUÇÃO À PROJECÇÃO ESTEREOGRÁFICA. Obras Geotécnicas MEC IST 2009
Obras Geotécnicas MEC IST 2009 DEFINIÇÃO A PROJECÇÃO ESTEREOGRÁFICA (A) É A REPRESENTAÇÃO DE PONTOS (A 1 ) E LINHAS EXISTENTES NUMA SUPERFÍCIE ESFÉRICA DE CENTRO O, UTILIZANDO UM PONTO P DA SUA SUPERFÍCIE,
Geometria e Natureza. Rui Pacheco - MPT2013-UBI
Geometria e Natureza Rui Pacheco - MPT2013-UBI Geo (Terra) + Metria (Medida) Ramo da Matemática que estuda a forma, medida, estrutura e posição relativa de figuras no espaço Geometria e Natureza 1) Como
Difração de raios X. Ciência dos Materiais
Difração de raios X Ciência dos Materiais A descoberta dos raios X Roentgen 1895 Mão da Sra. Roentgen Mão do Von Kolliker 1ª radiografia da história Tubo de Crookes 3-99 DIFRAÇÃO DE RAIOS X Difração de
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática 10º ANO Novembro 004 Ficha de Trabalho nº 4 - Conjuntos de pontos e condições Distância entre dois pontos Mediatriz de um segmento de recta Circunferência
FICHA DE TRABALHO 2 - RESOLUÇÃO
Secção de Álgebra e Análise, Departamento de Matemática, Instituto Superior Técnico Análise Matemática III A - 1 o semestre de 2003/04 FICHA DE TRABALHO 2 - RESOLUÇÃO 1) Seja U R n um aberto e f : U R
Universidade Técnica de Lisboa
Universidade Técnica de Lisboa Instituto Superior Técnico Ciência de Materiais 1º Teste (09.Novembro.2011) Pergunta Cotação 1. (a) 0,50 1. (b) 0,50 1. (c) 0,50 1. (d) 0,50 1. (e) 1,00 2. (a) 0,50 2. (b)
GDC I AULA TEÓRICA 07
GDC I AULA TEÓRICA 07 Perspectiva linear de quadro plano: - Determinação de pontos de fuga de direcções de figuras planas contidas em orientações (dadas) ortogonais e oblíquas ao quadro. - O rebatimento
2 Propriedades Físicas do Nitreto de Gálio
2 Propriedades Físicas do Nitreto de Gálio Nesse capítulo serão apresentadas noções necessárias para o entendimento dos resultados discutidos nessa tese. A definição de estrutura cristalina, assim como
Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.
Cap. 23 Lei de Gauss Copyright 23-1 Fluxo Elétrico A lei de Gauss relaciona os campos elétricos nos pontos de uma superfície gaussiana (fechada) à carga total envolvida pela superfície. Superfície Gaussiana
ALGA /09 - Geometria Analítica 78. Geometria Analítica
ALGA - 00/09 - Geometria Analítica 7 Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste capítulo faz-se um revisão desses conceitos
ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03 CMA CIÊNCIA DOS MATERIAIS 2º Semestre de 2014 Prof.
Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010
1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está
Universidade de Lisboa
Universidade de Lisboa Instituto Superior Técnico Ciência de Materiais 1º Teste (14. Abril.2014) Cotações Pergunta Cotação 1. (a) 0,50 1. (b) 0,50 1. (c) 0,50 1. (d) 0,50 2. (a) 0,50 2. (b) 0,50 2. (c)
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart
Física III-A - 2019/1 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,
Aula 3 Estrutura electrónica e cristalográfica
Aula 3 Estrutura electrónica e cristalográfica Tópicos a abordar Estrutura electrónica, cristalográfica e metalo(materialo)gráfica Estrutura electrónica Estrutura cristalográfica Organização dos átomos
A Dualidade Onda-Partícula
A Dualidade Onda-Partícula O fato de que as ondas têm propriedades de partículas e viceversa se chama Dualidade Onda-Partícula. Todos os objetos (macroscópicos também!) são onda e partícula ao mesmo tempo.
GDC I AULA TEÓRICA 08
GDC I AULA TEÓRICA 08 Perspectiva linear de quadro plano: - Aplicação do teorema de Thales para a divisão de segmentos em partes iguais. - A noção de ponto de nascença de uma recta (traço no quadro) e
raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.
Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro
Difracção de electrões
Difracção de electrões Objectivos: i) Verificar que electrões com energias da ordem de -0 kev são difractados por um filme de grafite, exibindo o seu carácter ondulatório; ii) verificar a relação de de
INICIAÇÃO À PROJECÇÃO ESTEREOGRÁFICA. a) Marque os seguintes planos e respectivos pólos ( apresentando a atitude destes).
INICIAÇÃO À PROJECÇÃO ESTEREOGRÁFICA Problemas resolvidos a) Marque os seguintes planos e respectivos pólos ( apresentando a atitude destes). Plano Polo (recta perpendicular ao plano) N 20 W, 44 SW --
Lista 7: Leis de Ampère e Biot-Savart (2017/2)
Lista 7: Leis de Ampère e Biot-Savart (2017/2) Prof. Marcos Menezes 1. Considere novamente o modelo clássico para o átomo de Hidrogênio discutido nas últimas listas. Supondo que podemos considerar que
Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro.
Capítulo 1 Números Naturais Múltiplos e Divisores Se um número natural é múltiplo de outro número, este é divisor do primeiro. Números primos e números compostos Decomposição de um número em factores primos
Dinâmica do Movimento dos Corpos
2 Outras coordenadas Gil da Costa Marques 2.1 Coordenadas mais gerais 2.2 Superfícies e curvas generalizadas 2.3 Coordenadas Cartesianas 2.4 Coordenadas Cilíndricas 2.5 Coordenadas Polares 2.6 Coordenadas
CIÊNCIA DOS MATERIAIS
CIÊNCIA DOS MATERIAIS CONCEITOS FUNDAMENTAIS MATERIAL CRISTALINO: Classificação dos materiais sólidos: de acordo com a regularidade pelas qual seus átomos ou íons estão arranjados (CALLISTER, 2011); Material
10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.
Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x
CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS
CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS Profa. Renata Diniz [email protected] Departamento de Química ICE Universidade Federal de Juiz de Fora I - Difração de Raios X Radiação X Fenômeno de Difração
Canguru sem fronteiras 2007
Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos do 9 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30
Eixos Cristalográficos e Sistemas Cristalinos
Universidade de São Paulo Instituto de Química de São Carlos Departamento de Química e Física Molecular Eixos Cristalográficos e Sistemas Cristalinos SQM 409 - Cristalografia Prof. Dr. Maria Teresa do
Item 1. Item 2. (Intersecções e Paralelismo) Hipótese A
Item 1 (Intersecções e Paralelismo) Hipótese A 2. Pelos pontos que definem o plano (R, S e T), conduzir duas rectas auxiliares (h é horizontal e f é frontal); 3. Pelo ponto R da recta f, traçar a projecção
Universidade Técnica de Lisboa
Universidade Técnica de Lisboa Instituto Superior Técnico Ciência de Materiais Repescagem do 1º Teste (1.Fevereiro.2013) Cotações Pergunta Cotação 1. (a) 0,50 1. (b) 0,50 1. (c) 0,50 1. (d) 0,50 1. (e)
ESTRUTURA DOS SÓLIDOS CRISTALINOS. Mestranda: Marindia Decol
ESTRUTURA DOS SÓLIDOS CRISTALINOS Mestranda: Marindia Decol Bibliografia Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. LTC, 5ed., cap 3, 2002. Shackelford, J.F. Ciências dos Materiais,
Cristalografia para não-cristalógrafos
Cristalografia para não-cristalógrafos Interpretando a Estrutura Cristalina dos Materiais MC-7 01, 02 e 03 de Agosto de 2018 (14:00-16:00h) Leonardo H. R. Dos Santos Departamento de Química UFMG [email protected]
TRANSFORMAÇÕES GEOMÉTRICAS
TRANSFORMAÇÕES GEOMÉTRICAS É essencial retomar a intenção de dar às transformações geométricas o seu papel importante no ensino da geometria, num tratamento que tenha por ponto de partida e desenvolva
Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de Informações e instruções para a resolução da prova
Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de 2015 Informações e instruções para a resolução da prova 1. A prova deve ser realizada sem consulta; 2. A duração da prova é
ALGA - Eng. Civil e Eng. Topográ ca - ISE / Geometria Analítica 89. Geometria Analítica
ALGA - Eng. Civil e Eng. Topográ ca - ISE - 011/01 - Geometria Analítica 9 Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste
ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica
ALGA - Eng. Civil e Eng. Topográ ca - ISE - 010/ - Geometria Analítica Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste capítulo
Projeções: conceitos. Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção
Projeções Projeções: conceitos Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção Pontos no espaço 3D projetados em um plano 2D centro
