2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

Tamanho: px
Começar a partir da página:

Download "2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco"

Transcrição

1 2015 Dr. Walter F. de Azevedo Jr Lei de Bragg e Espaço Recíproco 1

2 Cristalografia Etapas para resolução da estrutura 3D de macromoléculas biológicas por cristalografia 3. Interpretação do padrão de difração de raios X 2. Coleta de dados de difração de raios X. 1. Cristalização. 4. Resolução da estrutura. 5. Análise. 2

3 Lei de Bragg Considere um conjunto de planos paralelos de um retículo cristalino, como mostrado na figura ao lado. A distância entre os planos consecutivos do retículo cristalino é chamada distância interplanar (d). Na figura temos um feixe paralelo de raios X de comprimento de onda, incidindo sobre este conjunto de planos paralelos. Podemos analisar a difração de raios X como se fosse resultado da reflexão dos raios X pelos planos. Para que ocorra difração num dado ângulo, é necessário que as ondas difratadas sofram interferência construtiva. Veja bem, a reflexão é uma analogia, fisicamente não ocorre tal reflexão. Raios X incidentes Raios X difratados d 3

4 Lei de Bragg Analisemos a diferença de caminho ótico dos feixes 1 e 2, indicados na figura. O feixe 2 percorre a distância A + B a mais que o feixe 1. Assim, para que as ondas dos feixes 1 e 2 sofram interferência construtiva, a diferença de caminho ótico entre elas deve ser um número inteiro de comprimentos de onda. 1 2 A d B d 1 2 A + B = 2.A = 2 d.sen d d.sen 4

5 Lei de Bragg A diferença de caminho ótico (2 d.sen ) tem que ser um número inteiro de comprimento de ondas (n.), onde n é inteiro, assim temos: d.sen = n. (Lei de Bragg) A d B d d d.sen 5

6 Aplicação da Lei de Bragg Num experimento típico de difração de raios X, temos a fonte de radiação, o cristal e o detector, como mostrado no diagrama esquemático abaixo. Normalmente os ângulos de difração são expressos em relação ao feixe incidente, ou seja, 2. 2 Fonte de raios X Cristal 6

7 Aplicação da Lei de Bragg Ao coletarmos dados de difração de raios X de um cristal, usando-se uma geometria como a mostrada no slide anterior, teremos picos de difração para todos os ângulos 2 que satisfaçam à lei de Bragg. Se elaborarmos o gráfico da intensidade da radiação difratada contra o ângulo de espalhamento (2), teremos um gráfico com o aspecto mostrado ao lado. Toda vez que posicionamos o nosso detector, num ângulo que satisfaz à lei de Bragg, teremos um pico no gráfico. 7

8 Aplicação da Lei de Bragg Equipamentos que medem o padrão de difração de raios X, são chamados de difratômetros. Há uma grande variedade de tipos e formas de difratômetro de raios X, dependendo do tipo de experimento que se deseja realizar. A figura abaixo mostra um difratômetro de pó, usado para amostras policristalinas. 8

9 Filme fotográfico ou placa de imagem Aplicação da Lei de Bragg No caso de colocarmos um filme fotográfico para registrar a imagem de difração de raios X, como mostrado no diagrama abaixo, teremos um padrão de difração de raios X bidimensional, quanto mais distante o ponto de difração de raios X do ponto central da figura (feixe direto) maior o ângulo de espalhamento (2). A foto da direita foi girada 90 º com relação ao diagrama de esquerda. No aparato experimental o filme ou placa de imagem está perpendicular ao plano. Feixe de raios X 2 Feixe direto Cristal Filme fotográfico ou placa de imagem 9

10 Difração da Luz Visível Para entender a difração da luz visível, temos que considerar a luz como formada por ondas eletromagnéticas. Sabemos que as ondas sofrerão interferência construtiva, toda vez que estiverem em fase (picos e vales coincidentes). Assim, temos pontos de difração somente quando as ondas difratadas sofrem interferência construtiva. Ao analisarmos a geometria do diagrama esquemático abaixo, podemos obter relações geométricas similares à lei de Bragg da difração de raios X. Temos um feixe de luz incidente sobre o CD. A luz incide sobre as trilhas consecutivas do CD, que refletem a luz. Teremos interferência construtiva, toda vez que os feixes de luz 1 e 2 refletirem em fase, ou seja, quando a diferença de caminho ótico (x) entre os feixes 1 e 2, for um número inteiro (n) de comprimentos de onda da radiação incidente. 10

11 Difração da Luz Visível Analisando o diagrama da figura abaixo, vemos que os feixes 1 e 2 incidem no CD e ao serem refletidos fazem um ângulo, com relação ao feixe incidente. Para que os feixes refletidos 1 e 2 estejam em fase, é necessário que a diferença de caminho ótico x seja um número inteiro (n) de comprimento de ondas (). Da análise do triângulo retângulo vemos que x = d.sen, assim temos: d.sen = n. (Equação 1) Esta equação é similar à lei de Bragg ( 2d.sen = n.), a razão para a ausência do fator 2 para luz visível é que não temos planos sucessivos, como no cristal. 11

12 Difração da Luz Visível A figura abaixo mostra o arranjo experimental, que usaremos para demonstrar a difração da luz visível. Temos uma fonte de laser, um ponteiro que gera luz vermelha de comprimento de onda de 680 nm (6800 Å). Tal feixe reflete no CD e gera um padrão de pontos de difração. 12

13 Difração da Luz Visível Colocaremos o CD no arranjo experimental, conforme o diagrama da figura abaixo, e seguiremos os seguintes passos. 1) Meça a distância y 1 em cm com a régua. y 1 = cm 2) Meça a distância L com a régua. L = cm 13

14 Difração da Luz Visível A partir da equação 1 determine o valor de d (espaçamento entre as trilhas), sabendo que, sen 1 y 1 L d n.λ senθ senθ 1 9 m 14

15 Índices de Miller Consideremos uma cela unitária, como mostrada na figura ao lado, as conclusões referentes à esta cela unitária, no que tange às propriedades dos índices de Miller, valem para os outros sistemas cristalinos, com exceção do sistema hexagonal, que não discutiremos aqui. Na análise do fenômeno de difração de raios X, uma atenção especial é dada para o conjunto de planos paralelos que difratam. Tal conjunto de planos paralelos, num retículo cristalino, pode ser representado por um conjunto de inteiros, relacionados aos interceptos com os eixos x, y e z. Para simplificar a explicação consideremos os seguintes exemplos. x z y 15

16 Índices de Miller O plano ilustrado ao lado intercepta o eixo x na posição 1, e é paralelo aos eixos y e z. Os índices de Miller deste plano obtémse com o inverso dos interceptos aos eixos x, y e z. Os interceptos são 1,, ; e o inverso é 1, 0, 0, assim o índice de Miller do plano em cinza mostrado ao lado é (100). Na verdade estes índices indicam a família de planos paralelos a ele e que interceptam o eixo x em a, 2, 3, 4,... z (100) y x 1 16

17 Índices de Miller O plano, mostrado na figura ao lado, intercepta o eixo x em 1, o eixo y em 1 e é paralelo ao eixo z. O índice de Miller é (110). z (110) 1 y x 1 17

18 Índices de Miller O plano ao lado intercepta o eixo x em 1, o eixo y em 1 e o eixo z em 1. O índice de Miller é (111). z 1 (111) 1 y x 1 18

19 Índices de Miller O plano ao lado intercepta o eixo x em 1, o eixo z em 1 e é paralelo ao eixo y. O índice de Miller é (101). z 1 (101) 1 y x 1 19

20 Índices de Miller O plano ao lado intercepta o eixo y em 1, o eixo z em 1 e é paralelo ao eixo x. O índice de Miller é (011). z 1 (011) 1 y x 1 20

21 Índices de Miller O plano ao lado intercepta o eixo x em 1/2, o eixo y em 1 e é paralelo ao eixo z. O índice de Miller é (210). z ½ (210) 1 y x 21

22 Índices de Miller O plano ao lado intercepta o eixo x em 1/4, o eixo y em 1 e é paralelo ao eixo z. O índice de Miller é (410). z ¼ (410) 1 y x 22

23 Índices de Miller Ao lado temos a indicação dos planos (100), paralelo ao plano yz, (010) paralelo ao plano xz e (001) paralelo ao plano xy. z (001) (100) (010) y x 23

24 Índices de Miller Na figura ao lado temos um plano interceptando o eixo y em ½ e paralelo ao plano xz, determinamos os índices de Miller invertendo-se o intercepto em y, assim temos (020). z (020) ½ y x 24

25 Índices de Miller Na figura ao lado temos um plano interceptando o eixo y em 1/4 e paralelo ao plano xz, determinamos os índices de Miller invertendo-se o intercepto em y, assim temos (040). z (040) 1/4 y x 25

26 Índices de Miller Toda vez que o plano corta a origem, coordenadas 0,0,0; temos que lembrar que esta representação refere-se a um cristal, onde temos repetição da cela unitária em três dimensões, como mostrado ao lado. z 1 y x O plano equivalente corta o eixo x em 1 e o eixo y em -1, sendo paralelo à z, os índice de Miller são (1-1 0), a notação cristalográfica usa uma barra sobre números negativos: (110) 26

27 Índices de Miller A cela unitária ao lado tem parâmetros de cela unitária a = 4 Å, b = 8 Å e c = 3 Å, consideremos um plano que intercepta a cela unitária em x = 1 Å, y = 4 Å e z = 3 Å. Determinaremos o índices de Miller do plano seguindo-se o seguinte algoritmo. 1) Tomemos os interceptos nos eixo x, y e z: x = 1 Å, y = 4 Å e z = 3 2) Calculemos a fração do eixo de cada intercepto: ¼, 4/8 e 3/3 ou seja, ¼, ½, 1 3) Invertemos essas frações, como segue: 4, 2, 1. Os índices de Miller desse plano são (421) x z 3 Å c = 3 Å 1 Å a = 4 Å 4 Å b = 8 Å y 27

28 Índices de Miller Vetores perpendiculares a planos cristalinos de índice de Miller (hkl) recebem índices da direção [hkl], em notação cristalográfica, qualquer direção, indicada por [hkl] representa a direção de um vetor perpendicular ao plano (hkl). Na cela unitária ao lado temos as direções [100], [010] e [001] indicadas, essas direções são perpendiculares aos planos (100), (010) e (001), respectivamente. z [001] (001) (100) (010) y x [100] [010] 28

29 Espaço Recíproco O espaço recíproco pode ser definido como um conjunto de pontos, onde cada ponto é determinado como segue: considere normais a todos os planos do espaço (hkl), saindo de um ponto O, considerado como origem. Cada normal aos plano (hkl) finaliza em um ponto, a uma distância d hkl* = 1/d hkl, onde d hkl é a distância interplanar dos planos (hkl), este conjunto de pontos (terminações das normais) é que formam o espaço recíproco. Vamos ilustrar em duas dimensões. y O x Ponto do espaço recíproco Ponto do espaço direto (110) 29

30 Espaço Recíproco Consideremos o espaço direto, representado abaixo, vamos determinar alguns pontos do espaço recíproco. Seja o plano (110), representado pela linha vermelha, consideremos uma origem arbitrária, indicada por O. Vamos traçar um vetor de O, perpendicular ao plano (110), o tamanho deste vetor é d 110*, assim temos um ponto do espaço recíproco no final deste vetor. y O x d hkl * Ponto do espaço recíproco Ponto do espaço direto (110) 30

31 Espaço Recíproco Para os planos (120) e (130) temos os pontos indicados. Resumindo, aplicandose sucessivamente este processo, teremos um conjunto de pontos dos espaço recíproco, para cada plano do espaço direto, ou seja, temos uma correspondência entre os potenciais planos refletores e pontos do espaço recíproco. y O x Ponto do espaço recíproco Ponto do espaço direto (130) (110) (120) 31

32 Espaço Recíproco As propriedades geométricas de um retículo recíproco são as inversas do retículo cristalino. Consideremos uma cela unitária com parâmetros relativamente grandes (a, b, c), como o parâmetros de cela unitária de cristais de proteínas. A cela recíproca (a *, b *, c * ) é pequena (propriedade recíproca). c c * z a a * b * b y x 32

33 Espaço Recíproco Agora temos uma cela unitária direta relativamente pequena (a,b,c) a cela recíproca é grande (a *, b *, c * ). c * z c a b * a * b y x 33

34 Espaço Recíproco O espaço recíproco é um artefato matemático criado para auxiliar na interpretação do processo de difração de raios X. O espaço recíproco, determinado pelos eixos recíprocos a *, b *, c * e ângulos *, * e * está relacionado com o espaço direto, representado pelos eixos a, b, c e ângulos, e. A dimensão do espaço recíproco é o inverso do comprimento, consequentemente suas unidades são inversas das unidades de comprimento(m -1, cm -1, Å -1 e outras). As equações abaixo relacionam os eixos diretos com os recíprocos. a * = bc sen V b * = ac sen V c * = ab sen V V = 1/V * = abc(1 cos 2 - cos 2 - cos cos.cos.cos ) 1/2 V * = 1/V = abc(1 cos 2 * - cos 2 * - cos 2 * + 2 cos *.cos *.cos * ) 1/2 34

35 Espaço Recíproco Os ângulos *, *, * e,, são dados pelas seguintes equações. cos * = cos cos - cos sen sen cos = cos * cos * - cos * sen * sen * cos * = cos cos - cos sen sen cos * = cos * cos * - cos * sen * sen * cos * = cos cos - cos sen sen cos * = cos * cos * - cos * sen * sen * 35

36 Esfera de Ewald Podemos interpretar o fenômeno da difração de raios X por um cristal considerando-se uma esfera centrada no cristal, de raio 1/, como mostra a figura, essa esfera é chamada esfera de Ewald. Feixe difratado P P Retículo recíproco S (vetor do espaço recíproco) Feixe de raios X C Cristal O Feixe direto 1/ Esfera de Ewald 36

37 Esfera de Ewald Toda vez que um ponto do retículo recíproco cruza a esfera de Ewald, temos a produção de um ponto de difração. Na figura abaixo um ponto do retículo recíproco é representado por intersecção das linhas. Feixe difratado P P Retículo recíproco S (vetor do espaço recíproco) Feixe de raios X C Cristal O Feixe direto 1/ Esfera de Ewald 37

38 Esfera de Ewald O ponto P produz um ponto de difração, ao girarmos o cristal giramos o retículo recíproco, trazendo novos pontos em condição de difração, como o ponto P. Feixe difratado P P Retículo recíproco S (vetor do espaço recíproco) Feixe de raios X C Cristal O Feixe direto 1/ Esfera de Ewald 38

39 Esfera de Ewald O resultado líquido de girarmos o cristal é que podemos registra diversos pontos de difração. Normalmente, em coleta de dados, que usa a geometria da câmara de oscilação, este recurso é usado para obtenção de diversos pontos por cada imagem medida. Feixe difratado P P Retículo recíproco S (vetor do espaço recíproco) Feixe de raios X C Cristal O Feixe direto 1/ Esfera de Ewald 39

40 Esfera de Ewald O módulo de vetor de espalhamento é d (espaçamento interplanar), a partir da análise da figura podemos determinar a relação entre o ângulo, d e o comprimento de onda (), como segue. Feixe difratado P P Retículo recíproco S (vetor do espaço recíproco) Feixe de raios X C Cristal O Feixe direto 1/ Esfera de Ewald 40

41 Esfera de Ewald Considere o triângulo APO, pela geometria da figura temos que o ângulo PÂO é, assim temos: Feixe difratado sen = S 2/ P P Retículo recíproco S (vetor do espaço recíproco) Feixe de raios X A C Cristal O Feixe direto 1/ Esfera de Ewald 41

42 Esfera de Ewald P é um ponto do espaço recíproco, assim seu comprimento é 1/d hkl, onde hkl são os índices dos planos relacionados com P. Assim temos: Feixe difratado sen = S 2/ = 1/d hkl 2/ P P Retículo recíproco S (vetor do espaço recíproco) Feixe de raios X A C Cristal O Feixe direto 1/ Esfera de Ewald 42

43 Esfera de Ewald Ou seja: 2.d sen = Feixe difratado P P Retículo recíproco S (vetor do espaço recíproco) Feixe de raios X A C Cristal O Feixe direto 1/ Esfera de Ewald 43

44 Esfera de Ewald Experimentalmente observamos que os pontos do retículo recíproco apresentam volume, ou seja, eles ficam em condição de difração um certo tempo, durante a rotação do retículo recíproco. Isto deve-se a fatores como a mosaicidade do cristal, ou seja, há uma leve desordem, o que não traz todas as celas unitárias em condição de difração, para um dado ponto do retículo, ao mesmo tempo. Feixe de Raios X Retículo recíproco Esfera de Ewald

45 Esfera de Ewald Podemos pensar no ponto do retículo recíproco como um nódulo, que durante a rotação do retículo recíproco entra em condição de difração (cruza a esfera de Ewald), fica um certo tempo nesta situação, durante a rotação e depois sai de condição de difração. Na animação ao lado temos um nódulo do retículo recíproco que entra em condição de difração, fica um certa tempo, e depois cessa a difração. O detector indica o registro da intensidade difratada por meio da coloração azul. Fonte: 45

46 Esfera de Ewald A câmara de oscilação, ou rotação, é o principal instrumento usado para o registro do padrão de difração de raios X de cristais de macromoléculas biológicas. O diagrama esquemático abaixo ilustra as principais características da câmara de oscilação. Placa de imagem Padrão registrado na placa de imagem Retículo recíproco Fonte de raios X Cristal Cabeça goniométrica 46

47 Esfera de Ewald As reflexões registradas na imagem de difração podem ser interpretadas como resultado da reflexão de um plano de índice hkl, onde hkl são os índices de Miller da família de plano. A distância interplanar é dado pela seguinte equação: Placa de imagem Padrão registrado na placa de imagem Retículo recíproco Fonte de raios X Cristal Cabeça goniométrica 47

48 Esfera de Ewald Uma das características geométricas da família de plano de índice hkl é a distância interplanar (d), que no caso dos sistemas ortorrômbico, tetragonal e cúbico é dada pela seguinte equação: 1 d h k l 2 2 a b c 2 Onde hkl são os índices do plano de reflexão, e a, b e c os parâmetros de cela unitária. Para os outros sistemas cristalinos a equação é a seguinte: d V[ h 2 b 2 c 2 sen 2 k 2 a 2 c 2 sen 2 l 2 a 2 b 2 sen 2 2hlab 2 c(cos.cos cos ) 2hkabc 2 (cos.cos cos ) 2kla 2 bc(cos.cos cos )] 1/ 2 Onde V é o volume da cela unitária. 48

49 Esfera Limite Ao girarmos o cristal, e consequentemente o retículo recíproco, podemos varrer uma ampla região do espaço recíproco. O número total de pontos do retículo recíproco, que podem cruzar a esfera de Ewald, pode ser determinado a partir da esfera limite. Girar o retículo recíproco é equivalente a girarmos a esfera de Ewald, que gera então uma esfera limite de raio 2/. Feixe de Raios X / Retículo recíproco Esfera de Ewald 2/ Esfera limite 49

50 Esfera Limite Os pontos do retículo recíproco dentro do volume da esfera limite podem ser trazidos em condição de difração. A determinação do número total de pontos que podem gerar padrões de difração de raios X é determinado dividindo-se o volume da esfera limite pelo volume da cela unitária recíproca, considerando-se que a cela unitária é primitiva. Feixe de Raios X / Retículo recíproco Esfera de Ewald 2/ Esfera limite 50

51 Esfera Limite Seja N o número de reflexões potencialmente gerados para uma esfera limite de raios 2/. Retículo recíproco N = V esfera limite V * N = 4/3 (2/) 3 V * Sabemos que: V * =1/V cell, onde V cell é o volume da cela unitária, assim temos: Feixe de Raios X Esfera de Ewald 1/ / N = 32 V cell 3 3 Esfera limite 51

52 Número Máximo de Reflexões Consideremos uma cela unitária ortorrômbica de dimensões 40 x 60 x 80 Å, que difrata a 2,5 Å de resolução, o volume da cela unitária é V cell = = Å 3. Usando-se a equação do número de reflexões temos: N = 32 V 3 3 = / 3.(2,5) 3 = reflexões Felizmente, por razões de simetria não é necessário coletar todas essas reflexões, 1/8 dos dados de difração de raios X, ou próximo disso normalmente é suficiente para o grupo espacial ortorrômbico primitivo ou aproximadamente reflexões. 52

53 Lista de Exercícios 1. Num experimento de difração de raios X tivemos 10 picos, registrados nas seguintes posições angulares: =========================== n 2. () () 1 11,0 5,5 2 22,4 11,2 3 33,2 16,6 4 45,2 22,6 5 57,0 28,5 6 70,4 35,2 7 84,6 42, ,6 50, ,0 60, ,4 74,2 =========================== Sabendo-se que o cristal é cúbico, determine o parâmetro de cela unitária médio. O comprimento de onda usado é 1,54 Å. 2. Consideremos um cristal cúbico primitivo com parâmetro de cela unitária a = 4 Å. Determine a posição angular, das 4 primeiras linhas de difração de raios X desse cristal, sabendo-se que o comprimento de onda da radiação incidente é 1,54 Å. 3. Consideremos uma cela unitária ortorrômbica de dimensões 40 x 60 x 80 Å, difratando a 1,54 Å de resolução. Determine o número máximo de reflexões possíveis. Data de entrega: 14/05/

54 Referências Drenth, J. (1994). Principles of Protein X-ray Crystallography. New York: Springer- Verlag. Rhodes, G. (2000). Crystallography Made Crystal Clear. 2 nd ed.san Diego: Academic Press. Stout, G. H. & Jensen, L. H. (1989). X-Ray Structure Determination. A Practical Guide. 2nd ed. New York: John Wiley & Sons. 54

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Espaço Recíproco e a Esfera de Ewald Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Índices de Miller Índices de Direções Espaço Recíproco Esfera de Ewald Esfera Limite Número de

Leia mais

DIFRAÇÃO DE RAIOS X DRX

DIFRAÇÃO DE RAIOS X DRX DIFRAÇÃO DE RAIOS X DRX O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Raios Absorção, um fóton de energia é absorvido promovendo

Leia mais

UNIDADE 4 - ESTRUTURA CRISTALINA

UNIDADE 4 - ESTRUTURA CRISTALINA UNIDADE 4 - ESTRUTURA CRISTALINA 4.1. INTRODUÇÃO Em geral, todos os metais, grande parte dos cerâmicos e certos polímeros cristalizam-se quando se solidificam. Os átomos se arranjam em uma estrutura tridimensional

Leia mais

Arranjos Atômicos 26/3/2006 CM I 1

Arranjos Atômicos 26/3/2006 CM I 1 Arranjos Atômicos 26/3/2006 CM I 1 26/3/2006 CM I 2 Arranjo Periódico de Átomos Sólido: constituído por átomos (ou grupo de átomos) que se distribuem de acordo com um ordenamento bem definido; Esta regularidade:»

Leia mais

DRIFRAÇÃO DE RAIOS-X

DRIFRAÇÃO DE RAIOS-X DRIFRAÇÃO DE RAIOS-X Prof. Márcio Antônio Fiori Prof. Jacir Dal Magro O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Absorção,

Leia mais

Difração. Espectrometria por Raios X 28/10/2009. Walmor Cardoso Godoi, M.Sc. http://ww.walmorgodoi.com

Difração. Espectrometria por Raios X 28/10/2009. Walmor Cardoso Godoi, M.Sc. http://ww.walmorgodoi.com Difração Espectrometria por Raios X Fenômeno encontrado enquanto ondas (sísmicas, acústicas, ondas de água, ondas eletromagnéticos, luz visível, ondas de rádio, raios X) encontram um obstáculo teia de

Leia mais

1. 3 2. 4 3. 4 4. 5 5. 6 6. 8 7. 9 8. 12 9. 16 10. 17 11. O

1. 3 2. 4 3. 4 4. 5 5. 6 6. 8 7. 9 8. 12 9. 16 10. 17 11. O 1 DIFRAÇÃO DE RAIOS X Prof. Dr. Walter Filgueira de Azevedo Jr. Laboratório de Sistemas Biomoleculares. Departamento de Física-Instituto de Biociências, Letras e Ciências Exatas-UNESP, São José do Rio

Leia mais

Biologia Estrutural. Simetria. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br. 2006 Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Simetria. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br. 2006 Dr. Walter F. de Azevedo Jr. Biologia Estrutural Simetria Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Características dos Cristais Características dos Cristais de Proteínas Elementos de Simetria Rede, Retículo e Empacotamento

Leia mais

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Ondas e Lei de Bragg Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Fenômenos Ondulatórios Pulso de Ondas Ondas Onda Eletromagnética Radiação Eletromagnética Interferência Representação

Leia mais

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira 2 Cristais são arranjos atômicos ou moleculares cuja estrutura

Leia mais

Tópicos de Física Moderna ano 2005/2006

Tópicos de Física Moderna ano 2005/2006 Trabalho Prático Nº 3 ESTUDO DA DIFRAÇÃO Tópicos de Física Moderna ano 005/006 Objectivos: Familiarização com os fenómenos de interferência e difracção da luz, com utilização de uma rede de difracção para

Leia mais

Estrutura de Sólidos Cristalinos. Profa. Dra Daniela Becker

Estrutura de Sólidos Cristalinos. Profa. Dra Daniela Becker Estrutura de Sólidos Cristalinos Profa. Dra Daniela Becker Bibliografia Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. LTC, 5ed., cap 3, 2002. Shackelford, J.F. Ciências dos Materiais,

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

ESTRUTURAS CRISTALINAS - TEORIA

ESTRUTURAS CRISTALINAS - TEORIA ESTRUTURAS CRISTALINAS - TEORIA Introdução Sólidos são compostos que apresentam uma alta regularidade estrutural. Com exceção dos sólidos amorfos, nos quais essa regularidade só existe em um curto espaço,

Leia mais

Física IV. Difração. Sears capítulo 36. Prof. Nelson Luiz Reyes Marques. Capítulo 36 Difração

Física IV. Difração. Sears capítulo 36. Prof. Nelson Luiz Reyes Marques. Capítulo 36 Difração Física IV Difração Sears capítulo 36 Prof. Nelson Luiz Reyes Marques Difração e a Teoria Ondulatória da Luz Difração e a Teoria Ondulatória da Luz A difração é um fenômeno essencialmente ondulatório, ou

Leia mais

Aula Prática 1. Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas

Aula Prática 1. Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas Aula Prática 1 Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas Raios-X Raios-X são uma forma de radiação eletromagnética com alta energia e pequeno comprimento

Leia mais

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA 1 TEORIA 1 DEFININDO ESPELHOS PLANOS Podemos definir espelhos planos como toda superfície plana e polida, portanto, regular, capaz de refletir a luz nela incidente (Figura 1). Figura 1: Reflexão regular

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE CMA CIÊNCIA DOS MATERIAIS 2º Semestre de 2014 Prof. Júlio César Giubilei

Leia mais

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma.

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma. UNIVERSIDADE CATÓLICA DE BRASÍLIA CURSO DE FÍSICA LABORATÓRIO ÓPTICA REFLEXÃO E REFRAÇÃO OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

CRISTALOGRAFIA NOTAÇÃO CRISTALOGRÁFICA

CRISTALOGRAFIA NOTAÇÃO CRISTALOGRÁFICA RISTLGRFI PÍTUL III NTÇÃ RISTLGRÁFI 3.1. EIS RISTLGRÁFIS Denominamos eixos cristalográficos a um conjunto de linhas imaginárias paralelas às arestas limitantes das principais faces de um cristal, e que

Leia mais

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3 Aula 2_1 Lei de Gauss I Física Geral e xperimental III Prof. Cláudio Graça Capítulo 3 Conceito de Fluxo do campo elétrico Fluxo do campo elétrico num campo uniforme Suponhamos uma superfície plana de área

Leia mais

Formação de imagens por superfícies esféricas

Formação de imagens por superfícies esféricas UNIVESIDADE FEDEAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS DEPATAMENTO DE FÍSICA Laboratório de Física Geral IV Formação de imagens por superfícies esféricas.. Objetivos:. Primeira parte: Espelho Côncavo

Leia mais

Seção de choque diferencial

Seção de choque diferencial Seção de choque diferencial Em uma postagem anterior, Seções de choque, apresentei o conceito de seção de choque como sendo uma medida da probabilidade de colisão entre uma partícula incidente e uma partícula

Leia mais

Rotação de Espelhos Planos

Rotação de Espelhos Planos Rotação de Espelhos Planos Introdução Um assunto que costuma aparecer em provas, isoladamente ou como parte de um exercício envolvendo outros tópicos, é a rotação de espelhos planos. Neste artigo, exploraremos

Leia mais

Curso: Ensino Fundamental II Disciplina: MATEMÁTICA Professor: Álvaro / Leandro

Curso: Ensino Fundamental II Disciplina: MATEMÁTICA Professor: Álvaro / Leandro Nome do aluno: nº série/turma 9 Curso: Ensino Fundamental II Disciplina: MATEMÁTICA Professor: Álvaro / Leandro Data: De 17 a 21/08/2009 Bimestre: 3º Tipo de atividade: Lista de Exercícios A REFLEXÃO DA

Leia mais

Óptica Geométrica Ocular Séries de Exercícios 2009/2010

Óptica Geométrica Ocular Séries de Exercícios 2009/2010 Óptica Geométrica Ocular Séries de Exercícios 2009/2010 2 de Junho de 2010 Série n.1 Propagação da luz 1. A velocidade da luz amarela de sódio num determinado líquido é 1, 92 10 8 m/s. Qual o índice de

Leia mais

Simetria Externa. Universidade de São Paulo. Instituto de Química de São Carlos. Departamento de Química e Física Molecular. SQM 409 - Cristalografia

Simetria Externa. Universidade de São Paulo. Instituto de Química de São Carlos. Departamento de Química e Física Molecular. SQM 409 - Cristalografia Universidade de São Paulo Instituto de Química de São Carlos Departamento de Química e Física Molecular Simetria Externa SQM 09 - Cristalografia Prof. Dr. Maria Teresa do Prado Gambardella . Simetria Externa

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte Espelhos esféricos são superfícies refletoras muito comuns e interessantes de se estudar. Eles são capazes de formar imagens maiores ou menores, inversas ou direitas, dependendo do tipo de espelho, suas

Leia mais

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação LENTES E ESPELHOS INTRODUÇÃO A luz é uma onda eletromagnética e interage com a matéria por meio de seus campos elétrico e magnético. Nessa interação, podem ocorrer alterações na velocidade, na direção

Leia mais

TIPOS DE REFLEXÃO Regular Difusa

TIPOS DE REFLEXÃO Regular Difusa Reflexão da luz TIPOS DE REFLEXÃO Regular Difusa LEIS DA REFLEXÃO RI = raio de luz incidente i normal r RR = raio de luz refletido i = ângulo de incidência (é formado entre RI e N) r = ângulo de reflexão

Leia mais

Física IV. Interferência

Física IV. Interferência Física IV Interferência Sears capítulo 35 Prof. Nelson Luiz Reyes Marques Interferência Arco-íris = Bolha de sabão refração interferência Princípio da superposição Quando duas ou mais ondas se superpõem,

Leia mais

Espelho, espelho meu...

Espelho, espelho meu... A UU L AL A Espelho, espelho meu... No meio do trânsito ouve-se a sirene da ambulância. Ernesto vira-se e pergunta ao pai: - Por que as letras escritas no capô da ambulância estão todas invertidas? Figura

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Séries de Fourier

2018 Dr. Walter F. de Azevedo Jr. Séries de Fourier 208 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 00000000000000000000000000 0000000000000000000 000000000000000 000000000000000 000000000000000000

Leia mais

Espectroscopia de Raios X

Espectroscopia de Raios X Espectroscopia de Raios X 1. Introdução Raios X O conhecimento da estrutura dos materiais, a maioria dos quais são cristalinos no estado sólido, s é fundamental para a caracterização das propriedades físicas

Leia mais

GABARITO DO GUIA DE ESTUDO 3 POLARIZAÇÃO

GABARITO DO GUIA DE ESTUDO 3 POLARIZAÇÃO GABARTO DO GUA DE ESTUDO POLARZAÇÃO GE.) Placas polarizadoras. GE..) Um vendedor alega que os óculos de sol que ele deseja lhe vender possuem lentes com filtro polaróide; porém, você suspeita que as lentes

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com

Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com 1. Estrutura cristalina redes de Bravais 2. Principais estruturas cristalinas 3. Sistemas cristalinos 4. Simetria e grupos de simetria

Leia mais

www.fisicanaveia.com.br

www.fisicanaveia.com.br www.fisicanaveia.com.br Lentes Esféricas Lentes Esféricas: construção Biconvexa Lentes Esféricas: construção PLANO-CONVEXA Lentes Esféricas: construção CÔNCAVO-CONVEXA Lentes Esféricas: construção BICÔNCAVA

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Anual de Física 2014 1ª Lista de embasamento Espelhos Planos e Esféricos

Anual de Física 2014 1ª Lista de embasamento Espelhos Planos e Esféricos nual de Física 2014 Questão 01 figura mostra um par de espelhos E 1 e E 2 verticais distanciados 40 cm entre si. Dois pontos e encontram-se alinhados verticalmente e equidistantes dos dois espelhos como

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear A medida de correlação é o tipo de medida que se usa quando se quer saber se duas variáveis possuem algum tipo de relação, de maneira que quando uma varia a outra varia também.

Leia mais

Primeira lista de física para o segundo ano 1)

Primeira lista de física para o segundo ano 1) Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2

Leia mais

CAPÍTULO 4 NOÇÕES DE CRISTALOGRAFIA

CAPÍTULO 4 NOÇÕES DE CRISTALOGRAFIA 73 CAPÍTULO 4 NOÇÕES DE CRISTALOGRAFIA Sumário Objetivos deste capítulo...74 4.1 Introdução...74 4. Posições atômicas em células unitárias cúbicas...74 4.3 Direções em células unitárias cúbicas...75 4.4

Leia mais

MÓDULO 9. A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais:

MÓDULO 9. A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais: A COR DE UM CORPO MÓDULO 9 A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais: luz branca vermelho alaranjado amarelo verde azul anil violeta A cor que um corpo iluminado

Leia mais

30 cm, determine o raio da esfera.

30 cm, determine o raio da esfera. 1. (Ufes 015) Enche-se uma fina esfera, feita de vidro transparente, com um líquido, até completar-se exatamente a metade de seu volume. O resto do volume da esfera contém ar (índice de refração n 1).

Leia mais

Polarização de Ondas Eletromagnéticas Propriedades da Luz

Polarização de Ondas Eletromagnéticas Propriedades da Luz Polarização de Ondas Eletromagnéticas Propriedades da Luz Polarização Polarização: Propriedade das ondas transversais Ondas em uma corda Oscilação no plano vertical. Oscilação no plano horizontal. Onda

Leia mais

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Cálculo da Densidade Eletrônica Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Introdução Cálculo da densidade eletrônica Densidade eletrônica de um cristal unidimensional Densidade

Leia mais

FÍSICA FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1

FÍSICA FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1 20_Física_2 ano FÍSICA Prof. Bruno Roberto FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1 1. (Ufg 20) O princípio de funcionamento do forno de micro-ondas é a excitação ressonante das vibrações das moléculas

Leia mais

Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica

Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica Desenho Técnico Assunto: Aula 3 - Desenho Projetivo e Perspectiva Isométrica Professor: Emerson Gonçalves Coelho Aluno(A): Data: / / Turma: Desenho Projetivo e Perspectiva Isométrica Quando olhamos para

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

Espelhos Esféricos Gauss 2013

Espelhos Esféricos Gauss 2013 Espelhos Esféricos Gauss 2013 1. (Unesp 2012) Observe o adesivo plástico apresentado no espelho côncavo de raio de curvatura igual a 1,0 m, na figura 1. Essa informação indica que o espelho produz imagens

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III Bacharelado em Engenharia Civil Física III Prof a.: M.Sc. Mariana de Faria Gardingo Diniz FLUXO DE CAMPO ELÉTRICO Imagine que as linhas de campo da figura abaixo representem um campo elétrico de cargas

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

ÓPTICA GEOMÉTRICA PREGOLINI

ÓPTICA GEOMÉTRICA PREGOLINI ÓPTICA GEOMÉTRICA PREGOLINI ÓPTICA GEOMÉTRICA É a parte da Física que estuda os fenômenos relacionados com a luz e sua interação com meios materiais quando as dimensões destes meios é muito maior que o

Leia mais

DIFRAÇÃO DE RAIO X. Daiane Bueno Martins

DIFRAÇÃO DE RAIO X. Daiane Bueno Martins DIFRAÇÃO DE RAIO X Daiane Bueno Martins Descoberta e Produção de Raios-X Em 1895 Wilhen Konrad von Röntgen (pronúncia: rêntguen) investigando a produção de ultravioleta descobriu uma radiação nova. Descobriu

Leia mais

Lista de Revisão Óptica na UECE e na Unifor Professor Vasco Vasconcelos

Lista de Revisão Óptica na UECE e na Unifor Professor Vasco Vasconcelos Lista de Revisão Óptica na UECE e na Unifor Professor Vasco Vasconcelos 0. (Unifor-998. CE) Um objeto luminoso está inicialmente parado a uma distância d de um espelho plano fixo. O objeto inicia um movimento

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

Método de Laue. Um monocristal é irradiado por um feixe de raio-x. A figuras de difração resultante é registrada em um filme para raio-x e analisada.

Método de Laue. Um monocristal é irradiado por um feixe de raio-x. A figuras de difração resultante é registrada em um filme para raio-x e analisada. 1318 Experimentos com Raios X 1 Identificação de Estruturas por Raios-X Roteiro elaborado com base na documentação que acompanha o conjunto por: Ricardo Barthem - Instituto de Física - UFRJ Método de Laue

Leia mais

ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA

ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA, CAMPUS DE JI-PARANÁ, DEPARTAMENTO DE ENGENHARIA AMBIENTAL DE JI-PARANÁ DEFIJI 1 SEMESTRE 2013-2 ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA Prof. Robinson

Leia mais

5ta Aula de Relatividade e Cosmologia. Horacio Dottori. 1.11- A contração espacial. Porto Alegre 12 de setembro de 2004

5ta Aula de Relatividade e Cosmologia. Horacio Dottori. 1.11- A contração espacial. Porto Alegre 12 de setembro de 2004 Porto Alegre 12 de setembro de 2004 5ta Aula de Relatividade e Cosmologia Horacio Dottori 1.11- A contração espacial Veremos então este efeito relativistico de 3 pontos de vista diferentes: a- como visto

Leia mais

1. 0 - AULA TEÓRICA DE DIFRAÇÃO DE RAIOS X

1. 0 - AULA TEÓRICA DE DIFRAÇÃO DE RAIOS X 1. 0 - AULA TEÓRICA DE DIFRAÇÃO DE RAIOS X 1. 1 - Introdução É fundamental para o engenheiro de materiais conhecer a estrutura cristalina e a microestrutura de um material para poder entender suas propriedades.

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico.

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. Introdução Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. A confecção do experimento permitirá também a observação da dispersão

Leia mais

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem)

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem) (Enem) (Unimontes-MG) A resolução das câmeras digitais modernas é dada em megapixels, unidade de medida que representa um milhão de pontos. As informações sobre cada um desses pontos são armazenadas, em

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Óptica geométrica, óptica física e o olho humano. 1 Foco na retina 2 Difração da luz na pupila 3 Sensibilidade do olho humano e a Muralha da China

Óptica geométrica, óptica física e o olho humano. 1 Foco na retina 2 Difração da luz na pupila 3 Sensibilidade do olho humano e a Muralha da China Óptica geométrica, óptica física e o olho humano 1 Foco na retina 2 Difração da luz na pupila 3 Sensibilidade do olho humano e a Muralha da China Otaviano Helene, IFUSP, 2010 1 1 Foco na retina Evolução

Leia mais

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 01: DIFRAÇÃO DE RAIOS-X Introdução Entende-se por raios-x, a região do espectro eletromagnético com comprimentos

Leia mais

Exercícios de Óptica

Exercícios de Óptica Exercícios de Óptica PROFESSOR WALESCKO 22 de dezembro de 2005 Sumário 1 Exercícios 1 2 UFRGS 11 3 Gabarito 24 1 Exercícios 1. A figura abaixo representa um raio de luz que incide no espelho plano E e

Leia mais

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido 1 INTRODUÇÃO As ondas podem sofrer o efeito de diversos fenômenos, dentre eles estão a difração e a interferência. A difração

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE FÍSICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE FÍSICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE FÍSICA Mestrando Patrese Coelho Vieira Porto Alegre, maio de 0 O presente material é uma coletânea sobre

Leia mais

Laboratório Virtual Kit Óptico

Laboratório Virtual Kit Óptico Laboratório Virtual Kit Óptico Reflexão A luz nem sempre se propaga indefinidamente em linha reta: em algumas situações eles podem se quebrar, como acontece quando um espelho é colocado em seu caminho.

Leia mais

Projeção ortográfica da figura plana

Projeção ortográfica da figura plana A U L A Projeção ortográfica da figura plana Introdução As formas de um objeto representado em perspectiva isométrica apresentam certa deformação, isto é, não são mostradas em verdadeira grandeza, apesar

Leia mais

Seleção de comprimento de onda com espectrômetro de rede

Seleção de comprimento de onda com espectrômetro de rede Seleção de comprimento de onda com espectrômetro de rede Fig. 1: Arranjo do experimento P2510502 O que você vai necessitar: Fotocélula sem caixa 06779.00 1 Rede de difração, 600 linhas/mm 08546.00 1 Filtro

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

Laboratório de Estrutura da Matéria I

Laboratório de Estrutura da Matéria I Laboratório de Estrutura da Matéria I Interferência e difração com microondas PRINCÍPIO E OBJETIVOS Fenômenos óticos de interferência e difração são investigados com uso de feixes de microondas e objetos

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

Óptica é a parte da física que estuda a luz: energia radiante (ondas eletromagnéticas) capaz de causar, em nós, a sensação da visão.

Óptica é a parte da física que estuda a luz: energia radiante (ondas eletromagnéticas) capaz de causar, em nós, a sensação da visão. Professor : DUDU Disciplina : Física Óptica (FO) Introdução Óptica é a parte da física que estuda a luz: energia radiante (ondas eletromagnéticas) capaz de causar, em nós, a sensação da visão. Fontes de

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida Universidade do Estado do Rio Grande do Norte Rua Almino Afonso, 478 - Centro Mossoró / RN CEP: 59.610-210 www.uern.br email: reitoria@uern.br ou Fone: (84) 3315-2145 3342-4802 Óptica Geométrica Dr. Edalmy

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Biologia Estrutural. Cálculo dos Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Cálculo dos Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Cálculo dos Fatores de Estrutura Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Extinção Sistemática para Cela Unitária de Face Centrada (F) Fator de Estrutura na Forma Complexa Cálculo

Leia mais

EXPERIMENTO DE OERSTED 313EE 1 TEORIA

EXPERIMENTO DE OERSTED 313EE 1 TEORIA EXPERIMENTO DE OERSTED 313EE 1 TEORIA 1. UM BREVE HISTÓRICO No século XIX, o período compreendido entre os anos de 1819 e 1831 foi dos mais férteis em descobertas no campo da eletricidade. Os fenômenos

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Fatores de Estrutura

2015 Dr. Walter F. de Azevedo Jr. Fatores de Estrutura 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Óptica

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Óptica Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Óptica 01 - (PUC SP) Um objeto é inicialmente posicionado entre o foco

Leia mais

ARRANJOS ATÔMICOS. Química Aplicada

ARRANJOS ATÔMICOS. Química Aplicada ARRANJOS ATÔMICOS Química Aplicada Sólidos Sólidos 1. Arranjo Periódico de Átomos SÓLIDO: Constituído por átomos (ou grupo de átomos) que se distribuem de acordo com um ordenamento bem definido; Esta regularidade:

Leia mais

Atividade 7. Figura 1 (1) Figura 2 (2)

Atividade 7. Figura 1 (1) Figura 2 (2) Atividade 7 1) PROBLEMATIZAÇÃO: No dia-a-dia não é difícil nos depararmos com situações em que há o emprego de superfícies curvas refletindo luz. Dentre elas, podem ser citados os espelhos esféricos e

Leia mais

Cristalografia por Difração de Raios X. Aula 1 - Introdução. Algumas empresas que usam Cristalografia. Exemplo: receptores de hormônios.

Cristalografia por Difração de Raios X. Aula 1 - Introdução. Algumas empresas que usam Cristalografia. Exemplo: receptores de hormônios. Cristalografia por Difração de Raios X Aula 1 Introdução Cristalografia de Proteínas & SAXS Prof. Ricardo Aparicio IQ/UNICAMP a Cristalografia por Difração de Raios X permite obter informação sobre a estrutura

Leia mais

Lentes de vidro comprimento focal fixo Para: - Focar - Ampliar a Imagem - Controlar a Intensidade de Iluminação Alteração da posição relativa entre o

Lentes de vidro comprimento focal fixo Para: - Focar - Ampliar a Imagem - Controlar a Intensidade de Iluminação Alteração da posição relativa entre o Lentes e Aberturas Lentes de vidro comprimento focal fixo Para: - Focar - Ampliar a Imagem - Controlar a Intensidade de Iluminação Alteração da posição relativa entre o conjunto de lentes Lentes Magnéticas

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Primeira Edição junho de 2005 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados

Leia mais

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Kit de ótica laser de demonstração U17300 e kit complementar Manual de instruções 1/05 ALF Índice de conteúdo Página Exp - N Experiência Kit de aparelhos 1 Introdução 2 Fornecimento

Leia mais