Waldemar Celes. 2 de Setembro de 2014

Tamanho: px
Começar a partir da página:

Download "Waldemar Celes. 2 de Setembro de 2014"

Transcrição

1 Simulação Física Métodos Numéricos de Integração Waldemar Celes Tecgraf, DI/PUC-Rio 2 de Setembro de 2014 W. Celes, DI/PUC-Rio Simulação Física 1

2 Sumário Método de Euler Método de Runge-Kutta Passo Adaptativo Método de Verlet Bibliografia: Physics Based Animation Erleben et al. (2005) Game Physics Eberly (2004) Physically Based Modeling: Principles and Practice Witkin and Baraff (1997) W. Celes, DI/PUC-Rio Simulação Física 2

3 Integração Numérica Equação Diferencial Ordinária (EDO): Problema de valor inicial: ẋ = f (t, x) x(t 0 ) = x 0 ẋ = f (t, x) Simulação física (2 a Lei de Newton): f = m a Duas EDO de 1 a ordem acopladas: { ẋ = v v = f/m W. Celes, DI/PUC-Rio Simulação Física 3

4 Método de Euler Série de Taylor Se x é uma função contínua e diferenciável, tem-se: x(t + h) = x(t) + h ẋ(t) + h2 h3 ẍ(t) + 2! 3! x(3)(t) +... Método de Euler Usa os dois primeiros termos da série: x(t + h) = x(t) + h ẋ(t) + O(h 2 ) x(t + h) = x(t) + h f (t, x) + O(h 2 ) y i+1 = y i + h f (t i, y i ) y: aproximação de x W. Celes, DI/PUC-Rio Simulação Física 4

5 Método de Euler Características: Assimétrico Impreciso Exige h muito pequeno Instável t t+h W. Celes, DI/PUC-Rio Simulação Física 5

6 Método via formulação da integral x(t + h) = x(t) + t+h t f (t, x(t))dt Aproximação por retângulo (Euler): y i+1 = y i + h f (t i, y i ) Aproximação por trapézio: t t+h y i+1 = y i + h 2 [f (t i, y i ) + f (t i+1, y i+1 )] Problema: como avaliar se precisamos de y i+1? W. Celes, DI/PUC-Rio Simulação Física 6

7 Método de Euler modificado Aproximação por trapézio Usa Euler para estimar y i+1 y i+1 = y i + h 2 [f (t i, y i ) + f (t i+1, y i + h f (t i, y i ))] Características: Exige duas avaliações de f Método de ordem 2 Erro = O(h 3 ) W. Celes, DI/PUC-Rio Simulação Física 7

8 Método do ponto médio Usa o valor da derivada no ponto médio do intervalo Avalia passo de Euler: y = h f (t i, y i ) Avalia f no ponto médio: f med = f (t i+1/2, y i + y/2) Avança usando f med y i+1 = y i + h f med Características iguais ao do Euler modificado: Exige duas avaliações de f Método de ordem 2 Erro = O(h 3 ) Também conhecido como Runge-Kutta de ordem 2 W. Celes, DI/PUC-Rio Simulação Física 8

9 Runge-Kutta de ordem 3 k 0 = h f (t i, y i ) k 1 = h f (t i+1/2, y i + k 0 /2) k 2 = h f (t i+1, y i + 2k 1 k 0 ) y i+1 = y i (k 0 + 4k 1 + k 2 ) Características: Exige três avaliações de f Erro = O(h 4 ) W. Celes, DI/PUC-Rio Simulação Física 9

10 Runge-Kutta de ordem 4 k 0 = h f (t i, y i ) k 1 = h f (t i+1/2, y i + k 0 /2) k 2 = h f (t i+1/2, y i + k 1 /2) k 3 = h f (t i+1, y i + k 2 ) y i+1 = y i (k 0 + 2k 1 + 2k 2 + k 3 ) Características: Exige quatro avaliações de f Erro = O(h 5 ) Método numérico mais popular Precisão & desempenho W. Celes, DI/PUC-Rio Simulação Física 10

11 Escolha do passo de integração O passo adotado deve: Assegurar precisão e estabilidade numérica Evitar perda de colisão Tratar descontinuidade das funções Tratar eventos externos Estratégia simplista (mas, muitas vezes, suficiente): Adoção de passo fixo. void Update () { system >Evolve(t, H) t = t + H; } W. Celes, DI/PUC-Rio Simulação Física 11

12 Escolha do passo de integração O passo adotado deve: Assegurar precisão e estabilidade numérica Evitar perda de colisão Tratar descontinuidade das funções Tratar eventos externos Estratégia simplista (mas, muitas vezes, suficiente): Adoção de passo fixo. void Update () { system >Evolve(t, H) t = t + H; } Pode não atender aos requisitos acima W. Celes, DI/PUC-Rio Simulação Física 11

13 Passo adaptativo Objetivo: assegurar precisão numérica Independente do método Usa maior passo possível Respeita erro máximo prescrito Passo adaptativo Se erro = O(h n ), então teoricamente: Se passo h produz erro e Então passo h/2 produzirá erro e/2 n É possível controlar o erro numérico W. Celes, DI/PUC-Rio Simulação Física 12

14 Passo adaptativo Avaliação do erro associado a h Estratégia de dobrar o passo y 0 y 1 t t+h y 0 y 2 t t+h/2 t+h W. Celes, DI/PUC-Rio Simulação Física 13

15 Euler com passo adaptativo Estratégia de dobrar o passo x = y 1 + h 2 φ + O(h 3 ) ( ) h 2 x = y φ + O(h 3 ) 2 Desprezando O(h 3 ): = y 2 y 1 y 1 + h 2 φ = y 2 + h2 2 φ y 2 y 1 = h 2 φ h2 2 φ = h2 2 φ que representa o erro associado a y 2 W. Celes, DI/PUC-Rio Simulação Física 14

16 Como adaptar o passo Exemplo: Erro máximo permitido: e max = 10 4 Se erro obtido for y 2 y 1 = 10 5 Valida-se o passo Aumenta-se o passo h novo = ( emax e ) 1/2 h = 3.16 h Se erro obtido for y 2 y 1 = 10 3 Invalida-se o passo Refaz o avanço, diminuindo-se o passo h novo = ( emax e ) 1/2 h = h W. Celes, DI/PUC-Rio Simulação Física 15

17 Euler com passo adaptativo Note que: x = y ( ) h 2 φ + O(h 3 ) 2 x = y O(h 3 ) Logo, pode-se pensar em avaliar a função com erro O(h 3 )? y = y 2 + Em geral, métodos de ordem superior são mais confiáveis Neste caso, no entanto, perderíamos o controle do erro W. Celes, DI/PUC-Rio Simulação Física 16

18 Euler com passo adaptativo Note que: x = y ( ) h 2 φ + O(h 3 ) 2 x = y O(h 3 ) Logo, pode-se pensar em avaliar a função com erro O(h 3 )? y = y 2 + Em geral, métodos de ordem superior são mais confiáveis Neste caso, no entanto, perderíamos o controle do erro Passo adaptativo para outros métodos Erro: O(h n ) h novo = ( emax e ) 1/n h W. Celes, DI/PUC-Rio Simulação Física 16

19 Embedded Runge-Kutta (ordem 4) Método de ordem 5 que tem embutido a avaliação de erro do método de ordem 4: k 1 = h f (t i, y i ) k 2 = h f (t i + a 2 h, y i + b 21 k 1 )... k 6 = h f (t i + a 6 h, y i + b 61 k b 65 k 5 ) 6 y i+1 = y i + c i k i + O(h 6 ) y i+1 = y i + i=1 6 ci k i + O(h 5 ) i=1 = y i+1 yi+1 onde: a i, b ij, c i, ci são parâmetros da tabela Cash-Karp W. Celes, DI/PUC-Rio Simulação Física 17

20 Integração de Verlet Da série de Taylor: x(t + h) = x(t) + ẋ h + 1 2ẍ h x (3) (h) h 3 + O(h 4 ) x(t h) = x(t) ẋ h + 1 2ẍ h2 1 6 x (3) (h) h 3 + O(h 4 ) Somando as duas expressões: x(t + h) = 2x(t) x(t h) + ẍ(h) h 2 + O(h 4 ) Para a física de partícula: y i+1 = 2y i + y i 1 + h2 m f Não armazena explicitamente (e não avalia) a velocidade Reversível para sistemas conservativos: f = V(t, x) = f(t, x) W. Celes, DI/PUC-Rio Simulação Física 18

21 Utilização da integração de Verlet Sistemas conservativos: f(t, x) Condições iniciais: { y0 ẏ 0 Para determinação de y 1, pode-se usar Euler: y 1 = y 0 + h ẏ 0 y i+1 = 2y i y i 1 + h2 m f(t i, y i ) W. Celes, DI/PUC-Rio Simulação Física 19

22 Utilização da integração de Verlet Sistemas não conservativos: f(t, x, ẋ) Estimando a velocidade: ẏ 1 = y i y i 1, O(h) h ẏ 1 = y i+1 y i 1, O(h 2 ) 2h Evolução do sistema: y 1 = y 0 + h ẏ 0 ẏ i = y i y i 1 h y i+1 = 2y i y i 1 + h2 m f(t i, y i, ẏ i ) Observe que assume velocidade constante no 1 o passo W. Celes, DI/PUC-Rio Simulação Física 20

23 Estratégia de predição & correção Objetiva melhorar a estimativa de ẏ Predição: ẏ i = y i y i 1 h y i+1 = 2y i y i 1 + h2 m f(t i, y i, ẏ i ) Correção: ẏ i = y i+1 y i 1 2h y i+1 = 2y i y i 1 + h2 m f(t i, y i, ẏ i ) W. Celes, DI/PUC-Rio Simulação Física 21

24 Emulando viscosidade f d = k v Reescrevendo a equação de integração: y i+1 = y i + (y i y i 1 ) + h2 m f y i+1 = y i + (1 δ)(y i y i 1 ) + h2 m f onde δ representa o coeficiente de viscosidade (e.g ) W. Celes, DI/PUC-Rio Simulação Física 22

25 Método leap frog Série de Taylor para velocidade: ẋ(t + h) = ẋ(t) + h ẍ(t) + h2 2 x(3) (t) +... ẋ(t h) = ẋ(t) h ẍ(t) + h2 2 x(3) (t)... Subtraindo e usando metade do passo: ẋ(t + h/2) = ẋ(t h/2) + h ẍ(t) + O(h 3 ) W. Celes, DI/PUC-Rio Simulação Física 23

26 Método leap frog Série de Taylor para velocidade: ẋ(t + h) = ẋ(t) + h ẍ(t) + h2 2 x(3) (t) +... ẋ(t h) = ẋ(t) h ẍ(t) + h2 2 x(3) (t)... Subtraindo e usando metade do passo: ẋ(t + h/2) = ẋ(t h/2) + h ẍ(t) + O(h 3 ) Método Leap frog Sistemas conservativos x x Usa Euler para obter ẏ(h/2) t ẏ(t + h/2) = ẏ(t h/2) + h ÿ(t) y(t + h) = y(t) + h ẏ(t) W. Celes, DI/PUC-Rio Simulação Física 23

27 Método intercalado para sistemas não conservativos y 1 = y 0 + h 2 ẏ0 ẏ 1 = ẏ 0 + h 2m f(0, y 0, ẏ 0 ) y i+2 = y i + h ẏ i+1 ẏ i+2 = ẏ i + h m f(t i+1, y i+1, ẏ i+1 ) 0 h/2 h 3h/2 2h t W. Celes, DI/PUC-Rio Simulação Física 24

28 Referência Eberly, D. H. (2004). Game Physics. Morgan Kaufmann Publishers. Erleben, K., Sporring, J., Henriksen, K., and Dohlmann, H. (2005). Physics Based Animation. Charles River Media. Witkin, A. and Baraff, D. (1997). Physically based modeling: Principles and practice. baraff/sigcourse/. W. Celes, DI/PUC-Rio Simulação Física 25

Cálculo Numérico. Resumo e Exercícios P2

Cálculo Numérico. Resumo e Exercícios P2 Cálculo Numérico Resumo e Exercícios P2 Fórmulas e Resumo Teórico P2 Interpolação Em um conjunto de n pontos (x #, y # ), consiste em encontrar uma função f tal que f x # = y # para todo i = 1,2,, n. Na

Leia mais

As bases da Dinâmica Molecular - 1

As bases da Dinâmica Molecular - 1 As bases da Dinâmica Molecular - 1 Alexandre Diehl Departamento de Física - UFPel Um pouco de história... IDMSF2017 2 Um pouco de história... A pré-história da Dinâmica Molecular A ideia da Dinâmica Molecular

Leia mais

Métodos de Runge-Kutta

Métodos de Runge-Kutta Solução numérica de Equações Diferenciais Ordinárias: Métodos de Runge-Kutta Marina Andretta/Franklina Toledo ICMC-USP 31 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D.

Leia mais

Lista de Exercícios 3 e soluções

Lista de Exercícios 3 e soluções Lista de Exercícios 3 e soluções MAT 069 - Cálculo Numérico Prof Dagoberto Adriano Rizzotto Justo 2 de Dezembro de 2006 Calcule a integral (a) A f dx = 0 (0) = = (b) A f 0 dx = 0 (0) = = 0 (c) A ( 2 f

Leia mais

Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma:

Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma: Edgard Jamhour Funções podem ser representadas como série de potências Uma série de potências centrada em x 0 tem a seguinte forma: n f x, x 0 = n=0 a n x x 0 f(x,x 0 ) = a 0 + a 1 (x-x 0 ) + a 2 (x-x

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Integração Numérica 1. Considere o integral: 1 0 e x2 dx a) Determine o seu valor aproximado, considerando 4 subintervalos e utilizando: i. A regra dos

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario EQUAÇÕES DIFERENCIAIS ORDINÁRIAS MÉTODO DE EULER MÉTODOS DE SÉRIES DE TAYLOR MÉTODOS DE RUNGE KUTTA EQUAÇÕES DIFERENCIAIS

Leia mais

10 Estabilidade de Métodos de Passo Simples

10 Estabilidade de Métodos de Passo Simples MAP 2310 - Análise Numérica e Equações Diferenciais I 1 o Semestre de 2008 Análise Numérica NÃO REVISADO! 10 Estabilidade de Métodos de Passo Simples Continuamos interessados em estudar Métodos de Discretização

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando métodos

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP1]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17.

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17. 1 2011-02-08 13:00 2h Capítulo 1 Aritmética computacional 1.1 Erros absolutos e relativos 1.2 O polinómio de Taylor Resolução do exercício 1.3 2 2011-02-08 15:00 1h30m As aulas laboratoriais só começam

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 22 07/2014 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando

Leia mais

3 Sistema de Partículas na CPU

3 Sistema de Partículas na CPU Sistema de Partículas na CPU 16 3 Sistema de Partículas na CPU Um sistema de partículas pode ser dividido em diferentes etapas: avanço do sistema no tempo; construção da estrutura de subdivisão espacial

Leia mais

SUMÁRIO PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3. PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação...

SUMÁRIO PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3. PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação... PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3 PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação... 7 CAPÍTULO 1 Modelagem matemática e resolução de problemas de engenharia...10

Leia mais

dy dt d 2 y dt 2 d n y dt n y dy y= F t a= f t, v, x dv dt = f t, a dx = f t, v

dy dt d 2 y dt 2 d n y dt n y dy y= F t a= f t, v, x dv dt = f t, a dx = f t, v Cap. 9.- Integração de Equações Diferenciais Ordinárias (ODE's) 9.1. Definições ODE ou EDO Equações diferenciais ordinárias são aquelas que relacionam derivadas totais de variáveis dependentes com uma

Leia mais

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

Leia mais

Trajetórias de objetos: fundamentos

Trajetórias de objetos: fundamentos Trajetórias de objetos: fundamentos Moussa Reda Mansour Por que Física????? Por que Física????? A física está presente no mundo real; A física pode tornar os jogos mais próximos do mundo real; Jogos que

Leia mais

As bases da Dinâmica Molecular - 2

As bases da Dinâmica Molecular - 2 As bases da Dinâmica Molecular - 2 Alexandre Diehl Departamento de Física - UFPel Um pouco de história... SCEF 2 Um pouco de história... A pré-história da Dinâmica Molecular A ideia da Dinâmica Molecular

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 7: Equaç~oes diferenciais ordinárias c 2009 FFCf 2 Capítulo 7: Equações diferenciais ordinárias 7.1 Solução numérica de EDO 7.2 Métodos de Runge-Kutta 7.3 Métodos

Leia mais

Erros nas aproximações numéricas

Erros nas aproximações numéricas Erros nas aproximações numéricas Prof. Emílio Graciliano Ferreira Mercuri Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR emilio@ufpr.br 4 de março de 2013 Resumo: O objetivo

Leia mais

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1)

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1) Resolução Numérica de Equações Diferenciais Método de Runge Kutta Queremos resolver uma equação diferencial da forma dy dx = f(x, y), (1) Isto é: queremos obter a função y(x) sabendo sua derivada. Numericamente:

Leia mais

Modelagem Computacional. Aula 5 2

Modelagem Computacional. Aula 5 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Aula 5 2 Prof. Thiago Alves de Queiroz 2 [Cap. 5] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

Métodos Numéricos em Engenharia Química

Métodos Numéricos em Engenharia Química Universidade Federal do Paraná UFPR Programa de Pós-Graduação em Engenharia Química PPGEQ Métodos Numéricos em Engenharia Química Prof. Éliton Fontana 2018/1 Conteúdo 1. Introdução 3 1.1. Classicação das

Leia mais

Lista de Exercícios 2 Cálculo Numérico - Professor Daniel

Lista de Exercícios 2 Cálculo Numérico - Professor Daniel Lista de Exercícios 2 Cálculo Numérico - Professor Daniel Observação: Esta lista abrange integração numérica e resolução numérica de EDO s. Em outras palavras, ela abrange toda a matéria da terceira prova.

Leia mais

Solução Numérica de EDOs

Solução Numérica de EDOs Solução Numérica de EDOs Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 10 de Novembro, 2010 Introdução Equação Diferencial de 1a. Ordem y = f (x, y) f : função real dada, de duas variáveis

Leia mais

Métodos de passo simples para equações diferenciais ordinárias. Nelson Kuhl

Métodos de passo simples para equações diferenciais ordinárias. Nelson Kuhl Métodos de passo simples para equações diferenciais ordinárias Nelson Kuhl 1. Solução Numérica de Equações Diferencias Ordinárias Métodos de Passo Simples Explícitos 1.1 Introdução Para a maioria das equações

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Equações diferenciais ordinárias Laura Goulart UESB 9 de Abril de 2016 Laura Goulart (UESB) Equações diferenciais ordinárias 9 de Abril de 2016 1 / 13 Muitos problemas encontrados em engenharia e outras

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 2004/2005 Equações Diferenciais Ordinárias PROBLEMAS 1 Considere a equação diferencial dy dx = y(x2 1) com y(0) = 1 e x [0,

Leia mais

Matemática Computacional

Matemática Computacional Matemática Computacional MEEC 1 ạ Parte/ 1 ọ Teste 019/01/ 18h30 (+1h30) Apresente todos os cálculos e justifique convenientemente as respostas. 1. Nas duas alíneas seguintes apresente os resultados num

Leia mais

Os vórtices da turbulência bidimensional

Os vórtices da turbulência bidimensional file:///c:/users/utilizador/documents/ficheiros%20universidade/diversos/bolsa%20gulbenkian/2008.09/hurricane%5b1%5d.jpg Os vórtices da turbulência bidimensional Seminário Diagonal 27/05/2009 José Ricardo

Leia mais

Métodos Previsor-Corretor

Métodos Previsor-Corretor Solução numérica de Equações Diferenciais Ordinárias: Métodos Previsor-Corretor Marina Andretta/Franklina Toledo ICMC-USP 7 de novembro de 2013 Baseado no livro Cálculo Numérico, de S. Arenales e A. Darezzo.

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

Cap. 10. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial. Filipe J. Romeiras

Cap. 10. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial. Filipe J. Romeiras MATEMÁTICA COMPUTACIONAL Cap.. Resolução Numérica de Equações Diferenciais Ordinárias: Problemas de Valor Inicial Filipe J. Romeiras Departamento de Matemática Instituto Superior Técnico Apontamentos das

Leia mais

Métodos tipo quadratura de Gauss-Radau

Métodos tipo quadratura de Gauss-Radau COQ-8 Métodos Numéricos para Sistemas Algébricos e Diferenciais Métodos tipo quadratura de Gauss-Radau Introdução Método de quadratura de Gauss com pontos internos+ extremidade superior Considerando a

Leia mais

Cálculo Numérico Lista 03

Cálculo Numérico Lista 03 Cálculo Numérico Lista 03 Professor: Daniel Henrique Silva Essa lista abrange integração numérica, e resolução numérica de EDO s, e abrange toda a matéria da 3ª prova. Instruções gerais para entrega Nem

Leia mais

4 Modelagem Numérica. 4.1 Método das Diferenças Finitas

4 Modelagem Numérica. 4.1 Método das Diferenças Finitas 4 Modelagem Numérica Para se obter a solução numérica das equações diferenciais que regem o processo de absorção de CO 2,desenvolvido no capitulo anterior, estas precisam ser transformadas em sistemas

Leia mais

Equações Diferenciais Métodos Adaptativos e Rigidez. Computação 2º Semestre 2016/2017

Equações Diferenciais Métodos Adaptativos e Rigidez. Computação 2º Semestre 2016/2017 Equações Diferenciais Métodos Adaptativos e Rigidez Computação 2º Semestre 2016/2017 Métodos Adaptativos Por vezes as soluções das EDOs têm diferentes escalas temporais: Em alguns intervalos de tempo a

Leia mais

Matemática Computacional. Exercícios. Teoria dos erros

Matemática Computacional. Exercícios. Teoria dos erros Matemática Computacional Exercícios 1 o Semestre 2014/15 Teoria dos erros Nos exercícios deste capítulo os números são representados em base decimal. 1. Represente x em ponto flutuante com 4 dígitos e

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EDOs de primeira ordem Problema de Valor Inicial (PVI) dy dx = f x, y y x 0 = y 0 Método de passo simples valor novo = valor antigo + inclinação passo Método de Euler y

Leia mais

y(x n+1 ) = y(x n ) + hy (x n ) + h2 q! y (q) (x n )

y(x n+1 ) = y(x n ) + hy (x n ) + h2 q! y (q) (x n ) 2. Método de Taylor de ordem q Seja y(x) a solução exata do p.v.i., contínua e suficientemente derivável em [a, b]. A expansão em série de Taylor para y(x n + h) em torno do ponto x n é dada por: y(x n+1

Leia mais

3 Métodos Numéricos Análise das Equações de Movimento

3 Métodos Numéricos Análise das Equações de Movimento 3 Métodos Numéricos A dinâmica de sistemas mecânicos normalmente é modelada como um sistema de equações diferenciais. Estas equações diferenciais devem ser resolvidas a fim de relacionar as variáveis entre

Leia mais

Física Computacional 5

Física Computacional 5 Física Computacional 5 1. Derivadas com diferenças finitas a. O conceito de derivada, menos simples que o de integral b. Cálculo numérico da derivada com diferenças finitas c. Um outro conceito, Equação

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ). MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos

Leia mais

Equações Diferenciais Problemas de Valor Inicial. Computação 2º Semestre 2016/2017

Equações Diferenciais Problemas de Valor Inicial. Computação 2º Semestre 2016/2017 Equações Diferenciais Problemas de Valor Inicial Computação 2º Semestre 2016/2017 Equações Diferenciais Uma equação diferencial é uma equação cuja incógnita é uma função que aparece na equação sob a forma

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.1 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Questão 01: Oscilador harmônico Considere o oscilador harmônico ẋ = y, ẏ

Leia mais

Métodos Numéricos para EDOs. 2 de abril de 2012

Métodos Numéricos para EDOs. 2 de abril de 2012 Métodos Numéricos para EDOs 2 de abril de 2012 Outline 1 Introdução 2 Métodos de Euler e do Trapézio 3 Métodos de Runge-Kutta 4 Métodos de Passo Variável 5 Representação em Espaço de Estados 6 Estabilidade

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

3ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo

3ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo Os eercícios a 4 se referem a interpolação polinomial. Resolva-os com os dois polinômios interpoladores estudados. 4 ) Dada a função f ( ), determine:

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Introdução à Resolução de Equações Diferenciais Ordinárias

Leia mais

Métodos Numéricos para EDO S

Métodos Numéricos para EDO S Métodos Numéricos para EDO S 9.1 Introdução O estudo das equações diferenciais foi motivado inicialmente por problemas da física, ou seja problemas de mecânica, eletricidade termodinâmica, magnetismo etc.

Leia mais

Prof.: Roberto F. Ausas. Semestre

Prof.: Roberto F. Ausas. Semestre Cálculo Numérico Resolução numérica de EDO s Prof.: Roberto F. Ausas Cálculo Numérico e-mail: rfausas@icmc.usp.br ICMC-USP - São Carlos Instituto de Ciências Matemáticas e de Computação Semestre 2-2017

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA IFPB Campus João Pessoa Departamento de Ensino Superior

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA IFPB Campus João Pessoa Departamento de Ensino Superior PLANO DE DISCIPLINA IDENTIFICAÇÃO CURSO: CST EM SISTEMAS DE TELECOMUNICACÕES DISCIPLINA: MÉTODOS NUMÉRICOS CÓDIGO DA DISCIPLINA: INF065 PRÉ-REQUISITO(S): CÁLCULO DIFERENCIAL E INTEGRAL I, PROGRAMAÇÃO ESTRUTURADA

Leia mais

Universidade Federal de Campina Grande

Universidade Federal de Campina Grande Universidade Federal de Campina Grande Departamento de Sistemas e Computação Disciplina: Métodos e Software Numéricos Prof.: José Eustáquio Rangel de Queiroz Práticas de Avaliação e Planejamento das Atividades

Leia mais

Capítulo 7 - Equações Diferenciais Ordinárias

Capítulo 7 - Equações Diferenciais Ordinárias Capítulo 7 - Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos

Leia mais

Resolução do exame de matemática computacional

Resolução do exame de matemática computacional Resolução do exame de matemática computacional 0 de Janeiro de 00 GRUPO I f x_ : x^ x 1 g1 x_ : x^ 1 x^ g x_ : x 1 g x_ x^ 1 1 1 x Plot f x, x,, - -1 1 - -4 Graphics 1 Método de Newton Quando se procura

Leia mais

3 SPH. 3.1 Introdução

3 SPH. 3.1 Introdução 3 SPH 3.1 Introdução Smoothed Particle Hydrodynamics (SPH) é um método puramente Lagrangiano desenvolvido por Lucy (1977) e Gingold (1977) em um estudo do campo da astrofísica voltado para colisão entre

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

Linearização de Modelos e Teoremas Locais

Linearização de Modelos e Teoremas Locais Modelos e Teoremas Locais Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 05 de janeiro de 2017. Sumário Introdução => Uma grande parte

Leia mais

Dinâmica Estrutural. Múltiplos Graus de Liberdade Equações de Euler Lagrange. Ramiro Brito Willmersdorf DEMEC/UFPE 2014.

Dinâmica Estrutural. Múltiplos Graus de Liberdade Equações de Euler Lagrange. Ramiro Brito Willmersdorf DEMEC/UFPE 2014. Dinâmica Estrutural Múltiplos Graus de Liberdade Equações de Euler Lagrange Ramiro Brito Willmersdorf ramiro@willmersdorf.net DEMEC/UFPE 2014.1 O Método Lagrangeano Leis de Newton: Equações de equilíbrio

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.2 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.2 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.2 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.2 Prof. Marco Polo Questão 01: Retratos de fase Para cada um dos seguintes sistemas, encontre

Leia mais

Capítulo 10 Solução de Equações Diferenciais Ordinárias

Capítulo 10 Solução de Equações Diferenciais Ordinárias Capítulo 10 Solução de Equações Diferenciais Ordinárias As equações diferenciais ordinárias são do tipo: Exemplo 10.1 Seja a equação diferencial ordinária para a posição y de um automóvel, com a condição

Leia mais

Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Equações diferenciais ordinárias EQUAÇÕES DIFERENCIAIS ORDINÁRIAS 1 Sumário 1 Equações diferenciais ordinárias Métodos de Euler Exemplo de EDO linear: Método implícito Métodos multi-passo lineares Fórmulas de Adams-Bashforth Fórmulas de Adams-Moulton Fórmulas do tipo

Leia mais

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias MAP2310 14/03/2005 Análise Numérica e Equações Diferenciais I 1 o Semestre de 2005 1 1 Equações Diferenciais Ordinárias 1.1 Introdução Equações envolvendo uma variável independente real t, uma função desconhecida

Leia mais

USANDO O MODELLUS. Aula 3

USANDO O MODELLUS. Aula 3 USANDO O MODELLUS Aula 3 A evolução temporal é dada pela solução numérica de equações diferenciais. Exemplo: Movimento Retilíneo Uniforme Exemplo: Movimento Retilíneo Uniformemente variado As derivadas

Leia mais

y x f x y y x y x a x b

y x f x y y x y x a x b 50 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Uma equação diferencial é uma equação que envolve uma função desconecida e algumas de suas derivadas. Se a função é de uma só variável, então a equação

Leia mais

O Circuito de Chua. 1 O circuito de Chua. Segundo Exercício Programa MAP3121 Para Engenharia Elétrica Entrega: até 22 de Junho de 2017

O Circuito de Chua. 1 O circuito de Chua. Segundo Exercício Programa MAP3121 Para Engenharia Elétrica Entrega: até 22 de Junho de 2017 O Circuito de Cua Segundo Exercício Programa MAP32 Para Engenaria Elétrica Entrega: até 22 de Juno de 207 O circuito de Cua O circuito de Cua é um circuito elétrico simples formado por 2 capacitores lineares

Leia mais

Notas de Aula de Cálculo Numérico

Notas de Aula de Cálculo Numérico IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

Modelagem Matemática para Controle de Nível de um Tanque

Modelagem Matemática para Controle de Nível de um Tanque Modelagem Matemática para Controle de Nível de um Tanque Fevereiro de 2014 Tanque Cônico: Modelagem Matemática I Considere que se deseja controlar o nível de um reservatório cuja área da seção transversal

Leia mais

Tópicos Especiais em Animação de Fluidos e Visualização Cientíca (GB 500)

Tópicos Especiais em Animação de Fluidos e Visualização Cientíca (GB 500) Tópicos Especiais em Animação de Fluidos e Visualização Cientíca (GB 500) Gilson Antonio Giraldi - gilson@lncc.br Laboratório Nacional de Computação Cientíca-LNCC/MCTI Mar 13th, 2019 (LNCC) 1 / 26 Tópicos

Leia mais

Modelagem Computacional. Parte 4 2

Modelagem Computacional. Parte 4 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 4 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 5] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Apresentação do Curso

Apresentação do Curso Apresentação do Curso Laura Goulart UESB 14 de Novembro de 2018 Laura Goulart (UESB) Apresentação do Curso 14 de Novembro de 2018 1 / 25 O que é Cálculo Numérico O cálculo numérico procura resolver, por

Leia mais

Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias

Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Apresentação do Curso

Apresentação do Curso Apresentação do Curso Laura Goulart UESB 7 de Outubro de 2016 Laura Goulart (UESB) Apresentação do Curso 7 de Outubro de 2016 1 / 24 O que é Cálculo Numérico O cálculo numérico procura resolver, por meio

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

MAP Primeiro exercício programa Osciladores Harmônicos

MAP Primeiro exercício programa Osciladores Harmônicos MAP-11 - Primeiro exercício programa - 009 Osciladores Harmônicos Instruções gerais - Os exercícios computacionais pedidos na disciplina Cálculo Numérico têm por objetivo fundamental familiarizar o aluno

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Introdução às Equações Diferenciais e Ordinárias

Introdução às Equações Diferenciais e Ordinárias Introdução às Equações Diferenciais e Ordinárias - 017. Lista - EDOs lineares de ordem superior e sistemas de EDOs de primeira ordem 1 São dadas trincas de funções que são, em cada caso, soluções de alguma

Leia mais

Plasmas. Teoria de Partículas. Teoria Cinética. Teoria Magnetohidrodinâmica (MHD)

Plasmas. Teoria de Partículas. Teoria Cinética. Teoria Magnetohidrodinâmica (MHD) Plasmas Teoria de Partículas Teoria Cinética Teoria Magnetohidrodinâmica (MHD) O MÉTODO M DE SIMULAÇÃO POR PARTÍCULAS Considera-se o movimento individual das partículas do plasma sob a ação dos campos

Leia mais

O que é o Cálculo Numérico? 05/06/13. Prof. Dr. Alexandre Passito

O que é o Cálculo Numérico? 05/06/13. Prof. Dr. Alexandre Passito Prof. Dr. Alexandre Passito passito@icomp.ufam.edu.br Parte do material cedido pelos Professores Fabíola Guerra/ Arilo DCC/UFAM. 1 } Quem sou eu? Alexandre Passito de Queiroz Doutor em Informática passito@icomp.ufam.edu.br

Leia mais

Capítulo 5 - Integração e Diferenciação Numérica

Capítulo 5 - Integração e Diferenciação Numérica Capítulo 5 - Integração e Diferenciação Numérica Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa

Leia mais

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS 1. INTRODUÇÃO Sistemas dinâmicos lineares são aqueles que obedecem ao princípio da superposição, isto é, um sistema

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Pro: Lauro Cesar Galvão Campus Curitiba Departamento Acadêmico de Matemática Cálculo Numérico Entrega: unto com a a parcial DATA DE ENTREGA: dia da a PROVA (em

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002029EM1 - Cálculo Numérico Computacional Docente(s) Adriana Cristina Cherri Nicola Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Exame de Análise Numérica, 1ª Parte/ 1º Teste (LMAC, MMA) Instituto Superior Técnico, 30 de Janeiro de 2017, 18h30-19h45-21h00

Exame de Análise Numérica, 1ª Parte/ 1º Teste (LMAC, MMA) Instituto Superior Técnico, 30 de Janeiro de 2017, 18h30-19h45-21h00 Exame de Análise Numérica, ª Parte/ º Teste (LMAC, MMA) Instituto Superior Técnico, 0 de Janeiro de 07, 8h0-9h5-h00.) [.0] Considere f(x) = x 0 g(t)dt que verica f() = g() = 0, e ainda f() = g (). a) Determine

Leia mais

Introdução à Física Computacional

Introdução à Física Computacional 7600017 Introdução à Física Computacional Sexto Projeto (prazo até 26/06/18) Instruções Crie um diretório PROJ6 #usp em /home/public/fiscomp18/proj6 Proteja seu diretório para não ser lido por g e o Deixe

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/11 2/11 Em diversos sistemas mecânicos, amortecedores de Coulomb ou de atrito seco são utilizados devido à simplicidade mecânica e conveniência. Em estruturas vibratórias, quando componentes apresentam

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA Introdução ao Cálculo Numérico 2a. Edição Álvaro Luiz de Bortoli Carolina Cardoso Maria Paula

Leia mais

Matemática Aplicada. Retomar o meu cargo habitual

Matemática Aplicada.  Retomar o meu cargo habitual 1 de 6 Matemática Aplicada Nome de utilizador:.: Aluno (Retomar o meu cargo habitual) LVM MA-Biomedica Retomar o meu cargo habitual Ficha da disciplina Actividades Chats Fóruns Inquéritos Livros Recursos

Leia mais

Capítulo 6 - Integração e Diferenciação Numérica

Capítulo 6 - Integração e Diferenciação Numérica Capítulo 6 - Integração e Diferenciação Numérica Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial

Leia mais

Métodos de Aproximação em Engenharia

Métodos de Aproximação em Engenharia Métodos de Aproximação em Engenharia balsa@ipb.pt Departamento de Matemática Mestrados em Engenharia da Construção 1 o Semestre 2011/2012 Métodos de Aproximação em Engenharia 1/ 11 Sumário Primeira Aula

Leia mais

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/2003

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/2003 INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo 00/003 ANÁLISE NUMÉRICA Formulário 1. Representação de Números e Teoria

Leia mais

Capítulo 6 - Integração e Diferenciação Numérica

Capítulo 6 - Integração e Diferenciação Numérica Capítulo 6 - Integração e Diferenciação Numérica Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica

Leia mais

Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná Cálculo Numérico - Zeros de Funções Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Zeros de Funções 1/81 Problema Velocidade do pára-quedista

Leia mais

Modelagem de Contaminações Periódicas por Radionuclídeos

Modelagem de Contaminações Periódicas por Radionuclídeos Modelagem de Contaminações Periódicas por Radionuclídeos Danielle S. Mingatos, Joyce S. Bevilacqua Instituto de Matemática e Estatística da Universidade de São Paulo (IME-USP) Rua do Matão, 00, Cidade

Leia mais