Modelagem Matemática para Controle de Nível de um Tanque
|
|
|
- Margarida Bergler Sá
- 7 Há anos
- Visualizações:
Transcrição
1 Modelagem Matemática para Controle de Nível de um Tanque Fevereiro de 2014
2 Tanque Cônico: Modelagem Matemática I Considere que se deseja controlar o nível de um reservatório cuja área da seção transversal varia com o nível, como mostrado abaixo: Atuador q in R 1 LC LT H h R 0 q out
3 Tanque Cônico: Modelagem Matemática II O balanço de massa neste sistema determina que uma variação de volume V (em m 3 ) ocorrerá devido a uma diferença entre as vazões de entrada q in e de saída q out (ambas em m 3 /s), durante um determinado intervalo de tempo t (em segundos): V = q in t q out t, (1) sendo que a variação de volume pode ser aproximada pela área da seção transversal vezes uma variação na altura V = π[r(h)] 2 h, (2) r(h) = R 0 + αh. A variação do raio do tanque cônico com a altura está associada ao valor do parâmetro α = R1 R0 H (vide figura no slide anterior).
4 Tanque Cônico: Modelagem Matemática III Assumindo-se que a vazão de entrada q in é a variável manipulada para se conseguir controlar o nível no reservatório, tem-se que q in (t) = u(t). (3) Considerando-se uma aproximação para a Equação de Bernoulli que relaciona as vazões e pressões entre o ponto superior do reservatório e a saída do tanque, pode-se escrever que: q out (t) = C v h, (4) sendo C v o coeficiente de descarga da saída do tanque.
5 Tanque Cônico: Modelagem Matemática IV Desta maneira, combinando-se as equações (1) a (4), tem-se que: π[r(h)] 2 h = u t C v h t, h t = C v h π [R 0 + αh] 2 + u π [R 0 + αh] 2. Fazendo o limite t 0, e definindo-se x = h, C v /π = a e 1/π = b, podemos escrever que: ẋ = a x [R 0 + αx] 2 + b 2 u, [R 0 + αx] (5) y = x.
6 Observações Importantes Note que mesmo para um problema de controle aparentemente simples, o sistema é não linear. A equação (5) está representada na chamada forma não linear, afim em relação à entrada u: Além disso, de modo que g(x) = ẋ = f(x) + g(x)u, (6) y = h(x). r(x) = R 0 + αx, α > 0, b [r(x)] 2 > 0, x 0.
7 Determinação da Condição de Equiĺıbrio Para se obter o modelo dinâmico linear local, em torno de um ponto de operação, antes é preciso encontrar uma condição de operação válida. Como iremos supor que o sistema se encontra relaxado, antes de se alterar/variar quaisquer entradas, uma condição de operação válida será representada por ẋ = 0 a x eq [R 0 + αx eq ] 2 + b [R 0 + αx eq ] 2 u eq = 0, e, portanto, para um valor constante de vazão de entrada u eq, o nível de equiĺıbrio será atingido quando a vazão de saída for igual à vazão de entrada, i.e. u eq = a xeq q in = C v h b }{{}. (7) q out
8 Linearização Anaĺıtica I 1 Para proceder à obtenção do modelo linear local em torno de uma condição de operação desejada (para valores dados e consistentes de vazão constante de entrada e nível correspondente do tanque), pode-se definir as variáveis desvio: δx = x x eq, δy = y y eq, δu = u u eq. (8)
9 Linearização Anaĺıtica II 2 Em seguida, obtém-se uma aproximação para a maneira como o desvio da condição de operação ocorre ao longo do tempo. A partir da equação (6), e usando o desenvolvimento em série de Taylor para as funções não lineares: d dt {δx} f(x eq) + g(x eq )u eq }{{} =0 (por definição) [ ] f + g x + u eq x=xeq x δx (9) x=xeq }{{} A + g(x eq ) δu. }{{} B
10 Linearização Anaĺıtica III 3 A partir da expressão (9), podemos escrever que { } d L dt {δx} L {Aδx + Bδu}, sx(s) AX(s) + BU(s). E tendo em vista que A R, B R, e δy = δx Y (s) = U(s), tem-se que Y (s) U(s) = B s A. (10)
11 Linearização Numérica O processo de obtenção do modelo linear local pode ser conduzido de outras duas maneiras: 1 Cálculo numérico dos coeficientes do sistema linear por meio de funções já prontas do MATLAB que retiram a informação desejada de um diagrama de simulação contendo o modelo não linear do processo; 2 Realização de um teste em malha aberta (em simulação ou, se possível, na realidade) em torno da condição de operação desejada.
12 Linearização Numérica: MATLAB I Suponha que exista um diagrama MATLAB/Simulink chamado tanque nl MA.mdl, como mostrado abaixo (note que os terminais de entrada e de saída foram explicitados):
13 Linearização Numérica: MATLAB II Obtenção da condição de equiĺıbrio: % Est. i n i c i a l para a cond. de e q u i l i b r i o x0 = 0. 5 ; % V a l o r da e n t r a d a de e q u i l i b r i o u0 = 1 ; % Nas opcoes a b a i x o informa se que % o a l g o r i t m o nao deve a l t e r a r % o v a l o r da e n t r a d a de e q u i l i b r i o % e s c o l h i d a x0 = t r i m ( tanque nl MA, x0, u0, [ ], [ ], 1 ) x0 = 4.000
14 Linearização Numérica: MATLAB III Cálculo numérico do modelo linear local, via cômputo aproximado das derivadas parciais como diferenças finitas: [ A, B, C,D] = t r i m ( tanque nl MA, x0, u0 ) A = B = C = 1 D = 0 Portanto, a partir de (10), G(s) 0,8842 s + 0,1105 = 8 9,05s + 1.
15 Linearização Numérica: Curva de Reação I Um modelo linear local pode ser rapidamente obtido, por inspeção da resposta do sistema a uma variação em degrau na variável manipulada:
16 Linearização Numérica: Curva de Reação II Do resultado obtido anteriormente, vê-se que: 1 A resposta ao degrau é típica de um sistema de primeira ordem; 2 Não parece haver tempo morto; 3 O ganho estático do processo é δy (4,82 4) lim t δu (1,1 1) = 8,2 m/(m3 /s). 4 A constante de tempo pode ser estimada como 5τ (60 5) = 55 s τ 11 s. e, portanto, o modelo linear local obtido por inspeção da curva de reação à resposta ao degrau será: G(s) 8,2 11s + 1. Comparem com a FT obtida anteriormente!
X. MÉTODOS DE ESPAÇO DE ESTADOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE X. MÉTODOS DE ESPAÇO DE ESTADOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de
PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta)
PROVAS Ciência da Computação 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) Ajuste de Curvas Objetivo Ajustar curvas pelo método dos mínimos quadrados 1 - INTRODUÇÃO Em geral, experimentos
Exercício #3 Controle de Processos Químicos
Exercício #3 Controle de Processos Químicos Ronaldo 1. estabeleça uma configuração de controle para o sistema (a) calcule o número de graus de liberdade para o controle a partir do modelo não-linear sugerido
II. REVISÃO DE FUNDAMENTOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica
Condições de Equilíbrio de Vôo. Linearização.
Introdução ao Controle Automático de Aeronaves Condições de Equilíbrio de Vôo Linearização Leonardo Tôrres torres@cpdeeufmgbr Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep Eng Eletrônica
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas 1. de modelagem com Circuitos Elétricos 2. Sistemática para Obtenção de Equações de Estado pag.1 Teoria de Sistemas Lineares Aula 4 Descrição Matemática de Sistemas Exemplo
Modelagem no Domínio do Tempo
CAPÍTULO TRÊS Modelagem no Domínio do Tempo SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Representação no Espaço de Estados Para o amplificador de potência, E s a() V () s 150. Usando a
UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA. 2ª Lista de SEL0417 Fundamentos de Controle.
UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA ª Lista de SEL0417 undamentos de Controle Professor: Rodrigo Andrade Ramos Questão 1 Suponha que um satélite
1 Sistemas multidimensionais e Linearização
Teoria de Controle (sinopse) Sistemas multidimensionais e Linearização J. A. M. Felippe de Souza Sistemas multidimensionais Linearização Aideia de sistemas é quase que intuitiva. Eemplos de sistemas físicos
EES-20: Sistemas de Controle II. 31 Julho 2017
EES-20: Sistemas de Controle II 31 Julho 2017 1 / 41 Folha de informações sobre o curso 2 / 41 O que é Controle? Controlar: Atuar sobre um sistema físico de modo a obter um comportamento desejado. 3 /
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para
Comportamento Dinâmico de Sistemas de Primeira Ordem. Sistemas de Primeira Ordem (CP1) DEQ/UFSCar 1 / 46
Comportamento Dinâmico de Sistemas de Primeira Ordem Sistemas de Primeira Ordem (CP1) www.professores.deq.ufscar.br/ronaldo/cp1 DEQ/UFSCar 1 / 46 Roteiro 1 Sistemas de Primeira Ordem Função de Transferência
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Numérico 3/55 Introdução Em geral, experimentos geram uma gama de dados que devem
EE-253: Controle Ótimo de Sistemas. Aula 6 (04 Setembro 2018)
EE-253: Controle Ótimo de Sistemas Aula 6 (4 Setembro 218) 1 / 54 Regulador Linear Quadrático Modelo linear: ẋ = Ax + Bu com (A, B) estabilizável. Funcional de custo quadrático: J = [ ] x T (t)qx(t) +
Resolução de Sistemas de
Capítulo 5 Resolução de Sistemas de Equações Não-Lineares 51 Introdução Neste capítulo, apresentaremos o método de Newton para sistemas de equações não-lineares, ie, procuramos um vetor x que satisfaça
Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi
Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi Adriano A. G. Siqueira e Marco H. Terra Departamento de Engenharia Elétrica Universidade de São Paulo - São Carlos O problema de controle ótimo Considere
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA. Sistemas
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA Sistemas Dinâmicos Para controlar é preciso conhecer Sistemas dinâmicos Modificam-se no decorrer do tempo Modelos matemáticos Método analítico (Leis físicas)
1. Estudo do pêndulo
Objectivos odelizar um pêndulo invertido rígido de comprimento e massa, supondo uma entrada de binário. Simular em computador. entar estabilizar o pêndulo em ciclo aberto por manipulação directa do binário.
Controle. Transformada Laplace básico
Controle Transformada Laplace básico REQUISITOS Para perfeita compreensão do conteúdo desta aula é desejável o entendimento dos seguintes assuntos (eventualmente disponíveis em outros vídeos neste canal):
Modelagem de Sistemas de Controle por Espaço de Estados
Modelagem de Sistemas de Controle por Espaço de Estados A modelagem por espaço de estados possui diversas vantagens. Introduz a teoria conhecida como Controle Moderno ; Adequada para sistemas de múltiplas
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
y (n) (x) = dn y dx n(x) y (0) (x) = y(x).
Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.
Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares
Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que
3. MODELOS MATEMÁTICOS
13 3. MODELOS MATEMÁTICOS 3.1 ENSAIOS EXPERIMENTAIS COM O TROCADOR DE CALOR Todos os ensaios realizados com o trocador de calor para a obtenção de seu modelo consistiram em se aplicar um degrau de vazão
SISTEMAS DE CONTROLE SIC
SISTEMAS DE CONTROLE SIC Parte 1 Modelagem de Sistemas Dinâmicos Professor Dr. Michael Klug 1 Introdução MODELOS No estudo de sistemas de controle devemos ser capazes de obter uma representação matemática
1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)
1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes
0.1 Expansão em Série de Taylor de Uma Função
0. Expansão em Série de Taylor de Uma Função Numa análise de propriedade de uma função, um conceito fundamental é a expansãoemsériedetaylordeumafunção. Sejaf = f(x) uma função arbitrária, contínua e suave.
7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.
7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4
Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle
Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias
Derivação Logarítmica
Derivação Implícita Derivação Logarítmica É uma técnica muito útil para derivar funções compostas de produtos, quocientes e potências. Exemplo 1: calcule a derivada de y = x2 3 7x 14 1 + x 2 4 Exemplo
PQI-2407 CONTROLE DE PROCESSOS QUÍMICOS. Professor: Darci Odloak Ano: 2009
PQI-407 CONTROLE DE PROCESSOS QUÍMICOS Professor: Darci Odloak no: 009 1 PQI-407 CONTROLE DE PROCESSOS QUÍMICOS O objetivo é introduzir os conceitos básicos para o entendimento das malhas de controle Porque
DCC008 - Cálculo Numérico
DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora [email protected] Conteúdo Introdução Definição
Matrizes e Linearidade
Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função
Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares
Realimentação Linearizante
Realimentação Linearizante ENGC65: Sistemas de controle III Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 03 de junho de 2019 Prof. Tito Luís Maia Santos 1/ 22 Sumário
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando
Lista de Exercícios 2
Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Elétrica 107484 Controle de Processos 1 o Semestre 2015 Lista de Exercícios 2 Para os exercícios abaixo considere (exceto se
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao
Lista de Exercícios 1
Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Elétrica 107484 Controle de Processos 1 o Semestre 2015 Lista de Exercícios 1 Para os exercícios abaixo considere (exceto se
Lista 3 - Métodos Matemáticos II
Lista 3 - Métodos Matemáticos II Prof. Jorge Delgado. Seja a curva poligonal de vértices 2( + i), 2( + i), 2( + i) e 2( i) orientada positivamente. Use a fórmula integral de auchy para verificar que: e
UNIVERSIDADE DE PERNAMBUCO. Física Experimental. Prof o José Wilson Vieira
UNIVERSIDADE DE PERNAMBUCO ESCOLA POLITÉCNICA DE PERNAMBUCO Física Experimental Prof o José Wilson Vieira [email protected] AULA 03: EXPERIÊNCIAS DA 1ª UNIDADE Recife, setembro de 2015 ATIVIDADES NESTA
13 AULA. Regra da Cadeia e Derivação Implícita LIVRO. META Derivar funções compostas e funções definidas implicitamente.
1 LIVRO Regra da Cadeia e Derivação Implícita 13 AULA META Derivar funções compostas e funções definidas implicitamente. OBJETIVOS Estender os conceitos da regra da cadeia e da derivação implícita de funções
GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x =
88 0) x 0, 5 aplicando a prop. a n m m a n : 88 5 00 x 88 5 0 x 8 5 0 x 80 5 0 x 75 0 x 75x 0 x 0 75 x 5 multiplicando toda inequação por 0: multiplicando toda inequação por x: Porém, x 0, pois x é o denominador.
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de
ESTATÍSTICA COMPUTACIONAL
ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Se a integração analítica não é possível ou
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo
1 Sistema Máquina-Barra in nita: apresentação e modelagem
EEL 751 - Fundamentos de Controle 1o rabalho Computacional 1 Sistema Máquina-Barra in nita: apresentação e modelagem Modelos do tipo máquina-barra in nita como o representado pelo diagrama uni - lar da
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar
Pelo gráfico pode-se perceber que existe atraso na resposta, portanto o modelo adequado é o de 1ª ordem mais tempo morto, que se dá por:
TEQ00 - Lista 3 Controle de Processos Monitoria º Semestre 013 Resolução 1- a) Pelo gráfico pode-se perceber que existe atraso na resposta, portanto o modelo adequado é o de 1ª ordem mais tempo morto,
Controlo Em Espaço de Estados. Trabalho de Laboratório nº 3
Mestrado em Engenharia Electrotécnica e de Computadores Controlo Em Espaço de Estados 2008/09 Trabalho de Laboratório nº 3 Controlo Adaptativo do Nível de um Tanque J. Miranda Lemos e Alexandre Bernardino
Tópico 3. Limites e continuidade de uma função (Parte 1)
Tópico 3. Limites e continuidade de uma função (Parte 1) O Cálculo Diferencial e Integral, também chamado de Cálculo Infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido
Lista de Exercícios Usando a definição de derivada lim h 0, determine a derivada das. a)f(x) = 3x + 2. b)f(x) = 1 4x 2.
EC239 - MATEMÁTICA Prof. Gustavo Ramos Sampaio Lista de Exercícios 2-2017.1 f(x+h) f(x) 8. Usando a definição de derivada lim h 0, determine a derivada das h seguintes funções: a)f(x) = 3x + 2 b)f(x) =
Neste capítulo estamos interessados em resolver numericamente a equação
CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,
6 MÉTODO DE ELEMENTOS FINITOS - MEF
6 MÉTODO DE ELEMENTOS FINITOS - MEF O Método de Elementos Finitos é uma técnica de discretização de um problema descrito na Formulação Fraca, na qual o domínio é aproximado por um conjunto de subdomínios
Lista de Exercícios 2
Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Elétrica 107484 Controle de Processos 1 o Semestre 2018 Prof. Eduardo Stockler Tognetti Lista de Exercícios 2 Para os exercícios
Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013
Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;
PARAMETRIZAÇÃO DE CURVA:
PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de
Fundamentos de Controle
Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui
Modelagem Computacional. Parte 8 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
LOQ Fenômenos de Transporte I
LOQ 4083 - Fenômenos de Transporte I FT I 07 Equações básicas na forma integral para o volume de controle Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas
Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*
ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular
4.1 Pólos, Zeros e Resposta do Sistema
ADL17 4.1 Pólos, Zeros e Resposta do Sistema A resposta de saída de um sistema é a soma de duas respostas: a resposta forçada e a resposta natural. Embora diversas técnicas, como a solução de equações
Ações de controle básicas: uma análise do desempenho em regime
Capítulo 3 Ações de controle básicas: uma análise do desempenho em regime estático 3. Introdução Neste capítulo, as ações de controle básicas utilizadas em controladores industriais e o seu desempenho
Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias
Problemas com Valores de Fronteira para Equações Diferenciais Ordinárias Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados
Controle utilizando variáveis de estado - v1.1
2 ontrole utilizando variáveis de estado - v. 2. Objetivo O objetivo desta experiência é, utilizando o enfoque de espaço de estados, projetar e implementar um controlador digital para uma planta simples
Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.
Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante
Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016
Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016 Simulação de Sistemas Simulação é a técnica de solução de um problema pela análise de
Licenciatura em Engenharia Electrotécnica e de Computadores. 1 a chamada Ou seja,
Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1 a chamada 00-01-08 Resolução da Parte Prática 1 (a) O valor aproximado de w é obtido a partir dos valores aproximados de x,
Observabilidade, Decomposição Canônica
Observabilidade, Decomposição Canônica 1. Observabilidade de Sistemas LIT 2. Dualidade 3. Índices de Observabilidade 4. Decomposição Canônica pag.1 Teoria de Sistemas Lineares Aula 16 Observabilidade Sistemas
Estabilidade de sistemas de controle lineares invariantes no tempo
Capítulo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2. Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no
Cap. 5 Estabilidade de Lyapunov
Cap. 5 Estabilidade de Lyapunov 1 Motivação Considere as equações diferenciais que modelam o oscilador harmônico sem amortecimento e sem força aplicada, dada por: M z + Kz = 0 Escolhendo-se x 1 = z e x
A integral definida Problema:
A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y
4 Cálculo de Equivalentes Dinâmicos
4 Cálculo de Equivalentes Dinâmicos 4.1. Introdução Os sistemas de potência interligados vêm adquirindo maior tamanho e complexidade, aumentando a dependência de sistemas de controle tanto em operação
Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.
Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 Aproximações
Análise Dinâmica de Sistemas Mecânicos e Controle
Análise Dinâmica de Sistemas Mecânicos e Controle Unidade 2 Representação de sistemas Através de Diagramas e Espaço de Estados Prof. Thiago da Silva Castro [email protected] 1. Representação
5- Variáveis aleatórias contínuas
5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado
depende apenas da variável y então a função ṽ(y) = e R R(y) dy
Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas
4 Modelagem Numérica. 4.1 Método das Diferenças Finitas
4 Modelagem Numérica Para se obter a solução numérica das equações diferenciais que regem o processo de absorção de CO 2,desenvolvido no capitulo anterior, estas precisam ser transformadas em sistemas
Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m
Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V) - 5 de Janeiro de 2 - hm Resolução Problema (2,5 val.) Determine uma primitiva de cada uma
