2 - Derivadas parciais

Tamanho: px
Começar a partir da página:

Download "2 - Derivadas parciais"

Transcrição

1 8 - ervadas parcas Sea por eemplo: Estma-se qe a prodção semanal de ma ábrca sea dada pela nção Q ndades onde representa o número de operáros qalcados e representa o número dos não-qalcados. Atalmente a ábrca conta com 0 operáros qalcados e 40 nãoqalcados. Qal será a varação na prodção semanal resltante da adção de operáro qalcado sendo mantdo constante o número de operáros não-qalcados? Em mtos problemas de natreas dversas envolvendo dversas varáves desea-se calclar a taa de varação em relação a ma varável mantendo constantes as otras. O sea o obetvo consste em dervar a nção em relação a ma determnada varável e manter as otras as. Este processo é conhecdo como dervação parcal. Otra stação: ado o parabolóde e o plano ca vsalação no º octante está na gra chamamos de C a crva resltante da ntersecção dessas speríces sto é sbsttndo : C : ado m ponto P dessa crva por eemplo P como vamos calclar a nclnação da reta tangente à crva C em P? A resposta a esta qestão é aer ma análse consderando a modcação de apenas ma varável. Esse procedmento va nos levar à denção de ma dervada para cada ma das varáves ndependentes qe va nos permtr responder a qestão acma. enção: Seam : A R R e ma nção de das varáves e 0 0 A. Fado 0 podemos consderar a nção g 0. A dervada de g no ponto 0 é denomnada dervada parcal de em relação a no ponto 0 0 denotada por 0 0 denotada por: g g lm 0 se o lmte estr Analogamente denmos a dervada parcal de em relação a no ponto 0 0 por: g g lm se o lmte estr Interpretação Geométrca Para 0 temos qe 0 é ma nção de ma varável co gráco é ma crva C resltante da ntersecção da speríce com o plano 0.

2 9 A nclnação o coecente anglar α da reta tangente a crva C no ponto 0 0 é dada por: tgα 0 0. e manera análoga temos qe a nclnação da reta tangente a crva C resltante da ntersecção de com o plano 0 é tgβ 0 0. Assm temos: A dervada parcal de ª ordem de em relação a como o o o... Analogamente: A dervada parcal de ª ordem de em relação a como o o o... o o No caso do parabolóde e o plano a nclnação da reta tangente a crva C no ponto é dada por. O sea: - e - Logo tg α. Eercícos Calcle as dervadas parcas e nos pontos ndcados: a 7 ; 0 b - ; c 7 ; 0 d 7 7 ;

3 Encontrar as dervadas parcas de ª ordem das segntes nções: 5 a 5 b a b c onde a b c constantes c d m n p q r s onde m n p q r s constantes 0 e g cos h cos7 sen tg k l e e 7 m e cos n 7 o p sen Verqe se a nção ln satsa a eqação: 4 Sea. Encontrar a nclnação da reta tangente a crva C resltante da ntersecção de com no ponto. Faça m esboço. 5 Sea 5 -. Encontrar a nclnação da reta tangente a crva C resltante da ntersecção de com no ponto -. A prodção dára de ma certa ábrca é de QKL 0K / L / ndades onde K representa o captal nvestdo meddo em $ e L é o número de operáros-hora. Sponha qe o captal nvestdo atalmente sea de 900 $ e qe se empregem 000 operáros-hora. Utlando a análse margnal avale o eeto qe m acréscmo de $ provocará na prodção dára admtndo qe o número de operáros permaneça constante. 7 A temperatra do ponto de ma chapa plana é dada por T T em C e em metros a etermne o domíno de T e a temperatra no ponto 4; b etermne a eqação da soterma qe passa pelo ponto 4 e represente-a no plano ; c Se a partr do ponto 4 ma pessoa camnhar em dreção paralela ao eo sentdo postvo a temperatra amentará o dmnrá? Qal a taa de varação da temperatra nesse ponto?

4 8 Vercar se a nção satsa a eqação 0 para 0 0 Respostas a 7 - b - - c 8 4 d 0 0 a b ab bc c d mpq npr e / / -/ / -/ / - -/ -/ -5/ - g cos - sen h cos7 -sen7 cos sen sec tg k e e l e 7 7e 7 m e cos -e sen n o 7 p cos cos cos 7 5 C 5-0 C/m. - ervadas de ordem speror ervadas scessvas As nções dervadas em ª ordem podem sorer nova dervação. Nma nção as dervadas parcas de segnda ordem são: - Em relação a : - Em relação a : - Em relação a e a : - Em relação a e a : e tercera ordem:... Teorema de Schwart: A ordem da dervação não modca a dervada nal

5 .4 Eercícos Calcle as dervadas parcas de ª ordem das nções a 5 7 b a b c c 7 4 sen d e 7 e ln Achar as dervadas de ª ordem da nção 4 Calcle a dervada ndcada a Se ln5 calcle b Se cos calcle 4 Verqe o teorema de Schwart para a nção: 5 etermnar a relação qe este entre a e b para qe a nção e ab satsaça a eqação 9. Resposta da ª: estão na ordem: a 0 7 b a c b c 4 4 sen 8cos 8sen d e 7 4e 7 49 e 7 4 e.5 ervadas dreconas e o vetor gradente Se as dervadas parcas e representam as taas de varação de na dreção dos eos e nas dreções dos versores e. Sponha qe qeramos determnar a taa de varação de no ponto 0 0 na dreção de m vetor ntáro a b como na gra ao lado: Para ae-lo devemos consderar a speríce S com eqação e tomar 0 0. O ponto P pertence a S. O plano vertcal qe passa por P na dreção de ntercepta S nma crva C ver gra abao. A nclnação da reta t tangente a C em P é a taa de varação dervada de na dreção de.

6 Se Q é m otro ponto sobre C e P Q são proeções de P e Q sobre o plano então o vetor P 'Q' é paralelo a e portanto P ' Q' h ha hb Para algm valor do escalar h. Portanto - o ha - o hb logo o ha o hb e 0 0 ha 0 hb o 0 h h h Se tomarmos o lmte qando h 0 obteremos a taa de varação em relação a dstânca na dreção de qe é chamada de dervada dreconal de na dreção de. Assm a dervada dreconal de em 0 0 na dreção do vetor ntáro a b é 0 ha 0 hb o 0 0 lm e esse lmte estr. h 0 h 0 Consderando esta denção se 0 qe é o vetor ntáro sobre o eo e se 0 qe é o vetor ntáro sobre o eo. Em otras palavras as dervadas parcas de com relação a e são casos partclares da dervada dreconal. versor Se é ma nção derencável em e então tem dervada dreconal na dreção de qalqer a b e pode-se mostrar qe a b Se o versor a m ânglo θ com o eo postvo então podemos escrever epressão ca cosθ senθ cosθ senθ e a Eemplo : etermne a dervada dreconal se 4 e é o versor dado pelo π ânglo θ. Qal será? Resolvendo:

7 4 θ senθ cos cos π π sen [ ] 8 8 Portanto [ ] 90 8 Obs.: A dervada dreconal representa a taa de varação de dervada na dreção de. Isto é a nclnação da reta tangente a crva obtda pela ntersecção da speríce 4 e o plano vertcal qe passa por 0 na dreção de. Ânglo de nclnação: o arctg α α Vetor Gradente A dervada dreconal pode ser escrta como m prodto escalar de dos vetores: b a b a O prmero vetor no prodto escalar ocorre não somente no cômpto da dervada dreconal mas também em mtas otras stações. Assm recebe o nome de gradente de e a notação grad o qe lemos del. Assm temos qe: Se é ma nção de das varáves e o gradente de é a nção vetoral denda por: Eemplo : Se sen e então

8 5 e e cos e cos e e Com a notação de gradente podemos reescrever a epressão para a dervada dreconal como qe epressa a dervada dreconal na dreção de como a proeção escalar do vetor gradente sobre. Eemplo : etermne a dervada dreconal da nção 4 no ponto - na dreção do vetor v 5. Solção: Calclando o gradente de no ponto -: Como v não é m vetor ntáro e 9 v o versor de v é v v Sendo temos: Fnções de três varáves Para nções de três varáves podemos denr dervadas dreconas de modo semelhante. Assm temos: c b a E o vetor gradente

9 O smplcando k e assm a dervada dreconal para nções de três varáves pode ser reescrta como Eemplo 4: Se sen a determne o gradente de b determne a dervada dreconal de no ponto 0 na dreção v k Resolvendo: a O gradente de é: b No ponto 0 temos 0 00 O versor de v k é Como sen cos cos 0 k k k k k Sponha como ma nção derencável de das o três varáves. O valor mámo da dervada dreconal é e ocorre qando tem a mesma dreção qe o vetor gradente. Eemplo 5: a Se e determne a taa de varação de no ponto P0 na dreção de P a Q/. b Em qe dreção tem a máma taa de varação? Qal é a taa máma de varação? Resolvendo: a calclando o gradente: e 0 e 4 O versor da dreção PQ 5 é Q é logo a taa de varação de na dreção qe va de P a

10 7 b amenta mas rapdamente na dreção do gradente 0. A máma taa de varação é 0 5 Eercícos: etermne o gradente de no ponto e se-o para calclar a dervada dreconal de em na dreção do vetor a 4. etermne a dervada dreconal de 4 no ponto - na dreção ndcada pelo ânglo π θ. etermne a dervada dreconal de sen no ponto 4 - na dreção ndcada pelo ânglo π θ Se 5 4 P determne o gradente de calcle o gradente no ponto P e determne a taa de varação de em P na dreção do vetor. 4 5 Se ln P- determne o gradente de calcle o gradente no ponto P e 5 5 determne a taa de varação de em P na dreção do vetor. etermne a dervada dreconal da nção no ponto dado na dreção do vetor v. a 4 v 4 b e 0 v c 4 v d v 4 k Respostas: 48/ / a /0 b 4

Derivada Direcional e gradiente no plano

Derivada Direcional e gradiente no plano Dervada Dreconal e gradente no plano Sea m campo escalar no plano descrto por ma nção derencável a das varáves. Assm se =(,, então é o valor do campo escalar no ponto P=(,.Sea L ma reta no plano. Qando

Leia mais

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez Engenhara Cvl/Mecânca Cálclo - º semestre de 01 Proa Gsele A.A. Sanchez 4ª ala: Dervadas Dreconas e Gradente Gradentes e dervadas dreconas de nções com das varáves As dervadas parcas de ma nção nos dão

Leia mais

Deformações na Notação Indicial

Deformações na Notação Indicial SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pós-gradação em Engenhara de Transportes Deformações na Notação Indcal MAJ MONIZ DE ARAGÃO Campo de deslocamentos; Componentes de deformação;

Leia mais

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA Cálclo Vetoral / Ila Reboças Frere / DMAT UFBA. Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos..1 Campos Escalares e Vetoras Dada ma regão D do espaço podemos asocar a

Leia mais

f R e P o D. Vimos que (Po x

f R e P o D. Vimos que (Po x Universidade Salvador UNIFACS Crsos de Engenharia Cálclo IV Proa: Ilka Reboças Freire Cálclo Vetorial Teto 0: Derivada Direcional e Gradiente. A Derivada Direcional Consideremos a nção escalar : D R R

Leia mais

Cálculo 1 4ª Lista de Exercícios Derivadas

Cálculo 1 4ª Lista de Exercícios Derivadas www.matematiqes.com.br Cálclo 4ª Lista de Eercícios Derivadas ) Calclar as derivadas das epressões abaio, sando as fórmlas de derivação: a) y 4 4 d 4 b) f f c) y d d) y R : d df e) 6 f R : 6 d f) 5 y 4

Leia mais

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo Derivada Ala 09 Cálclo Dierencial Proessor: Éwerton Veríssimo Derivada: Conceito Físico Taa de Variação A dosagem de m medicamento pode variar conorme o tempo de tratamento do paciente. O desgaste das

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática Cálclo Vetorial Estdaremos neste tópico as grandezas etoriais, sas operações, propriedades e aplicações. Este estdo se jstifica pelo fato de, na natreza, se apresentarem 2 tipo de grandezas, as escalares

Leia mais

MÉTODOS DE INTEGRAÇÃO

MÉTODOS DE INTEGRAÇÃO ÁLULO DIFERENIL E INTEGRL MÉTODOS DE INTEGRÇÃO Nem todas as integrais são imediatas segndo o formlário dado, porém algns métodos simples ajdam a obter as primitivas das fnções qe não têm integração imediata.

Leia mais

PRIMITIVAS 1. INTRODUÇÃO

PRIMITIVAS 1. INTRODUÇÃO Material de apoio referente ao tópico: Integrais Módlo I. Adaptado de: Prof. Dr. José Donizetti Lima por Prof. Dra. Dayse Regina Batists.. INTRODUÇÃO PRIMITIVAS Em mitos problemas, embora a derivada de

Leia mais

DERIVADAS E DIFERENCIAIS II. Nice Maria Americano da Costa

DERIVADAS E DIFERENCIAIS II. Nice Maria Americano da Costa DERIVADAS E DIFERENCIAIS II Nice Maria Americano da Costa DERIVADAS DE ALGUMAS FUNÇÕES ELEMENTARES f f sen f f tg f cot f log f ln f e n a f n n f f sen sen f loga e f f e f sec f ec PROPRIEDADES Teorema.

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Exemplos. representado a seguir, temos que: são positivas. são negativas. i

Exemplos. representado a seguir, temos que: são positivas. são negativas. i 6 Prodto Vetoral Para defnrmos o prodto etoral entre dos etores é ndspensáel dstngrmos o qe são bases postas e bases negatas Para sso consderemos ma base do espaço { } e m obserador Este obserador dee

Leia mais

Redes de Petri. Definições:

Redes de Petri. Definições: Redes de Petr Defnções: Uma Rede de Petr (PN) é m grafo dreto bpartdo o qal tem dos tpos de nós denomnados lgares (qe representam estados) e transções (qe representam eventos). O estado é alterado pelo

Leia mais

F-128 Física Geral I. Aula Exploratória Cap. 3.

F-128 Física Geral I. Aula Exploratória Cap. 3. F-128 Físca Geral I ula Eploratóra Cap. 3 username@f.uncamp.br Soma de vetores usando componentes cartesanas Se, o vetor C será dado em componentes cartesanas por: C ( î ĵ)( î ĵ) ( )î ( )ĵ C C î C ĵ onde:

Leia mais

Representação de vetores

Representação de vetores UL PSSD Representação de vetores Modo Gráfico: Segmento de reta orientado com a mesma direção e sentido qe o vetor considerado e cjo comprimento é proporcional à magnitde do mesmo. Modo escrito: Letras

Leia mais

AULA Exercícios. ORTOGONALIDADE EM R N. , o vector u tem norma. O produto interno entre os vector u e v, é

AULA Exercícios. ORTOGONALIDADE EM R N. , o vector u tem norma. O produto interno entre os vector u e v, é Note bem: a letra destes apontamentos não dspensa de modo algm a letra atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo alno resolvendo os problemas

Leia mais

CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula

CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Ala n o 07: Teorema do Confronto. Limite Fndamental Trigonométrico. Teorema do Valor Intermediário.

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II Cálclo Diferencial e Integral II Página Universidade de Mogi das Crzes UMC Campos Villa Lobos Cálclo Diferencial e Integral II Parte II Engenharia Civil Engenharia Mecânica marilia@mc.br º semestre de

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Inicia-se este capítulo com algumas definições e propriedades para uma seqüência de funções tal como

Inicia-se este capítulo com algumas definições e propriedades para uma seqüência de funções tal como . Métodos de Resídos Ponderados. Defnções áscas Inca-se este capítlo com algmas defnções e propredades para ma seqüênca de fnções tal como x ( x ( x ( x ( (. ( 3 4 n x Tas fnções são assmdas satsfazerem

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.6 Derivadas Direcionais e o Vetor Gradiente Nesta seção, vamos aprender como encontrar: As taxas de variação de uma função de duas ou mais variáveis

Leia mais

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x):

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x): POLINÔMIO INTERPOLAOR E NEWTON ) IFERENÇAS IVIIAS.) IFERENÇAS IVIIAS ORINÁRIAS () Sejam n pontos de uma função f():... n f( )... n - ferença dvdda de ordem zero: n n M - ferença dvdda de ordem um: M M

Leia mais

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos Tópcos em Econometra I Ala /7/23 Modelo Tobt para solção de canto Eemplos Solções de canto. Qantdade de dnhero doado para cardade: mtas pessoas não fazem este tpo de doação. Uma parcela epressva dos dados

Leia mais

AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v.

AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v. AULA 4 Prodto escalar Prodto escalar definição algébrica Sejam,, e,, escalar o número real:, chamamos de prodto Notação: o, e se lê: escalar. Eemplos: ) Dados os etores,,3 e 3,4,, calclar: a) =. (-3) +.

Leia mais

APLICAÇÕES À GEOMETRIA DIFERENCIAL9

APLICAÇÕES À GEOMETRIA DIFERENCIAL9 APLICAÇÕES À GEOMETRIA DIFERENCIAL9 Gl da Costa Marques Fundamentos de Matemátca II 9.1 Introdução 9. Tangentes e perpendculares a Curvas 9..1 Vetores Normas a uma Curva e Rao de Curvatura 9. Dferencal

Leia mais

Composição de movimentos. P(x,y) y(t) x(t) descoberta de Galileu

Composição de movimentos. P(x,y) y(t) x(t) descoberta de Galileu Composição de movimentos P(,) (t) O (t) X descoberta de Galile Uma grande parte da discssão qe sege visa o caso particlar em qe temos m movimento nma direção X e otro na direção Y, e no qal o qe acontece

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. vall@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Em mutas stuações duas ou mas varáves estão relaconadas e surge então a necessdade de determnar a natureza deste relaconamento. A análse

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

Integral Indefinido - Continuação

Integral Indefinido - Continuação - Continação Técnicas de Integração (Primitivação) OBJETIVO: Apresentar técnicas para determinar a fnção F() conhecida como primitiva tal qe F () f() o: f() d F() As principais técnicas de primitivação

Leia mais

Trabalho e Energia. Curso de Física Básica - Mecânica J.R. Kaschny (2005)

Trabalho e Energia. Curso de Física Básica - Mecânica J.R. Kaschny (2005) Trabalho e Energa Curso de Físca Básca - Mecânca J.R. Kaschny (5) Lembrando nosso epermento de queda lvre... z z 1 v t 1 z = z - v t - gt ( ) z- z v = g = t Contudo, se consderarmos obtemos: v z z 1 t

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo

Leia mais

Lista de exercícios Micro III 03/09/2008. Externalidades e Bens Públicos

Lista de exercícios Micro III 03/09/2008. Externalidades e Bens Públicos Lsta de exercícos Mcro III 03/09/008 Prof. Afonso A. de Mello Franco Neto Externaldades e Bens Públcos Exercícos Mas-Colell:.B a.b.5,.c.,.c.,.d. a.d.5,.d.7. QUESTÃO Nma economa exstem ma frma e dos consmdores.

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Proposta de resolução GRUPO I

Proposta de resolução GRUPO I Novo Espaço Matemátca A º ano Proposta de teste de avalação fnal [mao 6] Proposta de resolução GRUPO I Há rapazes, nclundo o Ru Como este não faz parte do grupo, dos restantes 9 rapazes são escolhdos O

Leia mais

Energia Cinética Média

Energia Cinética Média TRBLÊNCIA Ala 3 Energa Cnétca Méda A energa cnétca méda do fldo (por ndade de massa) é defnda por: ) ( 1 W V K A eqação de transporte para K pode ser então obtda mltplcando-se a eqação RANS por : P t 1

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. e 1 x. x ln x = lim

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. e 1 x. x ln x = lim UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 08. A VERIFICAÇÃO DE APRENDIZAGEM Nome Legível RG CPF Respostas sem jstificativas

Leia mais

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR ISEP LEI AMATA - S. 9/ CÁLCULO DIFERENCIAL EM IR Cálclo Dierencial em IR Derivaa e ma nção nm ponto Q Q As rectas PQ, PQ epq 3 são rectas secantes à crva. P Q 3 t A recta t é tangente à crva no ponto P.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

2 Análise de Campos Modais em Guias de Onda Arbitrários

2 Análise de Campos Modais em Guias de Onda Arbitrários Análse de Campos Modas em Guas de Onda Arbtráros Neste capítulo serão analsados os campos modas em guas de onda de seção arbtrára. A seção transversal do gua é apromada por um polígono conveo descrto por

Leia mais

2) Método das diferenças finitas

2) Método das diferenças finitas ) Método das derenças ntas.- Desenvolvmento do MDF a partr de séres de Taylor A expansão em séres de Taylor do valor de uma unção (, 0 x l é dada por: ( n ) n ( a)( x a) ( a)( x a) n = ( a) + ( a)( x a)

Leia mais

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE ANOS Ano Lectivo: 009 / 00 Folha de Escola onde se realiza esta prova: Data: 6 / 0 / 009 Prova: MATEMÁTICA Nome do Candidato: Docente(s): Docmento de Identificação

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES

NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES 1 O nosso objetvo é estudar a relação entre duas varáves quanttatvas. Eemplos:. Idade e altura das cranças.. v. Tempo de prátca de esportes e rtmo cardíaco

Leia mais

Isostática 2. Noções Básicas da Estática

Isostática 2. Noções Básicas da Estática Isostátca. Noções Báscas da Estátca Rogéro de Olvera Rodrgues .1. Força Força desgna um agente capa de modfcar o estado de repouso ou de movmento de um determnado corpo. É uma grandea vetoral e, como tal,

Leia mais

Antenas de Tanguá (RJ)

Antenas de Tanguá (RJ) Antenas de Tangá (RJ) Composição de movimentos y P(x,y) y(t) O x(t) X descoberta de Galile Uma grande parte da discssão qe sege visa o caso particlar em qe temos m movimento nma direção X e otro na direção

Leia mais

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga PRODUTOS DE VETORES Álgebra Linear e Geometria Analítica Prof. Aline Paliga 3.1 PRODUTO ESCALAR Chama-se prodto escalar (o prodto interno sal) de dois vetores =x 1 i + y 1 j+z 1 k e v= x 2 i + y 2 j+z

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.6 Derivadas Direcionais e o Vetor Gradiente Copyright Cengage Learning. Todos os direitos reservados. Derivadas Direcionais

Leia mais

CURSO de ENGENHARIA DE PRODUÇÃO e MECÂNICA VOLTA REDONDA Gabarito

CURSO de ENGENHARIA DE PRODUÇÃO e MECÂNICA VOLTA REDONDA Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de ENGENHARIA DE PRODUÇÃO e MECÂNICA VOLTA REDONDA Gabarito INSTRUÇÕES AO CANDIDATO Verifiqe se

Leia mais

CIRCUITOS RESISTIVOS

CIRCUITOS RESISTIVOS Temátca Crctos Eléctrcos Capítlo nálse de Crctos Lneares CICITOS ESISTIVOS INTODÇÃO Nesta secção apresentamse dversas metodologas para resolção de crctos lneares tas como o método geral, a smplfcação do

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

1ª Avaliação. lim lim lim. Resolvendo o sistema formado pelas equações (1) e (2), teremos c 3 e

1ª Avaliação. lim lim lim. Resolvendo o sistema formado pelas equações (1) e (2), teremos c 3 e 1ª Avaliação 1) Determine os limites abaio: a) lim 4 4 1 1 4 1 1 4 4 4 1 1 1 lim lim lim 4 4 4 4 4 16 4 4 4 b) 4 16 lim 4 4 4 16 lim lim lim lim 4 4 4 8 4 ) Determine os valores das constantes c e k que

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;

Leia mais

e represente as no plano Argand-Gauss.

e represente as no plano Argand-Gauss. PROFESSOR: Cládo Das BANCO DE QUESTÕES MATEMÁTICA ª SÉRIE ENSINO MÉDIO ============================================================================================== - Determe o módlo dos segtes úmeros

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

2 Formulação do Problema

2 Formulação do Problema Formação do Proema.. Modeo de Agst O prmero modeo a ser anasado é casscamente conhecdo como Modeo de Agst, Agst 964. Na teratra encontram-se dversos estdos sore a estadade do modeo de Agst so carga estátca

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Unversdade Estadual do Sudoeste da Baha Departamento de Cêncas Exatas e Naturas 5 - Rotações, Centro de Massa, Momento, Colsões, Impulso e Torque Físca I Ferrera Índce 1. Movmento Crcular Unformemente

Leia mais

ESCOAMENTO TURBULENTO

ESCOAMENTO TURBULENTO ESCOAMENTO TURBULENTO a trblênca em geral srge de ma nstabldade do escoamento em regme lamnar, qando o número de Reynolds torna-se grande. As nstabldades estão relaconadas com nterações entre termos vscosos

Leia mais

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min)

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min) PROVA Cálculo Numérco Q. (.0) (0 mn) Seja f a função dada pelo gráfco abaxo. Para claro entendmento da fgura, foram marcados todos os pontos que são: () raízes; () pontos crítcos; () pontos de nflexão.

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

5 Otimização de Dimensões

5 Otimização de Dimensões 5 Otmzação de Dmensões 5.1 Consderações Geras O desejo de se obter o projeto deal, consderando aspectos relaconados com o consmo, desempeno o efcênca, tas como qantdades mínmas de peso, volme, massa, sempre

Leia mais

Sistemas Equivalentes de Forças

Sistemas Equivalentes de Forças Nona E 3 Corpos CÍTULO ECÂNIC VETORIL R ENGENHEIROS: ESTÁTIC Ferdnand. Beer E. Russell Johnston, Jr. Notas de ula: J. Walt Oler Teas Tech Unverst Rígdos: Sstemas Equvalentes de Forças 2010 The cgraw-hll

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág. ísca Setor Prof.: Índce-controle de Estudo ula 37 (pág. 88) D TM TC ula 38 (pág. 88) D TM TC ula 39 (pág. 88) D TM TC ula 40 (pág. 91) D TM TC ula 41 (pág. 94) D TM TC ula 42 (pág. 94) D TM TC ula 43 (pág.

Leia mais

Radiação Térmica Processos, Propriedades e Troca de Radiação entre Superfícies (Parte 2)

Radiação Térmica Processos, Propriedades e Troca de Radiação entre Superfícies (Parte 2) Radação Térmca Processos, Propredades e Troca de Radação entre Superfíces (Parte ) Obetvo: calcular a troca por radação entre duas ou mas superfíces. Essa troca depende das geometras e orentações das superfíces,

Leia mais

Aula 2: Vetores tratamento algébrico

Aula 2: Vetores tratamento algébrico Ala : Vetores tratamento algébrico Vetores no R e no R Decomposição de etores no plano ( R ) Dados dois etores e não colineares então qalqer etor pode ser decomposto nas direções de e. O problema é determinar

Leia mais

PME5325-Fundamentos da Turbulência 2016

PME5325-Fundamentos da Turbulência 2016 4 CAPÍLO 5 A CINEMÁICA E A DINÂMICA DA RBLÊNCIA A PARIR DA APROXIMAÇÃO EAÍICA ILIZANDO-E A EQAÇÕE BÁICA DA MECÂNICA DO FLIDO 5.. Mecansmo da rblênca Como analsar as eqações do movmento em Mecânca dos Fldos,

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

Homework 06 (Equações de estado) Felippe de Souza &&& Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) = e) = Y(s) 2. u 1. 1 u 3.

Homework 06 (Equações de estado) Felippe de Souza &&& Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) = e) = Y(s) 2. u 1. 1 u 3. Homework 6 ) Considere o sistema descrito pela sa eqação diferencial ordinária abaio. Ache a F (Fnção de ransferência). Escreva na forma de Eqações de Estado & A B, C D. Verifiqe qe a eqação característica

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

REGRESSÃO LINEAR ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO CURVILÍNEA FUNÇÃO QUADRÁTICA

REGRESSÃO LINEAR ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO CURVILÍNEA FUNÇÃO QUADRÁTICA ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO LINEAR Verfcado, pelo valor de r, que ocorre uma sgnfcante correlação lnear entre duas varáves há necessdade de quantfcar tal relação, o que é feto pela análse

Leia mais

4 Discretização e Linearização

4 Discretização e Linearização 4 Dscretzação e Lnearzação Uma vez defndas as equações dferencas do problema, o passo segunte consste no processo de dscretzação e lnearzação das mesmas para que seja montado um sstema de equações algébrcas

Leia mais

PROV O ENGENHARIA QUÍMICA. Questão nº 1. h = 0,1 m A. Padrão de Resposta Esperado: a) P AB = P A B. Sendo ρ água. >> ρ ar. Em B : P B. .

PROV O ENGENHARIA QUÍMICA. Questão nº 1. h = 0,1 m A. Padrão de Resposta Esperado: a) P AB = P A B. Sendo ρ água. >> ρ ar. Em B : P B. . PRO O 00 Qestão nº ar A B h = 0, m A B a) P AB = P A B Sendo ρ ága >> ρ ar : Em B : P B = (ρ ága. g) h + P A P A B = P B P A =.000 x 9,8 x 0, = 980 Pa (valor:,5 pontos) b) P ar = P man = 0 4 Pa Em termos

Leia mais

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.

14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados. 14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar

Leia mais

Capítulo 3 Comportamento mecânico dos materiais = = = =

Capítulo 3 Comportamento mecânico dos materiais = = = = apítlo omportamento mecânico dos materiais Problema Uma peça prismática de comprimento L e secção transversal rectanglar de altra 0cm e largra 0cm foi sjeita ao ensaio de tracção. variação de comprimento

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES

COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES Uniersidade Estadal do Oeste do Paraná - UNIOESTE Centro de Ciências Eatas e Tecnológicas - CCET Crso de Ciência da Comptação COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES CASCAVEL - PR 9 SUMÁRIO PRINCÍPIOS

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

Regressão Múltipla. Parte I: Modelo Geral e Estimação

Regressão Múltipla. Parte I: Modelo Geral e Estimação Regressão Múltpla Parte I: Modelo Geral e Estmação Regressão lnear múltpla Exemplos: Num estudo sobre a produtvdade de trabalhadores ( em aeronave, navos) o pesqusador deseja controlar o número desses

Leia mais

Sistemas Reticulados

Sistemas Reticulados 9//6 EF6 EF6 Estruturas na rqutetura I I - Sstemas Retculados Estruturas na rqutetura I Sstemas Retculados E-US FU-US Estruturas Hperestátcas Sstemas Retculados & ão-lneardade do omportamento Estrutural

Leia mais

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz ao erminante Área e em R 2 O qe é? Qais são sas propriedades? Como se calcla (Qal é a fórmla o algoritmo para o cálclo)? Para qe sere? A = matriz. P paralelogramo com arestas e. + A é a área (com sinal)

Leia mais

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1 SC de Físca I - 2017-2 Nota Q1 88888 Nota Q2 Nota Q3 NOME: DRE Teste 1 Assnatura: Questão 1 - [3,5 pontos] Uma partícula de massa m se move sobre uma calha horzontal lsa com velocdade constante de módulo

Leia mais

Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas

Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. As seis integrais

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (2 ạ fase) GRUPO I (Versão 1) Assim, 2! 3! 4 = 48 é a resposta pedida.

Proposta de resolução do Exame Nacional de Matemática A 2017 (2 ạ fase) GRUPO I (Versão 1) Assim, 2! 3! 4 = 48 é a resposta pedida. Proosta de resolução do Eame Naconal de Matemátca A 7 ( ạ fase) GRUPO I (Versão ) P P I I I. 3 3! 3! = 6 = 8 Estem quatro maneras dstntas de os algarsmos ares estarem um a segur ao outro (PPIII ou IPPII

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica

Leia mais

PROF. GILBERTO SANTOS JR VETORES

PROF. GILBERTO SANTOS JR VETORES . Introdção Listas de números Sponha qe os pesos de oito estdantes estão listados abaio: 6,, 4, 4, 78, 4, 6, 9 Podemos denotar todos os alores dessa lista sando apenas m símbolo, por eemplo w, com diferentes

Leia mais

Gabarito para a prova de 1º Ano e 8ª serie (atual 9º Ano)

Gabarito para a prova de 1º Ano e 8ª serie (atual 9º Ano) Gabarto para a prova de 1º Ano e 8ª sere (atual 9º Ano) 1. t t c F 5 3 9 ; t c 451 3 5 9 o ; tc 33 C ΔS. a) Δ t 5 s V 4, 1 mnuto possu 6 s, portanto, dos 5 s temos: 8 mnutos (equvale a 48 s) e sobram segundos.

Leia mais