QUESTÕES VESTIBULAR R2-C

Tamanho: px
Começar a partir da página:

Download "QUESTÕES VESTIBULAR R2-C"

Transcrição

1 1. (Uem 2012) Sobre o consumo e a transformação da energia, assinale o que for correto. 01) Ao realizar exercícios físicos, é possível sentir a temperatura do corpo aumentar. Isso ocorre porque as células musculares estão se contraindo e, para isso, estão realizando várias reações exergônicas (exotérmicas). 02) Durante o processo de combustão biológica, a energia é liberada de uma só vez, na forma de calor, que é entendido como uma forma de energia em trânsito. 04) Os organismos autótrofos, como algas e plantas, conseguem transformar a energia química do ATP em energia luminosa, obedecendo à lei da conservação da energia. 08) A transformação da energia química do ATP em energia mecânica, como na contração muscular em um mamífero, obedece à primeira lei da termodinâmica. 16) De acordo com a primeira lei da termodinâmica, pode-se dizer que o princípio da conservação da energia é válido para qualquer sistema físico isolado. 2. (Uepg 2017) Uma máquina térmica funciona realizando o ciclo de Carnot. Em cada ciclo, ela realiza certa quantidade de trabalho útil. A máquina possui um rendimento de 25% e são retirados, por ciclo, J de calor da fonte quente que está a uma temperatura de 227 C. Sobre o assunto, assinale o que for correto. 01) O trabalho útil fornecido pela máquina térmica é J. 02) O ciclo de Carnot consta de duas transformações adiabáticas alternadas com duas transformações isotérmicas. 04) Nenhum ciclo teórico reversível pode ter um rendimento maior do que o do ciclo de Carnot. 08) A quantidade de calor fornecida para a fonte fria é J. 16) A temperatura da fonte fria é 102 C. 3. (Uel 2017) Atualmente, os combustíveis mais utilizados para o abastecimento dos carros de passeio, no Brasil, são o etanol e a gasolina. Essa utilização somente é possível porque os motores desses automóveis funcionam em ciclos termodinâmicos, recebendo combustível e convertendo-o em trabalho útil. Com base nos conhecimentos sobre ciclos termodinâmicos, assinale a alternativa que apresenta corretamente o diagrama da pressão (P) versus volume (V) de um motor a gasolina. a) b) c) Página 1 de 15

2 d) e) 4. (Ufpr 2017) Uma máquina térmica teórica ideal teve um dimensionamento tal que, a cada ciclo, ela realizaria trabalho de 50 cal e cederia 150 cal para a fonte fria. A temperatura prevista para a fonte quente seria de 127 C. Determine: a) O rendimento dessa máquina térmica. b) A temperatura prevista para a fonte fria, em graus Celsius. 5. (Uel 2017) Considere o diagrama pv da figura a seguir. O ciclo fechado ao longo do percurso abcda é denominado ciclo Otto e representa o modelo idealizado dos processos termodinâmicos que ocorrem durante o funcionamento de um motor a gasolina. O calor recebido pelo motor, dado por Q, 1 é fornecido pela queima da gasolina no interior do motor. W representa o trabalho realizado pelo motor em cada ciclo de operação, e Q 2 é o calor rejeitado pelo motor, por meio da liberação dos gases de exaustão pelo escapamento e também via sistema de arrefecimento. Considerando um motor que recebe J de calor e que realiza 875 J de trabalho em cada ciclo de operação, responda aos itens a seguir. 4 J a) Sabendo que o calor latente de vaporização da gasolina vale 5 10, determine a massa g de gasolina utilizada em cada ciclo de operação do motor. b) Sabendo que, em um ciclo termodinâmico fechado, a soma das quantidades de calor envolvidas no processo é igual ao trabalho realizado no ciclo, determine a quantidade de calor rejeitada durante cada ciclo de operação do motor. 6. (Enem 2ª aplicação 2016) O motor de combustão interna, utilizado no transporte de pessoas Página 2 de 15

3 e cargas, é uma máquina térmica cujo ciclo consiste em quatro etapas: admissão, compressão, explosão/expansão e escape. Essas etapas estão representadas no diagrama da pressão em função do volume. Nos motores a gasolina, a mistura ar/combustível entra em combustão por uma centelha elétrica. Para o motor descrito, em qual ponto do ciclo é produzida a centelha elétrica? a) A b) B c) C d) D e) E 7. (Uem 2016) Considerando os princípios da termodinâmica e os conceitos de máquinas térmicas, assinale a(s) alternativa(s) correta(s). 01) Uma pessoa coloca um pêndulo para oscilar e não mais toca o mesmo. Com o passar do tempo a altura máxima do pêndulo vai diminuindo. Consequentemente, a energia interna do sistema aumenta, pois o pêndulo absorve a energia cinética perdida. 02) Dois corpos possuem temperaturas diferentes. Se colocarmos estes dois corpos em contato, normalmente, de forma espontânea, a energia térmica do mais quente passará ao mais frio até que ocorra o equilíbrio térmico. Porém, existem situações onde o único efeito é trânsito espontâneo da energia térmica de um corpo mais frio para outro mais quente. 04) No Brasil a maioria dos carros, movidos a álcool ou a gasolina, utilizam motores de combustão interna de quatro tempos, de acordo com o ciclo de Otto. Neste tipo de sistema a energia é fornecida na forma de calor por meio da queima do combustível. 08) Uma geladeira recebe trabalho (por meio da energia elétrica proveniente da rede elétrica) e o usa de modo a retirar energia sob a forma de calor do seu interior, transferindo-a por condução para o exterior. 16) O ciclo de Carnot consiste em duas transformações adiabáticas e duas transformações isotérmicas, irreversíveis. Uma máquina térmica construída utilizando esse ciclo apresenta um menor rendimento quando comparado com uma que trabalha utilizando o ciclo de Otto. 8. (Enem 2ª aplicação 2016) Até 1824 acreditava-se que as máquinas térmicas, cujos exemplos são as máquinas a vapor e os atuais motores a combustão, poderiam ter um funcionamento ideal. Sadi Carnot demonstrou a impossibilidade de uma máquina térmica, funcionando em ciclos entre duas fontes térmicas (uma quente e outra fria), obter 100% de rendimento. Tal limitação ocorre porque essas máquinas a) realizam trabalho mecânico. b) produzem aumento da entropia. c) utilizam transformações adiabáticas. Página 3 de 15

4 d) contrariam a lei da conservação de energia. e) funcionam com temperatura igual à da fonte quente. 9. (Uem 2016) Um determinado gás (considerado ideal) é submetido a um processo de mudança de temperatura. Esse processo consiste em armazenar o gás em um recipiente e colocá-lo em uma câmara com temperatura constante igual a T. c Durante todo o processo, o gás permanece dentro do recipiente com volume constante e a sua temperatura, t segundos t após o início do processo, é dada pela função T(t) Tc k 10, onde k é uma constante que depende das condições iniciais do processo. Sobre esse procedimento, assinale o que for correto. 01) Se k 0 então o processo é de resfriamento do gás. 02) Se k 0 então a pressão do gás durante o processo aumenta. 04) Se k 0 então o processo é isobárico. 08) A constante k é a diferença entre a temperatura inicial do gás e a temperatura da câmara. 16) A pressão do gás, t segundos após o início do processo, é representada por uma função t da forma P(t) A B 10, onde A e B são constantes. 10. (Uepg 2016) Assinale o que for correto. 01) O calor pode ser considerado como a transferência de energia entre dois corpos que apresentam uma diferença de temperatura. 02) A energia que um sistema absorve sob a forma de calor ou trabalho sempre faz com que sua energia interna aumente. 04) Para que haja a transferência de calor entre dois corpos que possuem temperaturas diferentes é necessário que os corpos estejam em contato físico. 08) Temperatura é uma propriedade que determina se um sistema estará ou não em equilíbrio térmico com outro, representando, pois, uma medida do estado de agitação das partículas deste corpo. 16) O trabalho é também um modo de transferir energia. TEXTO PARA A PRÓXIMA QUESTÃO: Leia o texto a seguir e responda à(s) questão(ões). A vida em grandes metrópoles apresenta atributos que consideramos sinônimos de progresso, como facilidades de acesso aos bens de consumo, oportunidades de trabalho, lazer, serviços, educação, saúde etc. Por outro lado, em algumas delas, devido à grandiosidade dessas cidades e aos milhões de cidadãos que ali moram, existem muito mais problemas do que benefícios. Seus habitantes sabem como são complicados o trânsito, a segurança pública, a poluição, os problemas ambientais, a habitação etc. Sem dúvida, são desafios que exigem muito esforço não só dos governantes, mas também de todas as pessoas que vivem nesses lugares. Essas cidades convivem ao mesmo tempo com a ordem e o caos, com a pobreza e a riqueza, com a beleza e a feiura. A tendência das coisas de se desordenarem espontaneamente é uma característica fundamental da natureza. Para que ocorra a organização, é necessária alguma ação que restabeleça a ordem. É o que acontece nas grandes cidades: despoluir um rio, melhorar a condição de vida dos seus habitantes e diminuir a violência, por exemplo, são tarefas que exigem muito trabalho e não acontecem espontaneamente. Se não houver qualquer ação nesse sentido, a tendência é que prevaleça a desorganização. Em nosso cotidiano, percebemos que é mais fácil deixarmos as coisas desorganizadas do que em ordem. A ordem tem seu preço. Portanto, percebemos que há um embate constante na manutenção da vida e do universo contra a desordem. A luta contra a desorganização é travada a cada momento por nós. Por exemplo, desde o momento da nossa concepção, a partir da fecundação do óvulo pelo espermatozoide, nosso organismo vai se desenvolvendo e ficando mais complexo. Partimos de uma única célula e chegamos à fase adulta com trilhões delas, especializadas para determinadas funções. Entretanto, com o passar dos anos, envelhecemos e nosso corpo não consegue mais funcionar adequadamente, ocorre uma falha fatal e morremos. O que se observa na natureza é que a manutenção da ordem é fruto da ação das forças fundamentais, que, ao interagirem com a matéria, permitem que esta se organize. Desde a formação do nosso planeta, há cerca de 5 bilhões de anos, a vida somente conseguiu se desenvolver às custas de transformar a energia recebida pelo Sol em Página 4 de 15

5 uma forma útil, ou seja, capaz de manter a organização. Para tal, pagamos um preço alto: grande parte dessa energia é perdida, principalmente na forma de calor. Dessa forma, para que existamos, pagamos o preço de aumentar a desorganização do nosso planeta. Quando o Sol não puder mais fornecer essa energia, dentro de mais 5 bilhões de anos, não existirá mais vida na Terra. Com certeza a espécie humana já terá sido extinta muito antes disso. (Adaptado de: OLIVEIRA, A. O Caos e a Ordem. Ciência Hoje. Disponível em: < ordem>. Acesso em: 10 abr ) 11. (Uel 2016) Considerando a afirmação presente no texto a tendência das coisas de se desordenarem espontaneamente é uma característica fundamental da natureza, e com base nos conhecimentos sobre as leis da termodinâmica, assinale a alternativa correta. a) Quando dois corpos com temperaturas diferentes são colocados em contato, ocorre a transferência espontânea de calor do corpo mais quente para o mais frio. b) O calor, gerado por um motor a explosão, pode ser convertido de maneira espontânea e integralmente em energia mecânica, elétrica, química ou nuclear. c) O nitrogênio e o hélio misturados e contidos em um recipiente se separam de modo espontâneo após o equilíbrio térmico do sistema. d) Uma máquina térmica perfeita opera, na prática, em ciclos, converte o calor integralmente em trabalho e é capaz de funcionar como um motoperpétuo. e) As moléculas de tinta que tingem uma porção de água de maneira homogênea tendem a se agrupar espontaneamente e com isso restaurar a gota de tinta original. 12. (Uel 2015) Analise o gráfico a seguir, que representa uma transformação cíclica ABCDA de 1mol de gás ideal. a) Calcule o trabalho realizado pelo gás durante o ciclo ABCDA. b) Calcule o maior e o menor valor da temperatura absoluta do gás no ciclo (considere J R 8 ). Justifique sua resposta apresentando todos os cálculos realizados. K mol 13. (Enem 2015) O ar atmosférico pode ser utilizado para armazenar o excedente de energia gerada no sistema elétrico, diminuindo seu desperdício, por meio do seguinte processo: água e gás carbônico são inicialmente removidos do ar atmosférico e a massa de ar restante é resfriada até 198 C. Presente na proporção de 78% dessa massa de ar, o nitrogênio gasoso é liquefeito, ocupando um volume 700 vezes menor. A energia excedente do sistema elétrico é utilizada nesse processo, sendo parcialmente recuperada quando o nitrogênio líquido, exposto à temperatura ambiente, entra em ebulição e se expande, fazendo girar turbinas que convertem energia mecânica em energia elétrica. MACHADO, R. Disponível em Acesso em: 9 set (adaptado). Página 5 de 15

6 No processo descrito, o excedente de energia elétrica é armazenado pela a) expansão do nitrogênio durante a ebulição. b) absorção de calor pelo nitrogênio durante a ebulição. c) realização de trabalho sobre o nitrogênio durante a liquefação. d) retirada de água e gás carbônico da atmosfera antes do resfriamento. e) liberação de calor do nitrogênio para a vizinhança durante a liquefação. 14. (Ufpr 2015) O estudo da calorimetria e das leis da termodinâmica nos dá explicações para vários fenômenos encontrados na natureza. Considere o seguinte texto que apresenta a explicação, do ponto de vista dessas áreas da Física, para a formação das nuvens: Quando uma porção de ar aquecido sobe, contendo água que acabou de da superfície, passa a estar submetida a uma pressão cada vez. A rápida variação na pressão provoca uma rápida expansão do ar junto com uma redução de seu/sua. Essa rápida expansão é considerada, isto é, sem troca de calor com sua vizinhança, porque ocorre muito rapidamente. O gás em expansão energia interna ao se expandir, e isso acarreta seu resfriamento até atingir uma temperatura na qual a quantidade de vapor de água é suficiente para saturar o ar naquele ponto e assim formar as nuvens. Assinale a alternativa que preenche as lacunas corretamente. a) evaporar, menor, temperatura, adiabática, perde. b) condensar, menor, volume, adiabática, ganha. c) evaporar, maior, temperatura, isotérmica, ganha. d) condensar, maior, volume, isobárica, perde. e) sublimar, menor, temperatura, isotérmica, ganha. 15. (Enem 2014) Um sistema de pistão contendo um gás é mostrado na figura. Sobre a extremidade superior do êmbolo, que pode movimentar-se livremente sem atrito, encontra-se um objeto. Através de uma chapa de aquecimento é possível fornecer calor ao gás e, com auxílio de um manômetro, medir sua pressão. A partir de diferentes valores de calor fornecido, considerando o sistema como hermético, o objeto elevou-se em valores Δ h, como mostrado no gráfico. Foram estudadas, separadamente, quantidades equimolares de dois diferentes gases, denominados M e V. A diferença no comportamento dos gases no experimento decorre do fato de o gás M, em relação ao V, apresentar a) maior pressão de vapor. b) menor massa molecular. c) maior compressibilidade. d) menor energia de ativação. e) menor capacidade calorífica. 16. (Uel 2014) Uma gota de álcool de 10 g, à temperatura de 70 C, cai em um reservatório com 1000 litros de água a 33 ºC. Página 6 de 15

7 Dados: Calor específico da água: 1,0 cal/g C Calor específico do álcool: 0,6 cal/g C Massa específica da água: 1000 kg/m 3 a) Calcule a quantidade de calor transferida para a água. b) Calcule a variação de entropia do reservatório de água. Sabendo que ΔS 0, o que se pode concluir da entropia da gota de álcool? Apresente os cálculos. 17. (Uel 2012) Um bloco de alumínio de massa 1 kg desce uma rampa sem atrito, de A até B, a partir do repouso, e entra numa camada de asfalto (de B até C) cujo coeficiente de atrito cinético é c 1,3, como apresentado na figura a seguir. O bloco atinge o repouso em C. Ao longo do percurso BC, a temperatura do bloco de alumínio se eleva até 33 ºC. Sabendo-se que a temperatura ambiente é de 32 ºC e que o processo de aumento de temperatura do bloco de alumínio ocorreu tão rápido que pode ser considerado como adiabático, qual é a variação da energia interna do bloco de alumínio quando este alcança o ponto C? Apresente os cálculos. Dado: ca = 0,22 cal/g ºC 18. (Uem 2012) Um cilindro com pistão, contendo uma amostra de gás ideal, comprime a amostra de maneira que a temperatura, tanto do cilindro com pistão quanto da amostra de gás ideal, não varia. O valor absoluto do trabalho realizado nessa compressão é de 400 J. Sobre o exposto, assinale o que for correto. 01) O trabalho é positivo, pois foi realizado sobre o gás. 02) A transformação é denominada adiabática. 04) A energia interna do gás aumentou, pois este teve seu volume diminuído. 08) O gás ideal cedeu uma certa quantidade de calor à vizinhança. 16) A quantidade de calor envolvida na compressão de gás foi de 200 J. 19. (Uem 2012) Sobre as transformações termodinâmicas que podem ocorrer com um gás ideal confinado em um cilindro com pistão, assinale o que for correto. 01) Um gás ideal realiza trabalho ao se expandir, empurrando o pistão contra uma pressão externa. 02) Em uma transformação adiabática ocorre troca de calor com a vizinhança. 04) A energia interna de uma amostra de gás ideal não varia, quando este sofre uma transformação isovolumétrica. 08) Quando o gás ideal sofre uma compressão, o trabalho é realizado por um agente externo sobre o gás ideal. 16) O gás ideal não realiza trabalho em uma transformação isovolumétrica. 20. (Enem 2012) Aumentar a eficiência na queima de combustível dos motores à combustão e reduzir suas emissões de poluentes são a meta de qualquer fabricante de motores. É também o foco de uma pesquisa brasileira que envolve experimentos com plasma, o quarto estado da matéria e que está presente no processo de ignição. A interação da faísca emitida pela vela de ignição com as moléculas de combustível gera o plasma que provoca a explosão liberadora de energia que, por sua vez, faz o motor funcionar. Página 7 de 15

8 Disponível em: Acesso em: 22 jul (adaptado). No entanto, a busca da eficiência referenciada no texto apresenta como fator limitante a) o tipo de combustível, fóssil, que utilizam. Sendo um insumo não renovável, em algum momento estará esgotado. b) um dos princípios da termodinâmica, segundo o qual o rendimento de uma máquina térmica nunca atinge o ideal. c) o funcionamento cíclico de todo os motores. A repetição contínua dos movimentos exige que parte da energia seja transferida ao próximo ciclo. d) as forças de atrito inevitável entre as peças. Tais forças provocam desgastes contínuos que com o tempo levam qualquer material à fadiga e ruptura. e) a temperatura em que eles trabalham. Para atingir o plasma, é necessária uma temperatura maior que a de fusão do aço com que se fazem os motores. 21. (Uem 2011) Assinale o que for correto. 01) A energia interna total permanece constante em um sistema termodinâmico isolado. 02) Quando um sistema termodinâmico recebe calor, a variação na quantidade de calor que este possui é positiva. 04) O trabalho é positivo, quando é realizado por um agente externo sobre o sistema termodinâmico, e negativo, quando é realizado pelo próprio sistema. 08) Não ocorre troca de calor entre o sistema termodinâmico e o meio, em uma transformação adiabática. 16) Não ocorre variação da energia interna de um sistema termodinâmico, em uma transformação isotérmica. 22. (Uepg 2011) A 1ª lei da termodinâmica pode ser entendida como uma afirmação do princípio da conservação da energia. Sua expressão analítica é dada por U = Q, onde U corresponde à variação da energia interna do sistema, Q e, respectivamente, calor trocado e trabalho realizado. Sobre a 1ª lei da termodinâmica aplicada a transformações abertas, assinale o que for correto. 01) O sistema pode receber trabalho sem fornecer calor e sua energia interna aumenta. 02) O sistema pode receber calor sem realizar trabalho e sua energia interna aumenta. 04) O sistema pode, simultaneamente, receber calor e trabalho e sua energia interna aumenta. 08) O sistema pode realizar trabalho sem receber calor e sua energia interna diminui. 16) O sistema pode fornecer calor sem receber trabalho e sua energia interna diminui. 23. (Uem 2011) Assinale o que for correto. 01) Condução térmica e radiação térmica são os únicos processos de transferência de calor. 02) 1 caloria é a quantidade de calor necessária para elevar a temperatura de 1 g de água em 1ºC, no intervalo de 14,5ºC a 15,5ºC a 1 atm. 04) Nenhuma máquina térmica, operando em ciclos, pode retirar calor de uma fonte e transformá-lo integralmente em trabalho. 08) O ciclo de Carnot descreve o rendimento máximo de uma máquina térmica. 16) O princípio de funcionamento de um refrigerador é baseado nos processos de compressão e expansão de um gás. 24. (Enem 2011) Um motor só poderá realizar trabalho se receber uma quantidade de energia de outro sistema. No caso, a energia armazenada no combustível é, em parte, liberada durante a combustão para que o aparelho possa funcionar. Quando o motor funciona, parte da energia convertida ou transformada na combustão não pode ser utilizada para a realização de trabalho. Isso significa dizer que há vazamento da energia em outra forma. CARVALHO, A. X. Z. Física Térmica. Belo Horizonte: Pax, 2009 (adaptado). De acordo com o texto, as transformações de energia que ocorrem durante o funcionamento do motor são decorrentes de a a) liberação de calor dentro do motor ser impossível. b) realização de trabalho pelo motor ser incontrolável. Página 8 de 15

9 c) conversão integral de calor em trabalho ser impossível. d) transformação de energia térmica em cinética ser impossível. e) utilização de energia potencial do combustível ser incontrolável. TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: Analise a figura a seguir e responda. 25. (Uel 2011) A figura apresenta três possíveis transformações de fase de um gás, desde o estado a até o estado c. Na transformação de a até c, ao longo do caminho curvo do diagrama PV, o trabalho realizado pelo gás é de W = 35J e o calor absorvido pelo gás é Q = 63J. Ao longo do caminho abc, o trabalho realizado pelo gás é de W = 48J. Com base na figura, no enunciado e nos conhecimentos sobre o assunto, considere as afirmativas a seguir. I. Para o caminho abc, a quantidade de calor Q absorvida pelo gás vale 76J. II. Se a pressão P c = 1 2 P b, o trabalho W para o caminho cda vale 14J. III. Se a diferença de energia interna U d U c = 15J, a quantidade de calor Q cedida para o caminho da vale 15J. IV. Se a diferença de energia interna U d U c = 5J, a quantidade de calor Q cedida para o caminho da vale 23J. Assinale a alternativa correta. a) Somente as afirmativas I e II são corretas. b) Somente as afirmativas I e IV são corretas. c) Somente as afirmativas III e IV são corretas. d) Somente as afirmativas I, II e III são corretas. e) Somente as afirmativas II, III e IV sγo corretas. 26. (Uel 2011) Com referência à figura, assinale a alternativa que apresenta, correta e respectivamente, o valor da quantidade de calor Q para o caminho cda e o valor da energia interna U a U c. a) Q = 25J e U a Uc = 28J b) Q = 52J e U a U c = 82J c) Q = 57J e U a U c = 15 d) Q = 45J e Ua Uc = 15 e) Q = 52J e U a U c = (Uem-pas 2016) A formação de CO 2(g), segundo a reação O2(g) C(grafite) CO 2(g), possui uma variação de entalpia H 395 kj. Parte dessa energia foi utilizada para realizar o processo mostrado no diagrama pv, no qual se têm 4 mols de um gás monoatômico ideal. Página 9 de 15

10 Considerando as informações apresentadas, assinale o que for correto sobre esse diagrama pv. 01) A temperatura inicial desse gás monoatômico ideal é de aproximadamente 500 K. 02) A temperatura final do gás monoatômico ideal é de aproximadamente 900 K. 04) A variação da energia interna do gás monoatômico ideal foi de aproximadamente 29,9 kj. 08) O trabalho realizado pelo sistema descrito no diagrama pv foi de 15 kj. 16) O calor utilizado pelo sistema descrito no diagrama pv foi de aproximadamente 50% daquele gerado pela reação química do CO 2(g). Página 10 de 15

11 Gabarito: Resposta da questão 1: = 25. Resposta da questão 2: = 22. Resposta da questão 3: [B] Resposta da questão 4: a) Rendimento da máquina térmica ideal η : Obtemos o rendimento fazendo a razão entre o trabalho realizado τ e a quantidade de calor recebido pela máquina térmica Q. 1 η τ Q 1 Mas, o trabalho realizado é igual à diferença entre as quantidades de calor recebido pela fonte quente e cedido para a fonte fria: τ Q1 Q2 50 cal Q1 150 cal Q1 200 cal E o rendimento será: τ 50 cal η η η 0,25 ou 25% Q1 200 cal b) A temperatura prevista para a fonte fria é dada pela proporcionalidade entre as quantidades de calor e as temperaturas absolutas: T T1 400 K Q1 T1 200 cal 400 K T K Q2 T2 150cal T2 Em graus Celsius: T T2 27 C Resposta da questão 5: a) Temos: Q ml m 5 10 m 0,05 g b) Temos: ΔU Q W 0 Q W Q W 4 Q Q W Q Q W Q Q J Resposta da questão 6: [C] Página 11 de 15

12 Resposta da questão 7: = 12. Resposta da questão 8: [B] Resposta da questão 9: = 25. Resposta da questão 10: = 25. Resposta da questão 11: [A] Resposta da questão 12: a) O trabalho do ciclo ABCDA representado na figura corresponde à área da figura, considerando o sentido horário teremos um trabalho positivo. Os segmentos AB e CD em que temos uma transformação isocórica (volume constante) terão trabalho nulo. No seguimento BC teremos uma expansão volumétrica isobárica conduzindo a um trabalho positivo (gás realizando trabalho sobre o meio externo) e no seguimento DA teremos o gás recebendo trabalho do meio externo, ou seja, um trabalho negativo referente a uma contração de volume à pressão constante. A expressão do trabalho isobárico fica τ p ΔV Onde τ trabalho realizado ( ) ou recebido pelo gás ( ) em joules (J) p pressão do gás em Pascal ΔV variação de volume do gás 2 (Pa N m ) 3 (m ) τ 3 BC 15Pa (6 2)m 60J e 3 τda 5Pa (2 6)m 20J O trabalho do ciclo é τciclo J Ou ainda pela área do retângulo 3 τciclo (15 5)Pa (6 2)m 40J b) Para calcularmos a maior e a menor temperatura do sistema devemos lembrar os gráficos de isotermas, através da Lei de Boyle-Mariotti Página 12 de 15

13 Observando o gráfico dado notamos que os pontos de maior e menor temperaturas absolutas são respectivamente C e A. Para calcularmos estes valores de temperatura, lançamos mão da equação de estados dos Gases Ideais pv nrt Onde p pressão do gás em Pascal 2 (Pa N m ) 3 V volume do gás (m ) n número de mols do gás (mol) R constante universal dos gases ideais (fornecido no problema) T temperatura absoluta (K) Isolando T e calculando as temperaturas para os pontos C e A, temos: A maior temperatura 3 15Pa 6m TC 11,25K J 1mol 8 molk E a menor temperatura 3 5Pa 2m TA 1,25K J 1mol 8 molk Resposta da questão 13: [C] Resposta da questão 14: [A] Resposta da questão 15: [E] Resposta da questão 16: Nota: muito estranho 1 gota ter massa 10 gramas. Não se pretende discutir, aqui, o conceito de gota, mas, para a água, se aceita como padrão, 20 gotas ter massa 1 g. Página 13 de 15

14 a) Como a massa de água é muito maior que a massa de álcool, a temperatura de equilíbrio é 33 C. Então a quantidade de calor perdida pela a gota é: Qágua Qgota 0 Qágua -Qgott -mgota cálcool Δθgota -10 0,6 (33 70) Q água 222 cal. b) Como a transformação é irreversível, a variação da entropia do sistema é positiva ( ΔS 0). Q 222 ΔSsist 0 ΔSágua ΔSálcool 0 ΔSálcool 0 ΔSálcool 0 Tágua 306 ΔSálcool 0,725 J/K. Resposta da questão 17: Como o enunciado cita um processo adiabático, não há troca de calor com nenhum meio externo, ou seja, o sistema é constituído apenas pelo bloco. De acordo com a 1ª lei da termodinâmica ΔU Q τ, onde: Δ U : energia interna. Q: energia sob a forma de calor, responsável pelo aumento da temperatura. τ : trabalho realizado pela força de atrito entre o bloco e a superfície. Energia sob a forma de calor (Q), responsável pelo aumento da temperatura. m=1kg= g c=0,22cal/g. ºC Δ T =33-32=1ºC Da equação do calor sensível, temos: 3 Q m.c. ΔT Q ,22.1 Q 220cal Considerando que 1cal=4,2J: Q = 924J Trabalho ( τ ) realizado pela força de atrito entre o bloco e a superfície. A força de atrito atua no bloco entre os pontos BC e, de acordo com o teorema da energia cinética: τ ΔEc EcC EcB. No ponto A o bloco possui energia potencial gravitacional Ep ga, que será transformada em energia cinética, de acordo que o bloco se aproxima do ponto B Ec B. Como o bloco atinge o ponto C em repouso, ele não possui energia cinética neste ponto EcC 0. EpgA m.g.h EcB EpgA m.g.h EcB EcB 50J τ ΔEc EcC EcB 0 50 τ 50J Energia interna ( Δ U ). Substituindo os valores na 1ª lei da termodinâmica: ΔU Q τ ΔU 924 ( 50) ΔU 974J Resposta da questão 18: 08. Resposta da questão 19: = 25. Página 14 de 15

15 Resposta da questão 20: [B] Resposta da questão 21: = 27 Resposta da questão 22: = 31 Resposta da questão 23: = 30 Resposta da questão 24: [C] Resposta da questão 25: [B] Resposta da questão 26: [E] Resposta da questão 27: = 06. Página 15 de 15

Preencha a tabela a seguir, de acordo com as informações do texto.

Preencha a tabela a seguir, de acordo com as informações do texto. 1. Uma amostra de um gás está contida em um cilindro ao qual se adapta um êmbolo. A figura a seguir mostra o diagrama pressão X volume das transformações sofridas pelo gás. A energia interna do gás no

Leia mais

Ciclo e máquinas térmicas

Ciclo e máquinas térmicas Questão 01 - (UFJF MG) Em um experimento controlado em laboratório, uma certa quantidade de gás ideal realizou o ciclo ABCDA, representado na figura abaixo. desenho abaixo. As transformações FG e HI são

Leia mais

a) da Idade Média. b) das grandes navegações. c) da Revolução Industrial. d) do período entre as duas grandes guerras mundiais.

a) da Idade Média. b) das grandes navegações. c) da Revolução Industrial. d) do período entre as duas grandes guerras mundiais. Termodinâmica 1) (FUVEST) O desenvolvimento de teorias científicas, geralmente, tem forte relação com contextos políticos, econômicos, sociais e culturais mais amplos. A evolução dos conceitos básicos

Leia mais

Física 20 Questões [Fácil]

Física 20 Questões [Fácil] Física 20 Questões [Fácil] 01 - (ITA SP) Uma máquina térmica reversível opera entre dois reservatórios térmicos de temperaturas 100 C e 127 C, respectivamente, gerando gases aquecidos para acionar uma

Leia mais

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 2º TRIMESTRE TIPO A PROVA DE FÍSICA º ANO - ª MENSAL - º TRIMESTRE TIPO A 01) No gráfico abaixo, temos uma seqüência de transformações gasosas, que seguem a seguinte ordem: ABCDA. De acordo com o apresentado, assinale verdadeiro

Leia mais

QUÍMICA PROFº JAISON MATTEI

QUÍMICA PROFº JAISON MATTEI QUÍMICA PROFº JAISON MATTEI 1. Em uma máquina térmica ideal que opere em ciclos, todos os processos termodinâmicos, além de reversíveis, não apresentariam dissipação de energia causada por possíveis efeitos

Leia mais

2º Lei da Termodinâmica. Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot

2º Lei da Termodinâmica. Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot 2º Lei da Termodinâmica Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot Introdução Chamamos, genericamente, de máquina a qualquer dispositivo que tenha por finalidade transferir

Leia mais

Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012

Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 http://en.wikipedia.org/wiki/steam_car Caldeira de carro a vapor de 1924. Populares até a década de 1930, perderam prestígio com a popularização

Leia mais

Prof. Renato. EME Prof. Vicente Bastos SESI Carrão. Física 2ª. Série Aula 13

Prof. Renato. EME Prof. Vicente Bastos SESI Carrão. Física 2ª. Série Aula 13 Aula 13 Medindo o calor 1. Mudança de estado físico (solidificação) (liquefação) Sólido - Líquido - Gás (fusão) (ebulição) 2. Curvas de aquecimento Gráfico de Temperatura x Quantidade de calor: T x Q Exemplos:

Leia mais

Universidade de São Paulo Instituto de Física

Universidade de São Paulo Instituto de Física Universidade de São Paulo Instituto de Física FEP - FÍSICA II para o Instituto Oceanográfico º Semestre de 009 Sexta Lista de Exercícios a. Lei da Termodinâmica e Teoria Cinética dos Gases ) Uma máquina

Leia mais

Primeira Lei da Termodinâmica

Primeira Lei da Termodinâmica Primeira Lei da Termodinâmica Na termodinâmica existem dois princípios que precisam ser enfatizados.um deles é o princípio da conservação da energia e o segundo princípio é a inerente irreversibilidade

Leia mais

Curso de Engenharia Civil

Curso de Engenharia Civil Curso de Engenharia Civil Física Geral e Experimental II 2 período A e B Calorimetria e Termodinâmica Prof.a Érica Muniz Capacidade térmica de um corpo: Capacidade térmica de um corpo é a grandeza que

Leia mais

FÍSICA - Lucas SALA DE ESTUDOS 2º EM Ensino Médio 2º ano classe: Prof.LUCAS MUNIZ Nome: nº

FÍSICA - Lucas SALA DE ESTUDOS 2º EM Ensino Médio 2º ano classe: Prof.LUCAS MUNIZ Nome: nº FÍSICA - Lucas SALA DE ESTUDOS 2º EM Ensino Médio 2º ano classe: Prof.LUCAS MUNIZ Nome: nº Sala de Estudos Termodinâmica 1. (Uel 2015) Analise o gráfico a seguir, que representa uma transformação cíclica

Leia mais

A) 2,5 B) 4 C) 5 D) 7,5 E) 10

A) 2,5 B) 4 C) 5 D) 7,5 E) 10 1-Uma massa gasosa, inicialmente num estado A, sofre duas transformações sucessivas e passa para um estado C. A partir do estado A esse gás sofre uma transformação isobárica e passa para o estado B. A

Leia mais

Física 20 Questões [Médio]

Física 20 Questões [Médio] Física 20 Questões [Médio] 01 - (UFRRJ ) Uma pessoa retira um botijão de gás de um local refrigerado e o coloca em um outro lugar, sobre o qual os raios solares incidem diretamente. Desprezando qualquer

Leia mais

TERMODINÂMICA (Parte 1)

TERMODINÂMICA (Parte 1) TERMODINÂMICA (Parte 1) Estudo das transformações da energia. Baseia-se em duas leis: 1ª Lei: acompanha as variações de energia e permite o cálculo da quantidade de calor produzida numa reação. 2ª Lei:

Leia mais

As Leis da Termodinâmica

As Leis da Termodinâmica As Leis da Termodinâmica Parte I 1. (Pucrj 2013) Um sistema termodinâmico recebe certa quantidade de calor de uma fonte quente e sofre uma expansão isotérmica indo do estado 1 ao estado 2, indicados na

Leia mais

Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães

Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães Física II FEP 112 2º Semestre de 2012 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: valdir.guimaraes@usp.br Fone: 3091-7104 Aula 3 Irreversibilidade e Segunda Lei

Leia mais

2. A energia interna de um gás perfeito (gás ideal) tem dependência somente com a temperatura. O gráfico que melhor qualifica essa dependência é:

2. A energia interna de um gás perfeito (gás ideal) tem dependência somente com a temperatura. O gráfico que melhor qualifica essa dependência é: 1. De acordo com dados de um fabricante de fogões, uma panela com 2,2 litros de água à temperatura ambiente chega a 90 C em pouco mais de seis minutos em um fogão elétrico. O mesmo teste foi feito em um

Leia mais

2. Considere um bloco de gelo de massa 300g á temperatura de 20 C, sob pressão normal. Sendo L F

2. Considere um bloco de gelo de massa 300g á temperatura de 20 C, sob pressão normal. Sendo L F 1. Considere um bloco de gelo de massa 300g encontra-se a 0 C. Para que todo gelo se derreta, obtendo água a 0 C são necessárias 24.000 cal. Determine o calor latente de fusão do gelo. 2. Considere um

Leia mais

2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores

2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores 2ª Lei da Termodinâmica Máquinas Térmicas 2 a Lei da Termodinâmica 2 a Lei da Termodinâmica O que determina o sentido de certos fenômenos da natureza? Exemplo: Sistema organizado Sistema desorganizado

Leia mais

PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 2º TRIMESTRE TIPO A PROVA DE FÍSICA º ANO - ª MENSAL - º RIMESRE IPO A 0) Um gás sofre a transformação termodinâmica cíclica ABCA representada no gráfico p x V. No trecho AB, a transformação é isotérmica. Analise as afirmações

Leia mais

Sala de Estudos Termodinâmica

Sala de Estudos Termodinâmica FÍSICA - Lucas SALA DE ESTUDOS 2º Trimestre Ensino Médio 2º ano classe: Prof.LUCAS MUNIZ Nome: nº Sala de Estudos Termodinâmica 1. (Uel 2015) Analise o gráfico a seguir, que representa uma transformação

Leia mais

Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI

Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI 1º EM E.M. FÍSICA Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI VERIFICAR DATA e HORÁRIO da PROVA de REC de FÍSICA!!!!!!! /09 ª feira Física CONTEÚDO

Leia mais

TERMODINÂMICA. Radiação Solar. Anjo Albuquerque

TERMODINÂMICA. Radiação Solar. Anjo Albuquerque TERMODINÂMICA Radiação Solar 1 Anjo Albuquerque TERMODINÂMICA A Termodinâmica é a área da Física que nos permite compreender o mundo que nos rodeia, desde a escala dos átomos até à escala do universo;

Leia mais

27/Fev/2013 Aula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin

27/Fev/2013 Aula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin 7/Fev/03 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius

Leia mais

Colégio de aplicação Dr. Alfredo José Balbi prof. Thomaz Barone Lista de exercícios sistemas dissipativos

Colégio de aplicação Dr. Alfredo José Balbi prof. Thomaz Barone Lista de exercícios sistemas dissipativos 1. (Pucrj 015) Uma bola de tênis de 60 g é solta a partir do repouso de uma altura de 1,8 m. Ela cai verticalmente e quica várias vezes no solo até parar completamente. Desprezando a resistência do ar

Leia mais

Testes gerais

Testes gerais Testes gerais Termometria. Em uma escala termométrica arbitrária A, atribui-se 0ºA à temperatura de fusão do gelo e 20ºA à temperatura de ebulição da água. Quando a temperatura for de 20ºC, na escala A,

Leia mais

PROVA DE FÍSICA - 1 o TRIMESTRE 2012

PROVA DE FÍSICA - 1 o TRIMESTRE 2012 PROVA DE FÍSICA - 1 o TRIMESTRE 2012 PROF. VIRGÍLIO NOME Nº 9º ANO A compreensão do enunciado faz parte da questão. Não faça perguntas ao examinador. A prova deve ser feita com caneta azul ou preta. É

Leia mais

Primeira Lei da Termodinâmica Trabalho, Calor e Energia Entalpia

Primeira Lei da Termodinâmica Trabalho, Calor e Energia Entalpia Química Geral e Inorgânica QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin Primeira Lei da Termodinâmica Trabalho, Calor e Energia Entalpia Sistemas Em termodinâmica, o universo é formado

Leia mais

ACH1014 Fundamentos de Física. Usinas térmicas. Profa Dra Patricia Targon Campana

ACH1014 Fundamentos de Física. Usinas térmicas. Profa Dra Patricia Targon Campana ACH1014 Fundamentos de Física Usinas térmicas Profa Dra Patricia Targon Campana Pcampana@usp.br 2013 A Termodinâmica e o conceito de usina térmica Estudo das transformações e as relações existentes entre

Leia mais

Primeira Lei da Termodinâmica. Prof. Marco Simões

Primeira Lei da Termodinâmica. Prof. Marco Simões Primeira Lei da Termodinâmica Prof. Marco Simões Calor e Trabalho A termodinâmica estuda a relação entre calor e trabalho Conforme determinado por Joule 1 cal=4,18 J esse é o equivalente mecânico do calor.

Leia mais

Márcio Nasser Medina Moisés André Nisenbaum

Márcio Nasser Medina Moisés André Nisenbaum A Márcio Nasser Medina Moisés André Nisenbaum Este documento tem nível de compartilhamento de acordo com a licença 3.0 do Creative Commons. http://creativecommons.org.br http://creativecommons.org/licenses/by-sa/3.0/br/legalcode

Leia mais

2 c) V 0 d) 2V 0 e) 3V 0. 0,02 m é submetido a uma transformação isobárica, 9 litros. 0,06 m. Nessas condições, é possível.

2 c) V 0 d) 2V 0 e) 3V 0. 0,02 m é submetido a uma transformação isobárica, 9 litros. 0,06 m. Nessas condições, é possível. Lista Especial Física Prof. Elizeu 01. (Pucrj 017) Uma certa quantidade de gás ideal ocupa inicialmente um volume 0 com pressão P. 0 Se sobre esse gás se realiza um processo isotérmico dobrando sua pressão

Leia mais

CAPITULO 2 A Primeira lei da termodinâmica

CAPITULO 2 A Primeira lei da termodinâmica Neste capítulo são introduzidos alguns dos conceitos fundamentais da termodinâmica. O foco da exposição é a conservação de energia a observação experimental de que a energia não pode ser destruída nem

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da física P.58 a) Do gráfico: V 3 0 3 m 3 ; V 0 3 m 3 Dado: 300 K p p V V 3 0 300 3 3 0 00 K b) área do gráfico é numericamente igual ao 8 p ( 0 3 N/m ) N $ módulo do trabalho no processo: base altura

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física Termodinâmica

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física Termodinâmica Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física Termodinâmica 1 - Qual a energia interna de 1,5 mols de um gás perfeito na

Leia mais

Centro Educacional ETIP

Centro Educacional ETIP Centro Educacional ETIP Trabalho Trimestral 2 Trimestre/2015 Data: Professor: Leandro Nota: Valor : [0,0 2,0] Nome do(a) aluno(a): Nº Turma: 2 M INSTRUÇÕES Preencha corretamente o cabeçalho a caneta. Essa

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;

Leia mais

Segunda Lei da Termodinâmica

Segunda Lei da Termodinâmica Segunda Lei da Termodinâmica Para que possamos entender o enunciado da 2ª lei, devemos ter alguns conceitos básicos. 1. Transformações reversíveis e irreversíveis Transformações reversíveis são aquelas

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 4 Termodinâmica Física II Ferreira 1 ÍNDICE 1. Conceitos Fundamentais; 2. Sistemas Termodinâmicos; 3. Leis da

Leia mais

Capítulo 3 A Segunda Lei da Termodinâmica

Capítulo 3 A Segunda Lei da Termodinâmica Capítulo 3 A Segunda Lei da Termodinâmica 3.1 Enunciados da Lei 3.2 Máquinas Térmicas 3.3 Escalas de Temperaturas Termodinâmicas 3.4 Entropia 3.5 Variações da Entropia de um Gás Ideal 3.6 A Terceira Lei

Leia mais

6) Qual a energia interna de 1,5 mols de um gás perfeito na temperatura de 20 C? Considere R= 8,31 J/mol.K.

6) Qual a energia interna de 1,5 mols de um gás perfeito na temperatura de 20 C? Considere R= 8,31 J/mol.K. 1) (UFRGS-RS) Um gás encontra-se contido sob a pressão de 5.10 3 N/m 2 no interior de um recipiente cúbico cujas faces possuem uma área de 2m 2. Qual é o módulo da força média exercida pelo gás sobre cada

Leia mais

Unidade 11 - Termodinâmica

Unidade 11 - Termodinâmica Unidade 11 - Termodinâmica 1ª Lei da Termodinâmica 1ª Lei da Termodinâmica É simplesmente uma extensão do Princípio da Conservação da Energia, envolvendo transformações gasosas. Para podermos compreender

Leia mais

FCAV/ UNESP NOÇÕES DE TERMODINÂMICA

FCAV/ UNESP NOÇÕES DE TERMODINÂMICA FCAV/ UNESP NOÇÕES DE TERMODINÂMICA Profa. Dra. Luciana Maria Saran 1 1.TERMODINÂMICA Compreende o estudo da energia e suas transformações. Em grego, thérme-; calor, dy namis, energia. Termoquímica: área

Leia mais

TERMODINÂMICA. Radiação Solar. Anjo Albuquerque

TERMODINÂMICA. Radiação Solar. Anjo Albuquerque TERMODINÂMICA Radiação Solar 1 Anjo Albuquerque TERMODINÂMICA Termodinâmica - é a área da Física que nos permite compreender o mundo que nos rodeia, desde a escala dos átomos até à escala do universo.

Leia mais

MÓDULOS 37 E 38 QUÍMICA. Termodinâmica I e II. Ciências da Natureza, Matemática e suas Tecnologias. 1. Trabalho de expansão à pressão constante

MÓDULOS 37 E 38 QUÍMICA. Termodinâmica I e II. Ciências da Natureza, Matemática e suas Tecnologias. 1. Trabalho de expansão à pressão constante Ciências da Natureza, Matemática e suas Tecnologias QUÍMICA MÓDULOS 37 E 38 Termodinâmica I e II 1. Trabalho de expansão à pressão constante Vamos considerar um gás aprisionado em um cilindro com pistão

Leia mais

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa.

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa. lista_1-conceitos_iniciais_em_termologia Questão 1 Os cálculos dos pesquisadores sugerem que a temperatura média dessa estrela é de T i = 2.700 C. Considere uma estrela como um corpo homogêneo de massa

Leia mais

2ª Lei da Termodinâmica. Dentre as duas leis da termodinâmica, a segunda é a. que tem maior aplicação na construção de máquinas e

2ª Lei da Termodinâmica. Dentre as duas leis da termodinâmica, a segunda é a. que tem maior aplicação na construção de máquinas e 2ª Lei da Termodinâmica Dentre as duas leis da termodinâmica, a segunda é a que tem maior aplicação na construção de máquinas e utilização na indústria, pois trata diretamente do rendimento das máquinas

Leia mais

Resolução da lista de termodinâmica + dilatação térmica Qualquer dúvida:

Resolução da lista de termodinâmica + dilatação térmica Qualquer dúvida: Resolução da lista de termodinâmica + dilatação térmica Qualquer dúvida: energia.quantizada@gmail.com Questão 1 01 Errado, Carnot nunca prôpos a construção de uma máquina térmica perfeita (100%) ele apenas

Leia mais

Física Geral e Experimental III 1ª prova 25/04/2014 A

Física Geral e Experimental III 1ª prova 25/04/2014 A Física Geral e Experimental III 1ª prova 25/04/2014 A NOME: TURMA: MATRÍCULA: PROF. : NOTA: Importante: Assine a primeira página do cartão de questões e a folha do cartão de respostas. Leia os enunciados

Leia mais

Questão 4. Questão 5

Questão 4. Questão 5 Questão 1 Um mol de gás ideal sofre transformação AëBëC indicada no diafragma pressão x volume da figura a seguir. a) qual é a temperatura do gás no estado A? b) Qual é o trabalho realizado pelo gás na

Leia mais

Primeira Lei da Termodinâmica

Primeira Lei da Termodinâmica Físico-Química I Profa. Dra. Carla Dalmolin Primeira Lei da Termodinâmica Definição de energia, calor e trabalho Trocas térmicas Entalpia e termoquímica Termodinâmica Estudo das transformações de energia

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL. Profª Drª Marivone Nunho Sousa

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL. Profª Drª Marivone Nunho Sousa UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL Profª Drª Marivone Nunho Sousa 5 de agosto de 2016 ALGUNS ILUSTRES PESQUISADORES QUE CONSTRUÍRAM A TERMODINÂMICA Sadi Carnot 1796-1832 James

Leia mais

Diagramas de Energia

Diagramas de Energia Diagramas de Energia 1.1- Análise Gráfica Reação exotérmica Reação endotérmica (a) Energia de ativação (Ea) para a reação inversa (b) Energia de ativação (Ea) para a reação direta (c) ΔH 1.2- Entropia

Leia mais

Capítulo 10 Segunda Lei da Termodinâmica. Obs: a existência do moto perpétuo de 1ª. Espécie, criaria energia, violando a 1ª. Lei.

Capítulo 10 Segunda Lei da Termodinâmica. Obs: a existência do moto perpétuo de 1ª. Espécie, criaria energia, violando a 1ª. Lei. Capítulo 10 Segunda Lei da Termodinâmica É muito comum e popular enunciar a 2ª Lei dizendo simplesmente que calor não pode ser totalmente transformado em trabalho. Está errado. Podemos fazer uma expansão

Leia mais

TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA

TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA 3 INRODUÇÃO AO º PRINCÍPIO DA ERMODINÂMICA 3. O ciclo de Carnot (84). ERMODINÂMICA Investigou os princípios que governam a transformação de energia térmica, calor em energia mecânica, trabalho. Baseou

Leia mais

Aula 4 A 2ª Lei da Termodinâmica

Aula 4 A 2ª Lei da Termodinâmica Universidade Federal do ABC P O S M E C Aula 4 A 2ª Lei da Termodinâmica MEC202 As Leis da Termodinâmica As leis da termodinâmica são postulados básicos aplicáveis a qualquer sistema que envolva a transferência

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba Lista de Exercícios Termodinâmica Curso: Data: / / Nome: Turma: Disciplina: Química (QB70D) - Profª Loraine 1. Defina:

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Calor Física II 2016 - IO O Equivalente Mecânico da Caloria A relação entre a caloria (unidade de quantidade de calor em termos da variação de temperatura que produz numa dada massa de água)

Leia mais

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3 6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho

Leia mais

ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana

ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana ESTUDO DOS GASES Prof. Patricia Caldana Gases são fluidos no estado gasoso, a característica que o difere dos fluidos líquidos é que, quando colocado em um recipiente, este tem a capacidade de ocupa-lo

Leia mais

1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X?

1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X? BC0303: Fenômenos Térmicos - 1 a Lista de Exercícios Termômetros, Temperatura e Escalas de Temperatura 1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X.

Leia mais

Conceitos Básicos sobre gases

Conceitos Básicos sobre gases Conceitos Básicos sobre gases ara este estudo não vamos fazer distinção entre gás e vapor, desta forma neste capítulo, o estado gasoso (gás ou vapor) será sempre referido como gás... ressão dos gases Suponha

Leia mais

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 O tempo tem um sentido, que é aquele no qual envelhecemos.! Na natureza, os

Leia mais

C m Q C T T 1 > T 2 T 1 T 2. 1 cal = 4,184 J (14,5 o C p/ 15,5 o C) 1 Btu = 252 cal = 1,054 kj

C m Q C T T 1 > T 2 T 1 T 2. 1 cal = 4,184 J (14,5 o C p/ 15,5 o C) 1 Btu = 252 cal = 1,054 kj A teoria do calórico (~1779) Para atingir o estado de equilíbrio térmico, T 1 T 2 T 1 > T 2 -Substância fluida - invisível - peso desprezível T a quantidade de calórico Esta teoria explicava um grande

Leia mais

Gases. 1) Assinale a alternativa CORRETA.

Gases. 1) Assinale a alternativa CORRETA. Gases 1) Assinale a alternativa CORRETA. (A) Uma determinada massa de gás ideal, ocupando um volume constante, tem sua pressão inversamente proporcional à sua temperatura absoluta. (B) Em uma transformação

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 17 (pág. 88) AD TM TC. Aula 18 (pág. 88) AD TM TC. Aula 19 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 17 (pág. 88) AD TM TC. Aula 18 (pág. 88) AD TM TC. Aula 19 (pág. Física Setor B Prof.: Índice-controle de Estudo ula 17 (pág. 88) D TM TC ula 18 (pág. 88) D TM TC ula 19 (pág. 90) D TM TC ula 20 (pág. 90) D TM TC ula 21 (pág. 92) D TM TC ula 22 (pág. 94) D TM TC Revisanglo

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. Um cilindro com pistão, contendo uma amostra de gás ideal, comprime a amostra de maneira que a temperatura, tanto do cilindro com pistão quanto da amostra de gás ideal, não varia. O valor absoluto do

Leia mais

REVISIONAL DE QUÍMICA 1º ANO PROF. RICARDO

REVISIONAL DE QUÍMICA 1º ANO PROF. RICARDO REVISIONAL DE QUÍMICA 1º ANO PROF. RICARDO 1- Um aluno de química, ao investigar as propriedades de gases, colocou uma garrafa plástica (PET), contendo ar e devidamente fechada, em um freezer e observou

Leia mais

Aula 6 Transferências de energia

Aula 6 Transferências de energia Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia Aula 6 Transferências de energia Dr. Tiago P. Camargo governa a química e a vida. Atraves da termodinâmica podemos

Leia mais

Lista de exercícios 2 QB70D

Lista de exercícios 2 QB70D Lista de exercícios 2 QB70D 1) Suponha que você jogue uma bola de tênis para o alto. (a) A energia cinética da bola aumenta ou diminui à medida que ela ganha altitude? (b) O que acontece com a energia

Leia mais

LISTA UERJ - GASES. No interior da bola cheia, a massa de ar, em gramas, corresponde a: a) 2,5 b) 5,0 c) 7,5 d) 10,0

LISTA UERJ - GASES. No interior da bola cheia, a massa de ar, em gramas, corresponde a: a) 2,5 b) 5,0 c) 7,5 d) 10,0 1. (Uerj 2012) Em um reator nuclear, a energia liberada na fissão de 1 g de urânio é 4 utilizada para evaporar a quantidade de 3,6 10 kg de água a 227ºC e sob 30 atm, necessária para movimentar uma turbina

Leia mais

Fisica do Corpo Humano ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01. Temperatura Aula 5 e 1/2 da 6

Fisica do Corpo Humano ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01. Temperatura Aula 5 e 1/2 da 6 Fisica do Corpo Humano (4300325) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01 Temperatura Aula 5 e 1/2 da 6 1. Existem em torno de uma centena de átomos 2. Cada átomo

Leia mais

Física Geral e Experimental III. Exercícios Temperatura e Dilatação

Física Geral e Experimental III. Exercícios Temperatura e Dilatação Física Geral e Experimental III Exercícios Temperatura e Dilatação 1. Em um dia quando a temperatura alcança 50ºF, qual é a temperatura em graus Celsius e Kelvins? R: 10ºC; 283 K. 2. O ouro tem um ponto

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto 5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0

Leia mais

CALORIMETRIA Calor. CALORIMETRIA Potência ou Fluxo de Calor

CALORIMETRIA Calor. CALORIMETRIA Potência ou Fluxo de Calor CALORIMETRIA Calor É a transferência de energia de um corpo para outro, decorrente da diferença de temperatura entre eles. quente frio Unidades de calor 1 cal = 4,186 J (no SI) 1 kcal = 1000 cal Fluxo

Leia mais

2ª LEI, ENTROPIA E FORMALISMO TERMODINÂMICO. 1) Um gás perfeito de capacidades térmicas constantes. , ocupando inicialmente o volume V 0,

2ª LEI, ENTROPIA E FORMALISMO TERMODINÂMICO. 1) Um gás perfeito de capacidades térmicas constantes. , ocupando inicialmente o volume V 0, ermodinâmica Ano Lectivo 00/0 ª LEI, ENROIA E FORMALISMO ERMODINÂMIO ) Um gás perfeito de capacidades térmicas constantes p =, ocupando inicialmente o volume 0, expande-se adiabaticamente até atingir o

Leia mais

CALORIMETRIA (CONTINUAÇÃO)

CALORIMETRIA (CONTINUAÇÃO) CALORIMETRIA (CONTINUAÇÃO) Calor latente Nem toda a troca de calor existente na natureza se detém a modificar a temperatura dos corpos. Em alguns casos há mudança de estado físico destes corpos. Neste

Leia mais

Física E Intensivo V. 1

Física E Intensivo V. 1 Intensivo V. Exercícios 0) V V F F F I. Verdadeira. II. Verdadeira. III. Falsa. Calor é a energia térmica em trânsito, e temperatura é agitação molecular. IV. Falsa. Um corpo, ao receber ou perder calor,

Leia mais

TURMA DE ENGENHARIA - FÍSICA

TURMA DE ENGENHARIA - FÍSICA Prof Cazuza 1 (Uff 2012) O ciclo de Stirling é um ciclo termodinâmico reversível utilizado em algumas máquinas térmicas Considere o ciclo de Stirling para 1 mol de um gás ideal monoatônico ilustrado no

Leia mais

AULA 13 CALORIMETRIA. 1- Introdução

AULA 13 CALORIMETRIA. 1- Introdução AULA 13 CALORIMETRIA 1- Introdução Neste capítulo estudaremos o calor e suas aplicações. Veremos que o calor pode simplesmente alterar a temperatura de um corpo, ou até mesmo mudar o seu estado físico.

Leia mais

Física. Leo Gomes (Vitor Logullo) Termodinâmica

Física. Leo Gomes (Vitor Logullo) Termodinâmica Termodinâmica Termodinâmica 1. No Rio de Janeiro (ao nível do mar), uma certa quantidade de feijão demora 40 minutos em água fervente para ficar pronta. A tabela abaixo fornece o valor da temperatura de

Leia mais

Termoquímica Entalpia e Lei de Hess

Termoquímica Entalpia e Lei de Hess Química Geral e Inorgânica QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin Termoquímica Entalpia e Lei de Hess Sistemas a Pressão Constante Quando o volume do sistema não é constante,

Leia mais

COLÉGIO MARIA IMACULADA

COLÉGIO MARIA IMACULADA Conteúdos trabalhados: COLÉGIO MARIA IMACULADA Orientação de Estudos de Recuperação Disciplina: Física - B - Professor: Fausto 2º ano do Ensino Médio Termodinâmica: trabalho de um gás, primeira e segunda

Leia mais

Física e Química A 10.º ano

Física e Química A 10.º ano Energia, fenómenos térmicos e radiação II Física e Química A 10.º ano 1. Responde às seguintes questões. Num dia de inverno, a temperatura no exterior é de - 3ºC e a temperatura no interior de um apartamento

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte. Esta aula tratará de gases e termodinâmica:

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte. Esta aula tratará de gases e termodinâmica: Esta aula tratará de gases e termodinâmica: Estudando a matéria, os cientistas definiram o mol. Um mol corresponde a 6,02. 10 " unidades de algo, número conhecido por N A, número de Avogadro. A importância

Leia mais

Uma Escola Pensando em Você Aluno(a): nº Série: 2 col C Disciplina: Física. Ensino: Médio Professor: Renato Data:, de 2010

Uma Escola Pensando em Você Aluno(a): nº Série: 2 col C Disciplina: Física. Ensino: Médio Professor: Renato Data:, de 2010 Uma Escola Pensando em Você luno(a): nº Série: 2 col C Disciplina: Física Ensino: Médio Professor: Renato Data:, de 21 Trabalho de Recuperação de Física (1º e 2 imestres) Instruções: 1. O trabalho deverá

Leia mais

Física Geral e Experimental III. Dilatação

Física Geral e Experimental III. Dilatação Física Geral e Experimental III Dilatação 6. Em um dia quente em Las Vegas um caminhão-tanque foi carregado com 37.000 L de óleo diesel. Ele encontrou tempo frio ao chegar a Payson, Utha, onde a temperatura

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho samuel.carvalho@ifsudestemg.edu.br Juiz de Fora -MG

Leia mais

Roteiro de Estudos 2ª s Séries 3º Trimestre Disciplina: Física Professor Hugo Prz

Roteiro de Estudos 2ª s Séries 3º Trimestre Disciplina: Física Professor Hugo Prz Roteiro de Estudos 2ª s Séries º Trimestre Disciplina: Física Professor Hugo Prz Lista dos Conteúdos Conceituais: Termodinâmica Trabalho de um gás (pressão constante e não constante) Energia Interna de

Leia mais

CALORIMETRIA E TERMOLOGIA

CALORIMETRIA E TERMOLOGIA CALORIMETRIA E TERMOLOGIA CALORIMETRIA Calor É a transferência de energia de um corpo para outro, decorrente da diferença de temperatura entre eles. quente Fluxo de calor frio BTU = British Thermal Unit

Leia mais

Lista de Exercícios de Revisão Prova 04

Lista de Exercícios de Revisão Prova 04 Lista de Exercícios de Revisão Prova 04 1) (UnB DF) Um bloco de gelo de 40g, a 10ºC, é colocado em um recipiente contendo 120g de água a 25ºC. Qual é a temperatura de equilíbrio do sistema (em ºC)? Calor

Leia mais

Essa relação se aplica a todo tipo de sistema em qualquer processo

Essa relação se aplica a todo tipo de sistema em qualquer processo Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Propriedades de Substâncias Puras: Relações P-V-T e Diagramas P-V, P-T e T-V, Título, Propriedades Termodinâmicas, Tabelas

Leia mais

Cap. 20 A Entropia e a Segunda Lei da Termodinâmica

Cap. 20 A Entropia e a Segunda Lei da Termodinâmica Cap. 20 A Entropia e a Segunda Lei da Processos Irreversíveis e Entropia; Variação de Entropia; A Segunda Lei da ; Entropia no Mundo Real: Máquinas Térmicas; Entropia no Mundo Real: Refrigeradores; Eficiência

Leia mais

TERMODINÂMICA TERMOQUÍMICA

TERMODINÂMICA TERMOQUÍMICA TERMODINÂMICA TERMOQUÍMICA Termodinâmica é a ciência que estuda as transformações de energia nas quais as variações de temperatura são importantes. A maioria das transformações químicas resulta em alterações

Leia mais

CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES

CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES 1. (UFV-96) Ao derramarmos éter sobre a pele, sentimos uma sensação de resfriamento em conseqüência de: a. o éter penetrar nos poros, congelando imediatamente

Leia mais

Uma caneca de café quente não fica mais quente se for colocada numa sala fria

Uma caneca de café quente não fica mais quente se for colocada numa sala fria SUMÁRIO Focámos, nos capítulos anteriores, a nossa atenção na Primeira Lei da Termodinâmica, que nos diz que a energia é conservada durante um processo. Neste capítulo abordaremos a Segunda Lei da Termodinâmica,

Leia mais

TC 1 Revisão UECE 1 a. fase Física Prof. João Paulo

TC 1 Revisão UECE 1 a. fase Física Prof. João Paulo 1. (IFCE 2011) Um estudante de Física resolveu criar uma nova escala termométrica que se chamou Escala NOVA ou, simplesmente, Escala N. Para isso, o estudante usou os pontos fixos de referência da água:

Leia mais