TA33D ESTATÍSTICA APLICADA À QUALIDADE

Tamanho: px
Começar a partir da página:

Download "TA33D ESTATÍSTICA APLICADA À QUALIDADE"

Transcrição

1 TA33D ESTATÍSTICA APLICADA À QUALIDADE 1

2 TESTES DE HIPÓTESES EM UMA E DUAS AMOSTRAS 2

3 HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS Definição (HIPÓTESE ESTATÍSTICA): Uma hipótese estatística é uma afirmação sobre os parâmetros de uma ou mais populações. 3

4 HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS Exemplo: Suponha que estejamos interessados no tempo de cozimento de um bolo de chocolate. O tempo de cozimento é uma variável aleatória que pode ser descrita por uma distribuição de probabilidades. Suponha que nosso interesse esteja focado na tempo médio de cozimento (um parâmetro dessa distribuição). 4

5 HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS Exemplo (continuação): Especificamente, estamos interessados em decidir se tempo médio de cozimento é ou não 30 minutos. Podemos expressar isso formalmente como: H 0 : µ = 30 min H 1 : µ 30 min Hipótese Nula Hipótese Alternativa Bilateral 5

6 Uma vez que a hipótese alternativa H 1 especifica valores de µ que poderiam ser maiores ou menores do que 30 (ou seja, diferente de 30) ela é chamada de uma hipótese alternativa bilateral. Em algumas situações, podemos desejar formular uma hipótese alternativa unilateral, como em: H 0 : µ = 30 min ou H 0 : µ = 30 min H 0 : µ < 30 min HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS H 0 : µ > 30 min Hipótese alternativa unilateral 6

7 HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS Nota: Hipóteses são sempre afirmações sobre a população ou distribuição sob estudo, e não afirmações sobre a amostra. 7

8 HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS O valor do parâmetro especificado em H 0, geralmente, é determinado em uma de três maneiras: a) Resultado de experiências passadas. b) Determinado a partir de alguma teoria ou modelo relativo ao processo em estudo. c) Resultar de considerações externas. 8

9 HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS Um procedimento levando a uma decisão acerca de uma hipótese particular é chamado de teste de uma hipótese. Procedimentos de teste de hipóteses se apoiam no uso de afirmações de uma amostra aleatória proveniente da população de interesse. 9

10 HIPÓTESE ESTATÍSTICA: CONCEITOS GERAIS Testar uma hipótese envolve: 1) Considerar uma amostra aleatória. 2) Calcular uma estatística de teste a partir dos dados amostrais 3) Usar a estatística de teste para tomar uma decisão a respeito da hipótese nula (H 0 ). 10

11 Testes de Hipóteses Estatísticas Considere o problema do bolo apresentado no exemplo anterior, com as seguintes hipóteses (usando uma amostra de tamanho n = 10): H 0 : µ = 30 min H 1 : µ 30 min 11

12 Testes de Hipóteses Estatísticas A média amostral é a estatística do teste, neste caso. Ainda, a média amostral pode assumir muitos valores diferentes. Suponha que, se 28,5 X 31,5 não rejeitaremos H 0 : µ = 30 min, e se X >31,5 ou X <28,5 rejeitaremos a hipótese H 0 em favor de H 1 : µ

13 Testes de Hipóteses Estatísticas Logo, Região Crítica ou Região de Rejeição Região de Aceitação Valores Críticos 13

14 Testes de Hipóteses Estatísticas Observações: a) É comum estabelecer conclusões referentes a hipótese nula H 0. b) Rejeitamos H 0 se a estatística do teste cair na região crítica ou região de rejeição e, assumimos H 1 como verdadeira. c) Não rejeitaremos H 0 se a estatística do teste cair na região de aceitação. 14

15 Testes de Hipóteses Estatísticas Esse procedimento de decisão pode conduzir a uma de duas conclusões erradas: Decisão H 0 é verdadeira H 0 é falsa Não rejeitar H 0 Rejeitar H 0 Nenhum erro Erro tipo I Erro tipo II Nenhum erro 15

16 Testes de hipóteses estatísticas Como nossa decisão está baseada em variáveis aleatórias, probabilidades podem estar associadas com os erros tipo I e tipo II. Probabilidade do erro tipo I: α = P[erro tipo I] = P[rejeitar H 0 H 0 verdadeira] Nota: a probabilidade do erro tipo I é chamada de nível de significância ou erro α ou tamanho do teste. 16

17 Testes de hipóteses estatísticas Probabilidade do erro tipo II: β = P[erro tipo II] = P[não rejeitar H 0 H 0 falsa] 17

18 Testes de hipóteses estatísticas Nota: quatro pontos importantes: 1) Os erros tipo I e II são relacionados. Uma redução na probabilidade de um geralmente resulta num aumento da probabilidade do outro. 2) O tamanho da região crítica e, portanto, a probabilidade de se cometer o erro tipo I, pode ser sempre reduzido ajustando-se o(s) valor(es) crítico(s). 18

19 Testes de hipóteses estatísticas Nota: quatro pontos importantes: 3) Um aumento no tamanho da amostra n reduzirá α e β simultaneamente. 4) Se a hipótese nula é falsa, β é maximizada quando o valor real de um parâmetro se aproxima do valor hipotético. Quanto maior a distância entre o valor real e o hipotético, menor será o valor de β. 19

20 Testes de hipóteses estatísticas NOTA: Uma vez que o analista pode controlar diretamente a probabilidade de rejeitar erroneamente H 0 (erro tipo I), sempre pensamos na rejeição da hipótese nula H 0 como uma conclusão forte. 20

21 Testes de hipóteses estatísticas Definição(Poder): O poder de um teste é a probabilidade de se rejeitar H 0 dado que uma hipótese alternativa específica H 1 é verdadeira. Nota: O poder de um teste pode ser calculado como 1- β, onde β é a probabilidade do erro tipo II. 21

22 Testes unilaterais e bilaterais Na construção de hipóteses, sempre vamos estabelecer a hipótese nula como uma igualdade de modo que a probabilidade do erro tipo I, α, pode ser controlado em um valor específico. A hipótese alternativa tanto pode ser unilateral como bilateral, dependendo da conclusão a ser retirada se H 0 é rejeitada. 22

23 Testes unilaterais e bilaterais Se o objetivo é fazer uma alegação envolvendo afirmações, tais como maior que, menor que, superior a, excede, no mínimo e assim por diante, uma alternativa unilateral é apropriada, ou se for feita a alegação não igual a, uma alternativa bilateral deve ser usada. Nota: Na formulação das hipóteses unilaterais, demos nos lembrar que rejeitar H 0 é sempre uma conclusão forte!! 23

24 Uso de valores-p para tomada de decisão em testes de hipóteses Definição (Valor-p): O valor-p é o menor nível de significância que conduz à rejeição da hipótese nula H 0, com os dados fornecidos. Nota: a) É costume chamar a estatística do teste (e os dados) de significante quando a hipótese nula H 0 for rejeitada. b) Se o valor-p for baixo, rejeitamos H 0. c) Se o valor-p for alto, não rejeitamos H 0. 24

25 Conexão entre testes de hipóteses e intervalos de confiança Se [l;u] for um intervalo de confiança de 100(1-α) % para o parâmetro θ, o teste de tamanho α das hipóteses H 0 : θ = θ 0 vs H 1 : θ θ 0 Conduzirá a rejeição de H 0 se, e somente se, θ 0 não estiver no intervalo [l;u] de 100(1-α)%. 25

26 Conexão entre testes de hipóteses e intervalos de confiança Exemplo: Considere o processo de assar um bolo. Considerando também que o tempo médio de cozimento obtido de uma amostra de tamanho 16 foi de 27,3 e σ = 1,9. Teste a hipótese de que a taxa média de queima µ é igual a 30 min, usando um intervalo de confiança de 95% para o tempo médio de cozimento µ. 26

27 Procedimento geral para testes de hipóteses O uso da seguinte sequência de etapas na metodologia de aplicação de testes de hipóteses é recomendada. 1) A partir do contexto do problema, identifique o parâmetro de interesse. 2) Estabeleça a hipótese nula H 0. 3) Especifique uma hipótese alternativa apropriada, H 1. 27

28 Procedimento geral para testes de hipóteses 4) Escolha um nível de significância α. 5) Determine uma estatística apropriada de teste. 6) Estabeleça a região de rejeição para a estatística. 28

29 Procedimento geral para testes de hipóteses 7) Calcule quaisquer grandezas amostrais necessárias, substitua-as na equação para a estatística de teste e calcule aquele valor. 8) Decida se H 0 deve ou não ser rejeitada e reporte isso no contexto do problema. Nota: As etapas 1-4 devem ser completadas antes de examinar os dados amostrais. 29

30 Amostra única: testes referentes a uma única média µ (σ 2 conhecida) Seja X 1, X 2,.., X n uma amostra aleatória retirada de uma população normal, com variância σ 2 conhecida. Suponha que desejamos testar as hipóteses: (a) H 0 : µ = µ 0 H 1 : µ µ 0 (b) H 0 : µ = µ 0 H 1 : µ > µ 0 (c) H 0 : µ = µ 0 H 1 : µ < µ 0 30

31 Amostra única: testes referentes a uma única média µ (σ 2 conhecida) Estatística do teste: sob H X µ 0 Z = 0 ~ N(0;1) 0 σ n 31

32 Amostra única: testes referentes a uma única média µ (σ 2 conhecida) Se o nível de significância α for adotado, temos: 32

33 Amostra única: testes referentes a uma única média µ (σ 2 conhecida) Se o nível de significância α for adotado, temos: 33

34 Amostra única: testes referentes a uma única média µ (σ 2 conhecida) Se o nível de significância α for adotado, temos: 34

35 Amostra única: testes referentes a uma única média µ (σ 2 conhecida) Teste para a média média µ com σ 2 conhecida: ð Hipótese Nula: H 0 : µ = µ 0 ð Estatística do Teste: X µ 0 Z0 = σ n Hipótese Alterna.va Critério de Rejeição H 1 : µ µ 0 z 0 > z α/2 ou z 0 < - z α/2 H 1 : µ > µ 0 H 1 : µ < µ 0 z 0 > z α z 0 < - z α 35

36 Amostra única: testes referentes a uma única média µ (σ 2 conhecida) Exemplo: Uma amostra aleatória de cem registros de mortes nos EUA durante o ano passado mostrou uma expectativa de vida de 71,8 anos. Assumindo um desvio-padrão de 8,9 anos, isso parece indicar que a média da expectativa de vida hoje é maior do que 70 anos? Use um nível de significância de 0,05. 36

37 Amostra única: testes referentes a uma única média µ (σ 2 desconhecida) Seja X 1, X 2,.., X n uma amostra aleatória retirada de uma população normal, com variância σ 2 desconhecida. Suponha que desejamos testar as hipóteses: (a) H 0 : µ = µ 0 H 1 : µ µ 0 (b) H 0 : µ = µ 0 H 1 : µ > µ 0 (c) H 0 : µ = µ 0 H 1 : µ < µ 0 37

38 Amostra única: testes referentes a uma única média µ (σ 2 desconhecida) Estatística do teste: T X µ sob H0 = 0 ~ t 0 n 1 s n 38

39 Amostra única: testes referentes a uma única média µ (σ 2 desconhecida) Se o nível de significância α for adotado, temos: 39

40 Amostra única: testes referentes a uma única média µ (σ 2 desconhecida) Se o nível de significância α for adotado, temos: 40

41 Amostra única: testes referentes a uma única média µ (σ 2 desconhecida) Se o nível de significância α for adotado, temos: 41

42 Amostra única: testes referentes a uma única média µ (σ 2 desconhecida) Teste para a média µ com σ 2 desconhecida: Hipótese AlternaHva H 1 : µ µ 0 H 1 : µ > µ 0 H 1 : µ < µ 0 Critério de Rejeição t 0 > t α/2; n- 1 ou t 0 < - t α/2; n- 1 t 0 > t α; n- 1 t 0 < - t α; n- 1 42

43 Amostra única: testes referentes a uma única média µ (σ 2 desconhecida) Exemplo: O Edison Electric Institute publicou os números referentes ao consumo anual de energia elétrica em quilowatts/hora de vários eletrodomésticos. Afirmou-se que o aspirador de pó gasta uma média de 46 quilowatts/hora por ano. 43

44 Amostra única: testes referentes a uma única média µ (σ 2 desconhecida) Exemplo: (continuação) Se uma amostra aleatória de 12 casas incluídas em um estudo planejado indica que os aspiradores de pó gastam uma média de 42 quilowatts/hora, isso sugere, num nível de significância de 0,05, que os aspiradores de pó gastam, em média, menos de 46 quilowatts/hora por ano? Assuma que a população dos quilowatts/hora seja normal. 44

45 Duas amostras: testes para duas médias - Variâncias conhecidas Seja X 11, X 12,.., X 1n1 uma amostra aleatória de tamanho n1 proveniente de uma população 1 e, X 21, X 22,.., X 2n2 uma amostra aleatória de tamanho n2 proveniente de uma população 2. Ambas as populações são normais, com variâncias conhecidas. Suponha que desejamos testar as hipóteses: (a) H 0 : µ 1 - µ 2 = Δ 0 H 1 : µ 1 - µ 2 Δ 0 (b) H 0 : µ 1 - µ 2 = Δ 0 H 1 : µ 1 - µ 2 > Δ 0 (c) H 0 : µ 1 - µ 2 = Δ 0 H 1 : µ 1 - µ 2 < Δ 0 45

46 Duas amostras: testes para duas médias - Variâncias conhecidas Estatística do teste: Z 0 = ( X X ) Δ sob H σ n 2 σ n 1 2 ~ N(0;1) 46

47 Duas amostras: testes para duas médias - Variâncias conhecidas Se o nível de significância α for adotado, temos: 47

48 Duas amostras: testes para duas médias - Variâncias conhecidas Se o nível de significância α for adotado, temos: 48

49 Duas amostras: testes para duas médias - Variâncias conhecidas Se o nível de significância α for adotado, temos: 49

50 Duas amostras: testes para duas médias - Variâncias conhecidas Teste para a diferença de médias µ1 µ2 com variâncias conhecida: ð Hipótese Nula: H 0 : µ 1 - µ 2 = Δ 0 ð Estatística do Teste: Z 0 = ( X X ) ( µ µ ) σ n σ + n Hipótese Alterna.va Critério de Rejeição H 1 : µ 1 - µ 2 Δ 0 z 0 > z α/2 ou z 0 < - z α/2 H 1 : µ 1 - µ 2 > Δ 0 H 1 : µ 1 - µ 2 < Δ 0 z 0 > z α z 0 < - z α 50

51 Duas amostras: testes para duas médias - Variâncias conhecidas Exemplo: Um idealizador de produtos está interessado em reduzir o tempo de secagem de um zarcão. Duas formulações de tinta são testadas; a formulação 1 tem uma química-padrão e a formulação 2 tem um novo ingrediente de secagem, que deve reduzir o tempo de secagem. Da experiência, sabe-se que o desvio-padrão do tempo de secagem é igual a 8 minutos e essa variabilidade interente não deve ser afetada pela adição do novo ingrediente. 51

52 x 1 Duas amostras: testes para duas médias - Variâncias conhecidas Exemplo: (continuação) Dez espécimes são pintados com a formulação 1 e outros 10 espécimes são pintados com a formulação 2. Os 20 espécimes são pintados numa ordem aleatória. Os tempos médios de secagem das duas amostras são x 2 = 121 min e = 112 min, respectivamente. Quais as conclusões que o idealizador de produtos pode retirar sobre a eficiência do novo ingrediente, usando α = 0,05? 52

53 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Seja X 11, X 12,.., X 1n1 uma amostra aleatória de tamanho n 1 proveniente de uma população 1 e, X 21, X 22,.., X 2n2 uma amostra aleatória de tamanho n 2 proveniente de uma população 2. Ambas as populações são normais, com variâncias desconhecidas mas consideradas iguais. 53

54 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Suponha que desejamos testar as hipóteses: (a) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 d 0 (b) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 > d 0 (c) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 < d 0 54

55 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Estatística do teste: t ( X X ) ( µ µ ) sob H = ~ t 0 n + n 2 s p n n s p = ( 1) + ( 1) n s n s n + n

56 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Se o nível de significância α for adotado, temos: 56

57 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Se o nível de significância α for adotado, temos: 57

58 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Se o nível de significância α for adotado, temos: 58

59 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Teste para a diferença de médias µ1 µ2 com variâncias desconhecida e consideradas iguais: ð Hipótese Nula: H 0 : µ 1 - µ 2 = d 0 ð Estatística do Teste: t 0 = ( X1 X2) ( µ 1 µ 2) s p n n 1 2 Hipótese Alterna.va H 1 : µ 1 - µ 2 d 0 H 1 : µ 1 - µ 2 > d 0 H 1 : µ 1 - µ 2 < d 0 Critério de Rejeição t 0 > t α/2; n1+n2-2 ou t 0 < - t α/2; n1+n2-2 t 0 > t α; n1+n2-2 t 0 < - t α; n1+n2-2 59

60 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Exemplo: Um experimento foi realizado para comparar o desgaste abrasivo de dois materiais laminados diferentes. Doze peças do material 1 foram testadas ao expor cada peça a uma máquina que mede o desgaste. Dez peças do material 2 foram testadas de forma similar. Em cada caso, a profundidade do desgaste foi observada. 60

61 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas iguais Exemplo: (continuação) As amostras do material 1 forneceram uma média de desgaste de 85 unidades com desvio-padrão de 4, enquanto as amostras do material 2 forneceram uma média de 81 e desvio-padrão de 5. Podemos concluir que, ao nível de significância de 0,05: a) O desgaste abrasivo do material 1 excede aquele do material 2 por mais de duas unidades? b) Existe diferença no desgaste abrasivo dos dois materiais? 61

62 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas diferentes Seja X 11, X 12,.., X 1n1 uma amostra aleatória de tamanho n 1 proveniente de uma população 1 e, X 21, X 22,.., X 2n2 uma amostra aleatória de tamanho n 2 proveniente de uma população 2. Ambas as populações são normais, com variâncias desconhecidas mas consideradas diferentes. (a) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 d 0 (b) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 > d 0 (c) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 < d 0 Suponha que desejamos testar as hipóteses: 62

63 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas DIFERENTES Estatística do teste: t ( X X ) ( µ µ ) sob H = 0 s ν = 2 s n + n 1 2 s n ( 2 ) ( 2 s ) 1 n1 s2 n2 n s n n ~ t ν Se ν não for inteiro, arredondar para o menor inteiro mais próximo. 63

64 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas DIFERENTES Se o nível de significância α for adotado, temos: 64

65 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas DIFERENTES Se o nível de significância α for adotado, temos: 65

66 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas DIFERENTES Se o nível de significância α for adotado, temos: 66

67 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas DIFERENTES Teste para a diferença de médias µ1 µ2 com variâncias desconhecida e consideradas diferentes: ð Hipótese Nula: H 0 : µ 1 - µ 2 = d 0 ð Estatística do Teste: Hipótese Alterna.va Critério de Rejeição ( X1 X2) ( µ 1 µ 2) t0 = 2 2 s1 s2 + n n 1 2 H 1 : µ 1 - µ 2 d 0 H 1 : µ 1 - µ 2 > d 0 H 1 : µ 1 - µ 2 < d 0 t * 0 > t α/2; ν ou t * 0 < - t α/2; ν t * 0 > t α; ν t * 0 < - t α; ν 67

68 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas diferentes Exemplo: A concentração de arsênico em suprimentos públicos de água potável é um risco potencial à saúde. Um artigo no jornal Arizona Republic reportou as concentrações, em partes por bilhão (ppb), de arsênico em água potável para 10 comunidades rurais do rio Arizona. Eis os dados: 68

69 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas diferentes Exemplo: (continuação) Fênix Metropolitana PHX Arizona Rural RuralAZ Fênix 3 Rimrock 48 Chandler 7 Goodyear 44 Gilbert 25 New River 40 Glendale 10 Apache JuncHon 38 Fênix Metropolitaana 12,5 x Mesa 15 Buckeye Arizona Rural = 33 x = s = 7,63 Vale Paraíso 6 Nogales 21 Fênix Metropolitaana Arizona Rural Peoria 12 Back Canyon City 20 Scoesdale 25 Sedona 12 Tempe 15 Payson 1 27,5 s = 15,3 Sun City 7 Casa Grande 18 69

70 Duas amostras: testes para duas médias - Variâncias desconhecidas e consideradas diferentes Exemplo: (continuação 2) D e t e r m i n e s e h á a l g u m a d i f e r e n ç a n a s concentrações médias de arsênico entre as comunidades metropolitanas de Fênix e as comunidades rurais do Arizona. Considerando que as populações (neste caso, as concentrações de arsênico das comunidades metropolitanas de Fênix e as rurais do Arizona) sejam aproximadamente normais e que as variâncias das populações sejam diferentes. Use α = 0,01. 70

71 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Seja (X 11, X 21 ), (X 12, X 22 ),..., (X 1n, X 2n ) um conjunto de n observações emparelhadas proveniente de uma população 1 com média µ 1 e variância σ 1 2 e, uma população 2 com média µ 2 e variância σ 2 2. Definindo-se as diferenças para cada par de observações como D j = X 1j X 2j, j = 1,..., n. As diferenças D j s são consideradas como distribuições normais, com média µ D = µ 1 µ 2 e variância σ D2. 71

72 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Assim, testar hipóteses acerca da diferença entre µ 1 e µ 2 pode ser feito através do teste t para µ D, considerando uma amostra. Suponha que desejamos testar as hipóteses: (a) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 d 0 (b) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 > d 0 (c) H 0 : µ 1 - µ 2 = d 0 H 1 : µ 1 - µ 2 < d 0 72

73 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Estatística do teste: t d d sob H0 = 0 ~ t 0 s n 1 D n 73

74 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Se o nível de significância α for adotado, temos: 74

75 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Se o nível de significância α for adotado, temos: 75

76 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Se o nível de significância α for adotado, temos: 76

77 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Teste para a diferença de médias µ1 µ2 com observações emparelhadas (ou pareadas): ð Hipótese Nula: H 0 : µ 1 - µ 2 = d 0 ð Estatística do Teste: t 0 = d s D d 0 n Hipótese Alterna.va H 1 : µ 1 - µ 2 d 0 H 1 : µ 1 - µ 2 > d 0 H 1 : µ 1 - µ 2 < d 0 Critério de Rejeição t * 0 > t α/2; n- - 1 ou t * 0 < - t α/2; n- - 1 t * 0 > t α; n- - 1 t * 0 < - t α; n

78 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Exemplo: Um artigo compara vários métodos para prever a resistência ao cisalhamento em traves planas metálicas. Dados obtidos para dois desses métodos, os procedimentos de Karlsruhe e Lehigh, quando aplicados a nove traves específicas, são mostrados na tabela adiante. Determine se há diferença (na média) entre os dois métodos. Adote um nível de significância α de 0,05. 78

79 Duas amostras: testes para duas médias observações emparelhadas (ou pareadas) Exemplo: (continuação) Trave Método de Karlsruhe Método de Lehigh Diferença D j S1/1 1,186 1,061 0,125 S2/1 1,151 0,992 0,159 S3/1 1,322 1,063 0,259 S4/1 1,339 1,062 0,277 S5/1 1,200 1,065 0,135 S2/1 1,402 1,178 0,224 S2/2 1,365 1,037 0,328 S2/3 1,537 1,086 0,451 S2/4 1,559 1,052 0,507 d = 0, 2739 s = 0, D

80 Amostra única: TESTE PARA UMA ÚNICA PROPORÇÃO (amostras Seja X grandes) 1, X 2,.., X n uma amostra aleatória de tamanho n tenha sido retirada de uma grande (possivelmente infinita) população e que X ( n) observações nessa amostra pertençam a uma classe de interesse. ˆp Então, = X/n é o estimador pontual da proporção populacional p de indivíduos que pertencem a essa classe. Suponha que desejamos testar as hipóteses: (a) H 0 : p = p 0 H 1 : p p 0 (b) H 0 : p = p 0 H 1 : p > p 0 (c) H 0 : p = p 0 H 1 : p < p 0 80

81 Amostra única: TESTE PARA UMA ÚNICA PROPORÇÃO (amostras grandes) Estatística do teste: Z 0 = X np np 0 ( 1 p ) 0 0 sob H 0 ~ N(0;1) Nota: A distribuição amostral de Z 0 será uma N(0;1) se: (i) np 5, e (ii) n(1-p) 5. 81

82 Amostra única: TESTE PARA UMA ÚNICA PROPORÇÃO (amostras grandes) Se o nível de significância α for adotado, temos: 82

83 Amostra única: TESTE PARA UMA ÚNICA PROPORÇÃO (amostras grandes) Se o nível de significância α for adotado, temos: 83

84 Amostra única: TESTE PARA UMA ÚNICA PROPORÇÃO (amostras grandes) Se o nível de significância α for adotado, temos: 84

85 Amostra única: TESTE PARA UMA ÚNICA PROPORÇÃO (amostras grandes) Teste aproximado para uma proporção binomial: ð Hipótese Nula: H 0 : p = p 0 ð Estatística do Teste: Z 0 = X np np 1 0 p ( ) 0 0 Hipótese Alterna.va Critério de Rejeição H 1 : p p 0 z 0 > z α/2 ou z 0 < - z α/2 H 1 : p > p 0 H 1 : p < p 0 z 0 > z α z 0 < - z α 85

86 Amostra única: TESTE PARA UMA ÚNICA PROPORÇÃO (amostras grandes) Exemplo: Acredita-se que uma droga comumente prescrita para aliviar a tensão nervosa tem apenas 60% de eficácia. Resultados experimentais com uma nova droga administrada em uma amostra aleatória de cem adultos que sofrem de tensão nervosa mostram que 70 deles sentiram alívio. Isso é evidencia suficiente para concluirmos que a nova droga é superior a usualmente prescrita? Use o nível de significância α = 0,02. 86

87 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras grandes) S u p o n h a q u e d u a s a m o s t r a s a l e a t ó r i a s independentes, de tamanhos n1 e n2, sejam retiradas de duas populações e sejam X1 e X2 os números de observações que pertencem à classe de interesse nas amostras 1 e 2, respectivamente. Além disso, considere que a aproximação da binomial pela normal seja aplicada a cada população, de modo que os estimadores das proporções das populações ˆ X p 1 1 = 1 e X n 2 pˆ tenham distribuições normais 2 = aproximadas. n2 87

88 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras grandes) Suponha que desejamos testar as hipóteses: (a) H 0 : p 1 = p 2 H 1 : p 1 p 2 (b) H 0 : p 1 = p 2 H 1 : p 1 > p 2 (c) H 0 : p 1 = p 2 H 1 : p 1 < p 2 88

89 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras Estatística do teste: Z 0 = pˆ grandes) pˆ ( ) Nota: A distribuição amostral de Z 0 será uma N(0;1) se: (i) np 5, e (ii) n(1-p) 5. pˆ pˆ + n n sob H 0 ~ N(0;1) pˆ = X n + X + n

90 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras grandes) Se o nível de significância α for adotado, temos: 90

91 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras grandes) Se o nível de significância α for adotado, temos: 91

92 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras grandes) Se o nível de significância α for adotado, temos: 92

93 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras Teste aproximado para grandes) uma proporção binomial: ð Hipótese Nula: H 0 : p 1 = p 2 pˆ1 pˆ2 Z0 = ð Estatística do Teste: 1 1 pˆ( 1 pˆ) + n1 n2 Hipótese Alterna.va Critério de Rejeição H 1 : p 1 p 2 z 0 > z α/2 ou z 0 < - z α/2 H 1 : p 1 > p 2 H 1 : p 1 < p 2 z 0 > z α z 0 < - z α 93

94 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras grandes) Exemplo: Uma votação será realizada entre os residentes de uma cidade e seus arredores para determinar se uma indústria química deveria ser construída. A construção da fábrica é dentro dos limites da cidade e, por essa razão, muitos eleitores dos arredores sentem que a proposta será aprovada por causa da grande proporção dos eleitores da cidade que são a favor de sua construção. 94

95 DUAS AMOSTRAS: TESTE PARA DUAS PROPORÇÕES (amostras grandes) Exemplo: (continuação) Para determinar se há uma diferença significativa na proporção dos eleitores da cidade e dos arredores favorecendo a proposta, uma pesquisa foi realizada. Se 120 dos 200 eleitores da cidade são a favor da proposta e 240 dos 500 que moram nas redondezas são a favor da proposta, você concordaria que a proporção de eleitores da cidade a favor da proposta é maior que a proporção dos eleitores das redondezas? Use α = 0,04. 95

96 Amostra única: TESTE PARA σ 2 (e σ) DE UMA DISTRIBUIÇÃO NORMAL Seja X 1, X 2,.., X n uma amostra aleatória de tamanho n de uma população normal. Considere, ainda, que estejamos interessados em testar se a variância σ 2 dessa população é igual a um valor específico σ 2 0. Suponha que desejamos testar as hipóteses: (a) H 0 : σ 2 = σ 2 0 H 1 : σ 2 σ 2 0 (b) H 0 : σ 2 = σ 2 0 H 1 : σ 2 > σ 2 0 (c) H 0 : σ 2 = σ 2 0 H 1 : σ 2 < σ

97 Amostra única: TESTE PARA σ 2 (e σ) DE UMA DISTRIBUIÇÃO NORMAL Estatística do teste: χ ( n 1) s 2 sob H0 2 = ~ χ n 1 σ 0 97

98 Amostra única: TESTE PARA σ 2 (e σ) DE UMA DISTRIBUIÇÃO NORMAL Se o nível de significância α for adotado, temos: 98

99 Amostra única: TESTE PARA σ 2 (e σ) DE UMA DISTRIBUIÇÃO NORMAL Se o nível de significância α for adotado, temos: 99

100 Amostra única: TESTE PARA σ 2 (e σ) DE UMA DISTRIBUIÇÃO NORMAL Se o nível de significância α for adotado, temos: 100

101 Amostra única: TESTE PARA σ 2 (e σ) DE UMA DISTRIBUIÇÃO NORMAL Teste para uma variância de uma distribuição normal: ð Hipótese Nula: H 0 : σ 2 = σ 2 0 ð Estatística do Teste: χ = n 1 ( ) σ 0 s Hipótese Alterna.va Critério de Rejeição H 1 : σ 2 σ 2 0 χ2 0 >χ2 α/2;n 1 ou χ2 0 < χ2 1 α/2; n 1 H 1 : σ 2 > σ 2 0 H 1 : σ 2 < σ 2 0 χ2 0 >χ2 α;n 1 χ2 0 <χ2 α;n 1 101

102 Amostra única: TESTE PARA σ 2 (e σ) DE UMA DISTRIBUIÇÃO NORMAL Exemplo: Um fabricante de baterias automotivas afirma que a vida útil delas tem distribuição aproximadamente normal, com desvio-padrão de 0,9 ano. Se uma amostra aleatória de dez dessas baterias tem desvio-padrão de 1,2 ano. Teste a hipótese de que o desvio-padrão da vida útil das baterias seja superior a 0,9 ano. Use α = 0,

103 DUAS AMOSTRAS: TESTE PARA A RAZÃO DE DUAS VARIÂNCIAS σ 2 1 Seja X E σ 2 11, X 12,.., X 1n1 uma 2 amostra aleatória de tamanho n1 proveniente de uma população 1 e, X 21, X 22,.., X 2n2 uma amostra aleatória de tamanho n2 proveniente de uma população 2. Considere, também, que s 1 2 e s2 2 são as variâncias amostrais das amostras obtidas das populações 1 e 2, respectivamente. Suponha (a) que desejamos (b) testar (c) as hipóteses: H 0 : σ 2 1 = σ2 2 H 1 : σ 2 1 σ2 2 H 0 : σ 2 1 = σ2 2 H 1 : σ 2 1 > σ2 2 H 0 : σ 2 1 = σ2 2 H 1 : σ 2 1 < σ

104 DUAS AMOSTRAS: TESTE PARA A RAZÃO DE DUAS VARIÂNCIAS σ 2 1 E σ 2 2 Estatística do teste: F s 2 sob H0 = 1 ~ F 0 2 n1 1, n2 1 s2 104

105 DUAS AMOSTRAS: TESTE PARA A RAZÃO DE DUAS VARIÂNCIAS σ 2 1 E σ 2 2 Se o nível de significância α for adotado, temos: 105

106 DUAS AMOSTRAS: TESTE PARA A RAZÃO DE DUAS VARIÂNCIAS σ 2 1 E σ 2 2 Se o nível de significância α for adotado, temos: 106

107 DUAS AMOSTRAS: TESTE PARA A RAZÃO DE DUAS VARIÂNCIAS σ 2 1 E σ 2 2 Se o nível de significância α for adotado, temos: 107

108 DUAS AMOSTRAS: TESTE PARA A RAZÃO DE DUAS VARIÂNCIAS σ 2 1 E σ 2 2 Teste para a razão de duas variâncias: ð Hipótese Nula: H 0 : σ 2 = σ 2 0 ð Estatística do Teste: 2 s1 F0 = 2 s 2 Hipótese Alterna.va H 1 : σ 2 1 = σ2 2 H 1 : σ 2 1 > σ2 2 H 1 : σ 2 1 < σ2 2 Critério de Rejeição F 0 >F α/2;n1 1,n2 1 ou F 0 <F 1 α/2;n1 1,n2 1 F 0 >F α;n1 1,n2 1 F 0 <F 1 α;n1 1,n

109 DUAS AMOSTRAS: TESTE PARA A RAZÃO DE DUAS VARIÂNCIAS σ 2 1 E σ 2 2 Exemplo: Ao testar a diferença no desgaste abrasivo de dois materiais no exemplo do slide , assumimos que as duas variâncias populacionais desconhecidas eram iguais. Havia justificativa para fazermos essa suposição? Use um nível de significância α = 0,

110 Teste qui-quadrado (qualidade do ajuste) Um teste da qualidade do ajuste é um teste de hipótese cuja finalidade é determinar se uma população tem uma distribuição teórica específica. O teste se baseia em quão bom é o ajuste que temos entre as frequências da ocorrências das observações em uma amostra observada (frequência observada) e as frequências esperadas obtidas da distribuição hipotética (frequência esperada). 110

111 Teste qui-quadrado (qualidade do Hipóteses : ajuste) H 0 : a população segue a distribuição especificada. H 1 : a população não segue a distribuição especificada 111

112 Teste qui-quadrado (qualidade do Estatística do teste: ajuste) χ k ( ) 2 o e sob H0 2 = i i ~ χ 2 0 k 1 e i= 1 i o i : frequência observada na i-ésima célula. e i : frequência esperada na i-ésima célula. 112

113 Teste qui-quadrado (qualidade do ajuste) Se o nível de significância α for adotado, temos: 113

114 Teste qui-quadrado (qualidade do Observação (1): ajuste) Se as frequências observadas (o i ) estiverem: Próximas das frequências esperadas (e i ), o valor assumido pela estatística do teste χ 2 será pequeno, indicando um bom ajuste e a não rejeição de H 0. Distantes das frequências esperadas (e i ), o valor assumido pela estatística do teste χ 2 será grande, indicando um ajuste ruim e a rejeição de H

115 Teste qui-quadrado (qualidade do Observação (2): ajuste) a) O teste qui-quadrado para qualidade do ajuste só deve ser utilizado quando cada uma das frequências esperadas é maior ou igual a 5. b) Caso alguma das frequências esperadas seja menor que 5, células adjacentes podem ser combinadas para sanar tal situação. 115

116 Teste qui-quadrado (qualidade do ajuste) Teste qui-quadrado para qualidade do ajuste: ð Hipótese Nula: H 0 : a população segue a distribuição especificada ð Estatística do Teste: Hipótese Alterna.va χ H 1 : a população não segue a distribuição especificada 2 0 k = i= 1 ( o e ) 2 i e i Critério de Rejeição χ > χ i α; k 1 116

117 Teste qui-quadrado (qualidade do ajuste) Exemplo: Um dado é jogado 180 vezes com os seguintes resultados: x f Esse dado é balanceado (ou seja, é honesto)? Use um nível de significância de 0,

118 Teste qui-quadrado (teste de independência) O procedimento do teste qui-quadrado discutido para qualidade do ajuste, também pode ser usado para testar a hipótese de independência entre duas variáveis de classificação (neste caso, duas variáveis categóricas). 118

119 Teste qui-quadrado (teste de independência) Definição (TABELA DE CONTINGÊNCIA): Uma tabela de contingência ou tabela de frequência de dupla-entrada é uma tabela na qual as frequências correspondem a duas variáveis (uma variável é usada para categorizar linhas, e a segunda variável é usada para categorizar colunas). 119

120 Nota: Teste qui-quadrado (teste de independência) a) Uma tabela de contingência com l linhas e c colunas é referida como uma tabela l x c (lê-se: l por c ). b) Os totais das linhas e das colunas de uma tabela de contingência são chamados de frequências marginais. 120

121 Teste qui-quadrado (teste de Hipóteses : independência) H 0 : as variáveis da linha e da coluna são independentes. H 1 : as variáveis da linha e da coluna não são independentes. 121

122 Teste qui-quadrado (teste de independência) Estatística do teste: c l ( ) 2 o e sob H0 2 = i i ~ 2 0 c 1, l 1 e j= 1 i= 1 i χ χ o i : frequência observada na i-ésima célula. e i : frequência esperada na i-ésima célula. 122

123 Teste qui-quadrado (teste de independência) Se o nível de significância α for adotado, temos: 123

124 Teste qui-quadrado (teste de independência) Observação: No teste qui-quadrado para independência, os totais marginais da tabela de contingência são determinados ao acaso, ou seja, não são prédeterminados. 124

125 Teste qui-quadrado (teste de independência) Teste qui-quadrado de independência: ð Hipótese Nula: H 0 : as variáveis da linha e da coluna são independentes ð Estatística do Teste: Hipótese Alterna.va χ 2 0 H 1 : as variáveis da linha e da coluna não são independentes c l = ( o e ) 2 j= 1 i= 1 i i e Critério de Rejeição α; c 1, l 1 χ > χ i 125

126 Teste qui-quadrado (teste de independência) Exemplo: Em um experimento para estudar a relação entre hipertensão e o hábito de fumar, os seguintes dados foram obtidos em 180 indivíduos: x Não fumante Fumante moderado Fumante inveterado Hipertenso Não hipertenso

127 Teste qui-quadrado (teste de independência) Exemplo (continuação): Teste a hipótese de que a presença ou ansência d a h i p e r t e n s ã o d e p e n d e d o s h á b i t o s relacionados ao fumo. Use um nível de significância de 0,

128 Teste qui-quadrado (teste de HOMOGENEIDADE) O procedimento do teste qui-quadrado para independência também pode ser usado quando os totais das linhas e das colunas são prédeterminados. Neste caso, ao invés de independência, testamos a hipótese de que as proporções populacionais dentro de cada linha da tabela de contingência são as mesmas. 128

129 Teste qui-quadrado (teste de HOMOGENEIDADE) Hipóteses : H 0 : populações diferentes têm a mesma proporção de alguma característica. H 1 : populações diferentes não têm a mesma proporção de alguma característica. 129

130 Teste qui-quadrado (teste de HOMOGENEIDADE) Estatística do teste: c l ( ) 2 o e sob H0 2 = i i ~ 2 0 c 1, l 1 e j= 1 i= 1 i χ χ o i : frequência observada na i-ésima célula. e i : frequência esperada na i-ésima célula. 130

131 Teste qui-quadrado (teste de HOMOGENEIDADE) Se o nível de significância α for adotado, temos: 131

132 Teste qui-quadrado (teste de HOMOGENEIDADE) Observação: No teste qui-quadrado para homogeneidade, os totais marginais de uma das variáveis da tabela de contingência são fixos, ou seja, são prédeterminados. 132

133 Teste qui-quadrado (teste de HOMOGENEIDADE) Teste qui-quadrado de homogeneidade: ð Hipótese Nula: H 0 : populações diferentes têm a mesma proporção de alguma característica. c l ð Estatística do Teste: Hipótese Alterna.va H 1 : populações diferentes não têm a mesma proporção de alguma caracteríshca χ 2 0 = ( o e ) 2 j= 1 i= 1 i Critério de Rejeição i e α; c 1, l 1 χ > χ i 133

134 Teste qui-quadrado (teste de HOMOGENEIDADE) Exemplo: A enfermaria de uma faculdade conduziu um experimento para conduzir o grau de alívio fornecido por três remédios antitussígenos. Cada remédio foi testado em 50 estudantes e os seguintes foram registrados: 134

135 Teste qui-quadrado (teste de HOMOGENEIDADE) Exemplo (continuação): Remédio anhtussígeno NyQuil Robitussin Triaminic Sem alívio Algum alívio Alívio total Teste a hipótese de que os três remédios são igualmente eficazes. Use α = 0,

136 Análise de variância 136

137 Introdução A Análise de Variância (ANOVA) de um único fator tem por objehvo comparar mais de duas populações ou médias de tratamentos. 137

138 Introdução Considere: a: número de populações ou tratamentos em comparação. µ i : a média da população i ou a resposta média verdadeira quando o tratamento i é aplicado (i = 1, 2,..., a). 138

139 Hipóteses sendo testadas As hipóteses de interesse são: H 0 : µ 1 = µ 2 = µ 3 =... = µ I H 1 :pelo menos duas das médias µ i são diferentes (i = 1, 2,..., a). 139

140 Notação e Pressupostos Considere: X i,j : a variável aleatória que representa a j- ésima medida feita na i- ésima população, ou a medida feita na j- ésima unidade experimental que recebeu o i- ésimo tratamento. x i,j : o valor observado de X i,j quando o experimento é realizado. 140

141 Notação e Pressupostos Nota: Os dados observados são mostrados frequentemente em uma tabela. 141

142 Notação e Pressupostos Nota: É assumido que os X i,j dentro de qualquer amostra parhcular são independentes uma amostra aleatória da i- ésima população ou tratamento e que diferentes amostras são independentes umas das outras. 142

143 Experimentos balanceados Em alguns experimentos, amostras diferentes contém números diferentes de observações. Focaremos aqui no caso de tamanhos amostrais iguais (experimentos balanceados). 143

144 Quadro da ANOVA (balanceada) Fonte de Variação Tratamentos Erros Graus de Liberdade Soma de Quadrados (SQ) Quadrados Médios (QM) F calc a 1 SQ Trat QM Trat F calc a(n 1) SQ E QM E Total an - 1 SQ T 144

145 Quadro da ANOVA Onde: n: é o número de observações em cada amostra (ou seja, o número de observações obtidas do i-ésimo tratamento ou da i-esima população). a: número de populações ou tratamentos em comparação. 145

146 Quadro da ANOVA Onde: I J 1 SQT = x x i= 1 j= 1 an I 1 1 SQTrat = xi x n g i= 1 an SQ = SQ SQ E T Trat 2 2 ij gg 2 2 gg F QM QM calc = Trat E = = QM QM SQ Trat a 1 SQ E an 1 ( ) Trat E 146

147 Estatística do Teste F QM Sob H0 = Trat ~ F calc QM I 1; I J 1 E ( ) 147

148 Região de Rejeição Sendo o valor F calc o valor calculado de F, a região de rejeição será: quando um teste com nível de significância α é especificado. F F α calc ; I 1, I J 1 ( ) 148

149 Região de Rejeição A figura adiante representa a curva da distribuição F a- 1;a(n - 1) e o valor críhco F α;a- 1;a(n- 1) na cauda superior correspondente. 149

150 Região de Rejeição 150

151 Exemplo de aplicação Os dados adiante foram obhdos das medidas de resistores idênhcos, submehdos a três níveis de temperaturas num período de 24 horas. Os tamanhos amostrais de cada grupo foi 5 (cinco). 151

152 Exemplo de aplicação No jargão de Planejamento de Experimentos, temos um experimento em que cada um dos 3 (três) tratamentos tem 5 repehções. 152

153 Exemplo de aplicação Nível 1 Nível 2 Nível 3 8,0 6,9 8,3 10,5 5,4 6,8 8,1 5,8 7,8 6,9 4,6 9,2 9,3 4,0 6,5 153

154 Exemplo de aplicação Existe diferença nas medidas médias para diferentes níveis de temperatura? Responda essa pergunta realizando uma ANOVA. Use α=0,

155 Teste Tukey Teste de comparações múltiplas 155

156 Teste Tukey Suponha que, após uma ANOVA em que tenhamos rejeitado a hipótese nula de igualdade de médias dos tratamentos, desejamos testar todas as médias pareadas, ou seja, H 0 : µ i = µ j versus H 1 : µ i µ j, i j 156

157 Teste Tukey Tukey (1953) propôs um procedimento para testar hipóteses para o qual o nível de significância global é exatamente α quando os tratamentos amostrais são iguais e, no máximo α, quando os tratamentos amostrais são diferentes. 157

158 Teste Tukey Seu procedimento também pode ser usado para contrair os intervalos de confiança das diferenças de todos os pares de médias. Para estes intervalos, os intervalos de confiança simultâneos têm um nível 100(1- α)% quando os tamanhos amostrais são diferentes. 158

159 Teste Tukey Para tamanhos amostrais iguais, duas médias como sendo significahvamente diferentes se o valor absoluto da diferença de suas amostras excede: ( ) T = q a f α α QM, erro onde a é o número de tratamentos e n o número de repehções realizadas em cada tratamento. n 159

160 Exemplo de aplicação Considere que um químico deseja comparar o percentual alcoólico de 8 (oito) marcas diferentes de cervejas. Para tal, ele escolheu aleatoriamente 6 (seis) latas de cada uma das oito marcas e fez a medição do teor de álcool. Os dados obhdos são apresentados na tabela adiante: 160

161 Exemplo de aplicação Marca Média 1 5, , , , , , , ,

162 Exemplo de aplicação Este químico realizou uma ANOVA para este conjunto de dados, obtendo uma soma de quadrados dos erros (ou seja, SQE) de 0, e uma soma de quadrados dos tratamentos (ou seja, SQTrat) de 0,

163 Exemplo de aplicação Quais as marcas diferem quanto ao percentual alcoólico médio? JusHfique sua resposta através do emprego da ANOVA e do Teste Tukey. UHlize um nível de significância de α = 0,

Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07

Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07 -027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA

Leia mais

Inferência Estatística. Teoria da Estimação

Inferência Estatística. Teoria da Estimação Inferência Estatística Teoria da Estimação Os procedimentos básicos de inferência Estimação: usamos o resultado amostral para estimar o valor desconhecido do parâmetro Teste de hipótese: usamos o resultado

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

TESTES DE HIPÓTESES. Lucas Santana da Cunha Universidade Estadual de Londrina

TESTES DE HIPÓTESES. Lucas Santana da Cunha     Universidade Estadual de Londrina TESTES DE HIPÓTESES Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de setembro de 2016 Introdução Viu-se a construção de intervalos

Leia mais

TESTE DE HIPÓTESE. Introdução

TESTE DE HIPÓTESE. Introdução TESTE DE HIPÓTESE Introdução O teste de hipótese estatística objetiva decidir se uma afirmação sobre uma população, usualmente um parâmetro desta, é, ou não, apoiada pela evidência obtida dos dados amostrais.

Leia mais

AULA 05 Teste de Hipótese

AULA 05 Teste de Hipótese 1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 214 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

Testes de Hipóteses: Média e proporção

Testes de Hipóteses: Média e proporção Testes de Hipóteses: Média e proporção Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 12 de setembro de 2018 Londrina 1 / 27 Viu-se a construção de intervalos de confiança

Leia mais

Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski

Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR

Leia mais

1 Teoria da Decisão Estatística

1 Teoria da Decisão Estatística 1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos

Leia mais

Teste de Hipóteses Paramétricos

Teste de Hipóteses Paramétricos Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses

Leia mais

TOMADA DE DECISÃO PARA DUAS AMOSTRAS INTRODUÇÃO ROTEIRO. Estatística Aplicada à Engenharia 1 INFERÊNCIA SOBRE A DIFERENÇA DE MÉDIAS

TOMADA DE DECISÃO PARA DUAS AMOSTRAS INTRODUÇÃO ROTEIRO. Estatística Aplicada à Engenharia 1 INFERÊNCIA SOBRE A DIFERENÇA DE MÉDIAS ROTEIRO. Introdução. Inferência sobre as médias de duas populações com variâncias conhecidas TOMADA DE DECISÃO PARA DUAS AMOSTRAS 3. Inferência sobre as médias de duas populações com variâncias desconhecidas

Leia mais

AULA 04 Teste de hipótese

AULA 04 Teste de hipótese 1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal

Leia mais

Inferência Estatística Para Duas Amostras

Inferência Estatística Para Duas Amostras Inferência Estatística Para Duas Amostras OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Estruturar, como testes de hipóteses, experimentos comparativos

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 21 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 2019 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Teste de Hipóteses. Enrico A. Colosimo/UFMG enricoc/ Depto. Estatística - ICEx - UFMG 1/24

Teste de Hipóteses. Enrico A. Colosimo/UFMG  enricoc/ Depto. Estatística - ICEx - UFMG 1/24 1/24 Introdução à Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/24 Exemplo A concentração de certa substância no sangue entre

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Testes de Hipóteses Paramétricos 1 / 41 Introdução. Hipóteses Estatísticas. Erro Tipo I

Leia mais

Inferência para duas populações

Inferência para duas populações Inferência para duas populações Capítulo 13, Estatística Básica (Bussab&Morettin, 8a Edição) 7a AULA 27/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 7a aula (27/04/2015) MAE229 1 / 27 1.

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Testes de Hipóteses I

Testes de Hipóteses I Testes de Hipóteses I Capítulo 12, Estatística Básica (Bussab&Morettin, 8a Edição) 5a AULA 23/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 1. Introdução Neste capítulo pretendemos resolver

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 9: Testes de Hipóteses

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 01 de Julho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma população. Serão usadas as distribuições

Leia mais

Teste de hipóteses para proporção populacional p

Teste de hipóteses para proporção populacional p Teste de hipóteses para proporção populacional p 1 Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses 2 TESTE DE HIPÓTESES Eu acredito

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

1 Probabilidade - Modelos Probabilísticos

1 Probabilidade - Modelos Probabilísticos 1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,

Leia mais

Introdução à Bioestatística Turma Nutrição

Introdução à Bioestatística Turma Nutrição Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 9: Testes de Hipóteses - Conceitos Básicos e Testes para Média

Leia mais

(Hipótese alternativa unilateral)

(Hipótese alternativa unilateral) Nível descritivo e Teste de Hipóteses para a média populacional µ 1 Exemplo 1: Pelo Anuário do IBGE de 2010, a proporção de analfabetos em uma cidade era de 15%. Em 2015, entre 200 entrevistados dessa

Leia mais

Tomada de Decisão para uma Única Amostra

Tomada de Decisão para uma Única Amostra Tomada de Decisão para uma Única Amostra Testes de Hipóteses Teste de Hipóteses Procedimento de tomada de decisão sobre hipóteses envolvendo a população Aspecto bastante útil da Inferência Estatística:

Leia mais

TESTE DE HIPÓTESES ELISETE AUBIN E MONICA SANDOVAL - IME

TESTE DE HIPÓTESES ELISETE AUBIN E MONICA SANDOVAL - IME 1 TESTE DE HIPÓTESES ELISETE AUBIN E MONICA SANDOVAL - IME 2 MÉTODOS ESTATÍSTICOS Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses 3 Teste de hipóteses para

Leia mais

BIOESTATÍSTICA. Parte 5 Testes de Hipóteses

BIOESTATÍSTICA. Parte 5 Testes de Hipóteses BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do

Leia mais

Princípios de Bioestatística Teste de Hipóteses

Princípios de Bioestatística Teste de Hipóteses 1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Introdução Hipóteses Estatísticas São suposições quanto ao valor de um parâmetro populacional

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Unidade IV Inferência estatística

Unidade IV Inferência estatística 6//5 Unidade IV Inferência estatística 4.. Introdução e histórico 4.. Conceitos fundamentais 4.3. Distribuições amostrais e Teorema central do limite 4.4. Estimação de parâmetros 4.5. Testes de hipóteses

Leia mais

Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição

Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Procedimento teste de hipótese para proporção. Resumo. (1) Estabelecer as hipóteses: H: p = p 0 contra uma das alternativas

Leia mais

AULA 8 Experimentos multinomiais e tabelas de contingência

AULA 8 Experimentos multinomiais e tabelas de contingência 1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas

Leia mais

Delineamento e Análise Experimental Aula 3

Delineamento e Análise Experimental Aula 3 Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Teste de hipóteses Objetivo: Testar uma alegação sobre um parâmetro: Média, proporção, variação e desvio padrão Exemplos: - Um hospital alega que o tempo de resposta de sua ambulância é inferior a dez

Leia mais

3. Experimentos a um único fator: Análise de Variância (ANOVA) 3.7 Comparações entre médias de tratamento

3. Experimentos a um único fator: Análise de Variância (ANOVA) 3.7 Comparações entre médias de tratamento 3. Experimentos a um único fator: Análise de Variância (ANOVA) 3.7 Comparações entre médias de tratamento Suponha que a hipótese nula, de médias de tratamento iguais, tenha sido rejeitada em favor da hipótese

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Testes de Hipóteses Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada TESTES DE HIPÓTESES Inferência estatística: tomar decisões sobre a população com base

Leia mais

Teste de Hipótese. Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral. 2 Fundamentos do teste de hipótese

Teste de Hipótese. Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral. 2 Fundamentos do teste de hipótese Teste de Hipótese Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral 2 Fundamentos do teste de hipótese z 3 Teste de uma afirmativa sobre uma Proporção z 4 Teste de uma afirmativa

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

TESTES DE HIPÓTESE COM UMA AMOSTRA. Prof. Regina Meyer Branski

TESTES DE HIPÓTESE COM UMA AMOSTRA. Prof. Regina Meyer Branski 1 TESTES DE HIPÓTESE COM UMA AMOSTRA Prof. Regina Meyer Branski Objetivos Introdução aos testes de hipótese Testes de hipóteses para a média (amostras grandes) Testes de hipóteses para a média (amostras

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade de Variância (ANOVA) 1/24

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade de Variância (ANOVA) 1/24 ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 07: Análise de Variância (ANOVA) 1/24 Definição A análise de variância (ANOVA) é um método para testar a igualdade

Leia mais

Testes de Hipóteses sobre a média: Várias Amostras

Testes de Hipóteses sobre a média: Várias Amostras Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)

Leia mais

Testes para dados categóricos

Testes para dados categóricos Testes para dados categóricos Teste de homogeneidade Objetivo: testar se existe diferença entre frequências observadas (O ij ) e frequências esperadas (E ij ). Dados amostrais: amostras aleatórias independentes

Leia mais

Testes de Hipóteses para uma Única Amostra

Testes de Hipóteses para uma Única Amostra Roteiro Testes de Hipóteses para uma Única Amostra 1. Introdução 2. Testes para a Média i. População normal com variância conhecida ii. População normal com variância desconhecida 3. Testes para a Variância

Leia mais

Carlos Antonio Filho

Carlos Antonio Filho Estatística II - Seção 04 Carlos Antonio Filho ESAGS 2 o semestre de 2017 Carlos Antonio Filho (ESAGS) Estatística II - Seção 04 2 o semestre de 2017 1 / 137 Comparação de médias de duas populações Vamos

Leia mais

Lista Inferência para duas amostras Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril

Lista Inferência para duas amostras Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril Exercício 1. Um idealizador de produtos está interessado em reduzir o tempo de secagem de um zarcão. Duas formulações de tinta são testadas: a formulação 1 tem uma química padrão e a formulação 2 tem um

Leia mais

A moeda é honesta ou é desequilibrada? Qual é a probabilidade de "cara"no lançamento de uma moeda?

A moeda é honesta ou é desequilibrada? Qual é a probabilidade de carano lançamento de uma moeda? Qual é a probabilidade de "cara"no lançamento de uma moeda? Qual é a proporção de eleitores favoráveis ao candidato A? A moeda é honesta ou é desequilibrada? O candidato A tem até 50% das intenções de

Leia mais

Nosso objetivo agora é apresentar procedimentos estatísticos simples para verificar se um conjunto de dados amostrais dá ou não suporte à uma

Nosso objetivo agora é apresentar procedimentos estatísticos simples para verificar se um conjunto de dados amostrais dá ou não suporte à uma TESTE DE HIPÓTESES Em geral. Feita determinada afirmação sobre uma população, usualmente sobre um parâmetro dessa, desejamos saber se os resultados experimentais provenientes de uma amostra contrariam

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE.

Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE. CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA Módulo: ESTIMATIVA E TESTE DE HIPÓTESE slide Testes de hipóteses com duas amostras slide Larson/Farber 4th ed Descrição - Testar a diferença entre médias

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

TOMADA DE DECISÃO PARA UMA AMOSTRA. Estatística Aplicada à Engenharia 1

TOMADA DE DECISÃO PARA UMA AMOSTRA. Estatística Aplicada à Engenharia 1 TOMADA DE DECISÃO PARA UMA AMOSTRA Estatística Aplicada à Engenharia 1 ROTEIRO 1. Teste de hipóteses; 2. Inferência sobre a média de uma população (variância conhecida); 3. Inferência sobre a média de

Leia mais

PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses

PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos 6 a aula Testes de Hipóteses Mario Thadeu Leme de Barros Luís Antonio Villaça de Garcia Abril / 2007 Estatística Aplicada ao Gerenciamento

Leia mais

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.

Leia mais

ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt

ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt lucas.breniuk@hotmail.com Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador

Leia mais

Razão para rejeitar H 0

Razão para rejeitar H 0 Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco

Leia mais

Inferência Estatística Básica. Teste de Hipóteses: decidindo na presença de incerteza

Inferência Estatística Básica. Teste de Hipóteses: decidindo na presença de incerteza Inferência Estatística Básica Teste de Hipóteses: decidindo na presença de incerteza Exemplo Inicial A ProCare Industries LTDA lançou, certa vez, um produto chamado Gender Choice. De acordo com a propaganda,

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 9 Fundamentos de Testes de Hipóteses Leitura: Devore, Capítulo 8 Chap 9-1 Objetivos Neste capítulo, vamos aprender: Os princípios básicos de testes de hipóteses Estabelecer

Leia mais

Medidas de associação entre duas variáveis qualitativas

Medidas de associação entre duas variáveis qualitativas Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos

Leia mais

Objetivos. Testes não-paramétricos

Objetivos. Testes não-paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacionamentos ou modelos (testes não paramétricos).

Leia mais

5.3 Experimentos fatoriais a dois fatores. Ambos os fatores são supostos fixos e os efeitos de tratamento são definidos como desvios da média tal que

5.3 Experimentos fatoriais a dois fatores. Ambos os fatores são supostos fixos e os efeitos de tratamento são definidos como desvios da média tal que 5. Experimentos Fatoriais 5.3 Experimentos fatoriais a dois fatores. Modelo de Efeitos Y ijk = µ+τ i +β j +(τβ) ij +ɛ ijk, i = 1, 2,..., a j = 1, 2,..., b k = 1, 2,..., n Ambos os fatores são supostos

Leia mais

(a) Teste e IC para Duas Variâncias. (b) Teste para médias. Duas Amostras de Teste T e IC

(a) Teste e IC para Duas Variâncias. (b) Teste para médias. Duas Amostras de Teste T e IC Exercício 1 Contexto: amostras independentes de populações normais (a) Teste e IC para Duas Variâncias Método Hipótese nula Variância(Primeiro) / Variância(Segundo) = 1 Hipótese alternativa Variância(Primeiro)

Leia mais

EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda.perticarrari@unesp.br INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Inferência por Teste de Hipótese Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas de M.

Leia mais

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,

Leia mais

MAE Introdução à Probabilidade e à Estatística II. Lista de Exercícios 5-1 sem de Profa. Lígia Henriques-Rodrigues

MAE Introdução à Probabilidade e à Estatística II. Lista de Exercícios 5-1 sem de Profa. Lígia Henriques-Rodrigues MAE0229 - Introdução à Probabilidade e à Estatística II Lista de Exercícios 5-1 sem de 2018 Classe Profa. Lígia Henriques-Rodrigues 1. Um fabricante de fibra têxtil está investigando um novo fio de cortina,

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Cap. 9 Comparação entre tratamentos

Cap. 9 Comparação entre tratamentos Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 9 Comparação entre tratamentos APOIO: Fundação de Apoio

Leia mais

Exercícios Resolvidos

Exercícios Resolvidos Exercícios Resolvidos R10.1) Velocidade média na estrada Sergio afirma que Raquel dirige seu carro na estrada a uma velocidade média superior a 100 km/h, enquanto Raquel discorda, afirmando dirigir na

Leia mais

Prof. Lorí Viali, Dr. Mat2282 Análise Estatística Não Paramétrica

Prof. Lorí Viali, Dr.  Mat2282 Análise Estatística Não Paramétrica Prof. Lorí Viali, Dr. http://www.pucrs.br/~viali/ viali@pucrs.br Objetivos Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacionamentos ou modelos (testes não paramétricos). Envolvem

Leia mais

ANÁLISE DE VARIÂNCIA - ANOVA. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

ANÁLISE DE VARIÂNCIA - ANOVA. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM ANÁLISE DE VARIÂNCIA - ANOVA Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM UM EXEMPLO DE APLICAÇÃO Digamos que temos 6 métodos de ensino aplicados a 30 crianças

Leia mais

Aula 8 - Testes de hipóteses

Aula 8 - Testes de hipóteses Aula 8 - Testes de hipóteses PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 1 Testes de hipóteses Exemplo

Leia mais

Cap. 8 - Intervalos Estatísticos para uma Única Amostra

Cap. 8 - Intervalos Estatísticos para uma Única Amostra Intervalos Estatísticos para ESQUEMA DO CAPÍTULO 8.1 INTRODUÇÃO 8.2 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 8.3 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO

Leia mais

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios Planejamento de Experimentos 13. Experimentos com fatores aleatórios Até aqui assumimos que os fatores nos experimentos eram fixos, isto é, os níveis dos fatores utilizados eram níveis específicos de interesse.

Leia mais

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Teste de Hipóteses

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Teste de Hipóteses Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Teste de Hipóteses Professora Renata Alcarde Sermarini Piracicaba maio 2014 Renata Alcarde Sermarini Estatística Geral 5 de Junho

Leia mais

Enrico A. Colosimo Depto. Estatística UFMG

Enrico A. Colosimo Depto. Estatística UFMG Bioestatística F Conceitos de Teste de Hipóteses Enrico A. Colosimo Depto. Estatística UFMG http://www.est.ufmg.br/~enricoc/ f(x).4.35.3.25.2.15.1.5 Tabela Normal Padronizada Distribuicao Gaussiana com

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE

Leia mais

MAE0229 Introdução à Probabilidade e Estatística II

MAE0229 Introdução à Probabilidade e Estatística II Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores

Leia mais

TESTE DE HIPÓTESES NÍVEL DESCRITIVO

TESTE DE HIPÓTESES NÍVEL DESCRITIVO TESTE DE HIPÓTESES NÍVEL DESCRITIVO Exemplo 1: Em períodos de pico, os clientes de um banco são obrigados a enfrentar longas filas para sacar dinheiro nos caixas eletrônicos. Dados históricos de vários

Leia mais