Sistemas de Numeração
|
|
- Juan Faro Aquino
- 2 Há anos
- Visualizações:
Transcrição
1 Sistemas de Numeração Módulo 1.1 1
2 Sistemas de Numeração O sistema de numeração com o qual estamos mais familiarizados é o decimal, cujo alfabeto (coleção de símbolos) é formado por 10 dígitos acima mostrados. Um Computador Decimal: se trabalhasse com o sistema decimal um computador precisaria codificar 10 níveis de referência para caracterizar os 10 dígitos do sistema utilizado. Esses níveis de referência poderiam ser valores de tensão (0V, 1V, 2V, etc.) que precisariam ser definidos e interpretados de maneira clara e precisa pela máquina. Desvantagem: quanto maior o número de interpretações maior a probabilidade de erro. Para decidir que está lendo o número 5 a máquina precisaria ter certeza de que o que leu não é: 0, 1, 2, 3, 4, 6, 7, 8, 9.
3 Sistemas de Numeração Consequência: O sistema de numeração mais seguro deveria ser aquele com o menor número de símbolos (dígitos). Conclusão: o melhor sistema de numeração para uma máquina seria o binário com apenas dois dígitos, o zero (0) e o um (1). Obs.: Não há sistema de numeração com alfabeto de um único dígito. Todo sistema de numeração precisa dos conceitos de presença (1) e ausência (0). 3
4 Sistemas de Numeração Um possível problema no uso de máquinas binárias: o número binário precisa de mais dígitos para ser escrito do que o decimal. (2) 10 número de animais representado em decimal (10) 2 número de animais representado em binário Quatro em decimal é representado como 4. Sua representação em binário é 100. Consequência: o computador binário seria mais preciso porém muito lento porque a leitura da informação iria requerer mais tempo. 4
5 Sistemas de Numeração Uma solução: o uso de dispositivos eletrónicos baseados na tecnologia dos semicondutores, como os transistores. O transístor: é um dispositivo usado para controlar o fluxo de corrente. Ele tem duas características importantes: 1- é capaz de amplificar um sinal elétrico. 2- é capaz de chavear (comutar) entre ligado e desligado (ou fechado e aberto), deixando corrente passar através dele ou bloqueando-a. Essas condições são também denominadas saturação e corte, respectivamente. O transístor pode mudar da condição de saturação para o corte em velocidades acima de um milionésimo de segundo. Ele pode ser usado para caracterizar a presença (ou ausência) de um dígito binário (0 ou 1) e pode tomar decisões desse tipo a uma taxa superior a um milhão de decisões por segundo. 5
6 Sistemas de Numeração O primeiro Transístor Um Transístor moderno Transístor: inventado nos Laboratórios da Bell Telephone em 12/1947 por John Bardeen, Walter Brattain e William Shockley Prêmio Nobel de física de O transistor é capaz de comutar em um milionésimo de segundo entre o corte e a saturação. 6
7 Sistemas de Numeração Classificação Sistemas de Numeração Posicionais Sistemas de Numeração Não Posicionais 7
8 Sistemas Posicionais Nos sistemas de numeração posicional, o valor do dígito em um número depende da posição que ele ocupa neste mesmo número = = 1x x x x10 0 Há um peso para cada posição ocupada pelo dígito. Os pesos crescem para esquerda na parte inteira e decrescem para a direita na parte fracionária 1989,4= 1x x x x x10-1 8
9 Sistemas Posicionais A representação posicional fornece uma forma simplificada para a escrita de números e permite a representação de qualquer número com um alfabeto (uma coleção de símbolos) restrito de dígitos. O sistema decimal tem: Base R=10 Um alfabeto ordenado e 10 dígitos, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, e qualquer número pode ser representado com o uso deles. 9
10 Sistemas Posicionais Outros Exemplos de Sistemas Posicionais Sistema posicional binário base R = 2 alfabeto {0, 1} Sistema posicional octal base R = 8 alfabeto {0, 1, 2, 3, 4, 5, 6, 7} Sistema posicional hexadecimal base R = 16 alfabeto {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 10
11 Sistemas Não Posicionais Sistema de Numeração Romano No número XX, vinte em decimal, o valor do dígito X à esquerda é o mesmo daquele à direita. Neste caso a representação é aditiva, com X representando a quantidade decimal 10, e com a combinação XX associada a 10+10=20. Por outro lado em IX (nove em decimal) a representação é subtrativa. M = 1000 Como antes de M não tinha nenhuma letra, buscavam a segunda letra de maior valor. D = 500 Depois tiravam de D o valor da letra que vem antes. D C = = 400 Somavam 400 ao valor de M, porque CD está depois de M. M + CD = = 1400 Sobrava apenas o V. Então: MCDV = =
12 Geração de Inteiros Algoritmo de avanço de dígitos: Avançar um dígito de um alfabeto ordenado consiste em substituí-lo pelo próximo dígito na hierarquia. O dígito de maior valor do conjunto é sempre avançado para o aquele de menor valor na hierarquia Algoritmo de geração de inteiros: a) o primeiro inteiro é o zero b) o próximo inteiro é obtido do precedente na lista avançando-se seu dígito mais à direita. No caso deste dígito avançar para zero, avança-se, então, o dígito adjacente à esquerda. 12
13 Geração de Inteiros Exemplo: Gerar os 26 primeiros inteiros do sistema decimal Observe que o nove avança para o zero, logo o dígito mais à esquerda (o zero, não mostrado explicitamente no número) é avançado para 1 gerando o próximo número na lista, o
14 Transformações de Base Passagem de uma base R para a base 10 converte-se a base e cada dígito do número para o equivalente decimal. decompõe-se o número de acordo com a estrutura posicional e, usando aritmética decimal, efetuam-se as operações de produtos e somas. Notação: (...) R ler como o número do parêntesis expresso na base R. (1101) 2 =1x2 3 +1x2 2 +0x2 1 +1x2 0 = =13 (2B0) 16 =2x16 2 +(11)x x16 0 = =688 14
15 Transformações de Base Passagem de uma base 10 para a base R Parte inteira: Algoritmo da divisão repetida Divide-se o inteiro decimal repetidamente pela base R até que se obtenha um quociente inteiro igual a zero. Os restos das divisões sucessivas, lidos do último para o primeiro, constituem o número transformado para a base R. (341) 10 = (2331) 5 15
16 Operações Aritméticas Soma na base 10, Soma na base 2, Soma na base R (explicar com exemplos no quadro) Complemento de 1: O complemento de 1 de um número binário é obtido trocando-se cada dígito 1 por 0 e vice-versa. A notação C 1 (...) é usada para designar o complemento de um do número entre parêntesis. Complemento de 2: O complemento de 2 de um número binário é obtido trocando-se inicialmente todos os 0s por 1s e viceversa. Após isso adiciona-se 1 ao número obtido. Notação C 2 (...) 16
17 Álgebra de Boole George Simon Boole ( ) O criador da álgebra dos circuitos digitais 17
18 Álgebra de Boole 1- A Álgebra de Boole é aplicável ao projeto dos circuitos lógicos e funciona baseada em princípios da lógica formal, uma área de estudo da filosofia. 2- Um dos pioneiros no estudo da lógica formal foi Aristóteles ( AC), que publicou um tratado sobre o tema denominado "De Interpretatione". 3- Boole percebeu que poderia estabelecer um conjunto de símbolos matemáticos para substituir certas afirmativas da lógica formal. Publicou suas conclusões em 1854 no trabalho Uma Análise Matemática da Lógica 4- Claude B. Shannon mostrou (em sua tese de mestrado no MIT) que o trabalho de Boole poderia ser utilizado para descrever a operação de sistemas de comutação telefônica. As observações de Shannon foram divulgadas em 1938 no trabalho "Uma Análise Simbólica de Relés e Circuitos de Comutação". 18
19 Álgebra de Boole Definição da Álgebra de Boole: 1- A álgebra de Boole é um sistema matemático composto por operadores, regras, postulados e teoremas. 2- A álgebra booleana usa funções e variáveis, como na álgebra convencional, que podem assumir apenas um dentre dois valores, zero (0) ou um (1). 3- A álgebra booleana trabalha com dois operadores, o operador AND, simbolizado por (.) e o operador OR, simbolizado por (+). O operador AND é conhecido como produto lógico e o operador OR é conhecido como soma lógica. Os mesmos correspondem, respectivamente, às operações de interseção e união da teoria dos conjuntos. 19
20 Álgebra de Boole Operadores da Álgebra Booleana As variáveis booleanas serão representadas por letras maiúsculas, A, B, C,... e as funções pela notação f(a,b,c,d,...) 20
21 Álgebra de Boole Operadores Booleanos Fundamentais Operador AND (interseção) 1- Definição: A operação lógica AND entre duas ou mais variáveis somente apresenta resultado 1 se todas as variáveis estiverem no estado lógico Símbolo Lógico T3- Tabela Verdade 21
22 Álgebra de Boole Operadores Booleanos Fundamentais Operador OR (união) 1- Definição: A operação lógica OR entre duas ou mais variáveis apresenta resultado 1 se pelo menos uma das variáveis estiver no estado lógico Símbolo Lógico 3- Tabela Verdade 22
23 Álgebra de Boole Operadores Booleanos Fundamentais Operador NOT (inversor) 1- Definição: A operação de complementação de uma variável é implementada através da troca do valar lógico da referida variável. 2- Símbolo Lógico 3- Tabela Verdade 23
24 Álgebra de Boole Operadores Booleanos Secundários Operador NAND 1- Definição: A operação lógica NAND entre duas ou mais 2- Símbolo Lógico 3- Tabela Verdade 24
25 Álgebra de Boole Operadores Booleanos Secundários Operador NOR 1- Definição: A operação lógica NOR entre duas ou mais variáveis somente apresenta resultado 1 se todas as variáveis estiverem no estado lógico Símbolo Lógico 3- Tabela Verdade 25
26 Álgebra de Boole Operadores Booleanos Secundários Operador EXOR (OU exclusivo) 1- Definição: A operação lógica EXOR entre duas variáveis A e B apresenta resultado 1 se uma e somente uma das duas variáveis estiver no estado lógico 1 (ou seja se as duas variáveis estiverem em estados lógicos diferentes). 2- Símbolo Lógico 3- Tabela Verdade 26
27 Álgebra de Boole Operadores Booleanos Secundários Operador EXNOR (negativo de OU exclusivo) 1- Definição: A operação lógica EXNOR entre duas variáveis A e B apresenta resultado 1 se e somente se as duas variáveis estiverem no mesmo estado lógico. 2- Símbolo Lógico 3- Tabela Verdade 27
28 Álgebra de Boole Postulados da Álgebra de Boole O significado dos postulados pode ser entendido facilmente se fizermos a associação com a teoria dos conjuntos 28
29 Álgebra de Boole Teoremas da Álgebra de Boole 29
30 FIM 30
Sistemas de Numeração
Sistemas de Numeração UNIDADE 1 PROF. ANTONIO LOPES DE SOUZA, Ph.D. DEPARTAMENTO DE ENGENHARIA ELÉTRICA / UFRJ Sistemas de Numeração O sistema de numeração com o qual estamos mais familiarizados é o decimal,
Sistemas de Numeração Coletânea. Antonio Carlos dos Santos Souza
Sistemas de Numeração Coletânea Antonio Carlos dos Santos Souza www.professores.ifba.edu.br/antoniocarlos Para o computador, tudo são números. n Computador DigitalÞNormalmente a informação a ser processada
Álgebra de Boole. George Simon Boole ( ) O criador da álgebra dos circuitos digitais. Profª Jocelma Rios. Out/2012
Out/2012 Álgebra de Boole George Simon Boole (1815-1864) O criador da álgebra dos circuitos digitais Profª Jocelma Rios O que pretendemos: Contar um pouco sobre a história da Álgebra, especialmente a Álgebra
Representação da Informação no Computador
Escola de Ciências e Tecnologia UFRN Representação da Informação no Computador Prof. Aquiles Burlamaqui Nélio Cacho Luiz Eduardo Eduardo Aranha ECT3 INFORMÁTICA FUNDAMENTAL Manter o telefone celular sempre
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO Álgebra de Boole Disciplina: Lógica Professora Dr.ª: Donizete
Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração
Sistemas de Numeração Sistemas de Numeração (Aula Extra) Sistemas de diferentes bases Álgebra Booleana Roberta Lima Gomes - LPRM/DI/UFES Sistemas de Programação I Eng. Elétrica 27/2 Um sistema de numeração
Circuitos Digitais. Conteúdo. Lógica. Introdução. Tabela-Verdade. Álgebra Booleana. Álgebra Booleana / Funções Lógicas. Ciência da Computação
Ciência da Computação Álgebra Booleana / Funções Lógicas Prof. Sergio Ribeiro Material adaptado das aulas de I do Prof. José Maria da UFPI Conteúdo Introdução Álgebra Booleana Constantes e Variáveis Booleanas
Eletrônica Digital. Funções lógicas, álgebra de boole e circuitos lógicos combinacionais básicos. Professor: Francisco Ary
Eletrônica Digital Funções lógicas, álgebra de boole e circuitos lógicos combinacionais básicos Professor: Francisco Ary Introdução Vimos na aula anterior conversão de números binário fracionários em decimal;
Unidade IV. Unidade III. Na álgebra booleana, estão todos os fundamentos da eletrônica digital.
Unidade IV 9 INTRODUÇÃO À ÁLGEBRA DE BOOLE Na álgebra booleana, estão todos os fundamentos da eletrônica digital 91 Operador binário O sistema numérico surgiu ao longo da história do desenvolvimento humano
Lógica Matemática Elementos de Lógica Digital. Sistema de numeração 09/08/2016 1
Sistema de numeração 09/08/2016 1 Você já pensou sobre: Sistema de numeração a) O modo como surgiram os números? b) Como foram as primeiras formas de contagem? c) Como os números foram criados, ou, será
Eletrônica Digital. Conversão de base e operações aritméticas com números binários. Professor: Francisco Ary
Eletrônica Digital Conversão de base e operações aritméticas com números binários Professor: Francisco Ary Introdução Como vimos na aula anterior Circuitos digitais são dispositivos eletrônicos que utilizam
Álgebra de Boole. Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes
Álgebra de Boole Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes Álgebra de Boole Álgebra Booleana ou Álgebra de Boole Conjunto
ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade
ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização de Computadores
1 bases numéricas. capítulo
capítulo 1 bases numéricas Os números são representados no sistema decimal, mas os computadores utilizam o sistema binário. Embora empreguem símbolos distintos, os dois sistemas formam números a partir
------------------------------------------------------------------------------------------------------------------------------ Variáveis Lógicas Uma variável lógica é aquela que pode assumir apenas os
Para essa conversão utiliza-se o valor posicional
Conversão de Hexadecimal para decimal Para essa conversão utiliza-se o valor posicional N = d n 16 n + d n-1 16 n-1 +... D 2 16 2 + d 1 16 1 + d 0 16 0 + d -1 16-1 + d -2 16-2 +... Exemplo: a) 23 16 =
Aula 1. Funções Lógicas. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira
Aula 1 Funções Lógicas SEL 0414 - Sistemas Digitais Prof. Dr. Marcelo Andrade da Costa Vieira Representação Numérica: l Utilizada na representação de alguma grandeza física l Pode ser Analógica ou Digital
Introdução à Computação
Introdução à Computação Jordana Sarmenghi Salamon jssalamon@inf.ufes.br jordanasalamon@gmail.com http://inf.ufes.br/~jssalamon Departamento de Informática Universidade Federal do Espírito Santo Agenda
Eletrônica Digital. Funções e Portas Lógicas. Prof. Renato Moraes
Eletrônica Digital Funções e Portas Lógicas Prof. Renato Moraes Introdução Em 1854, o matemático inglês George Boole apresentou um sistema matemático de análise lógica conhecido como Álgebra de Boole.
Portas lógicas Arquitetura e Organização de Computadores Curso de Análise e Desenvolvimento de Sistemas
Portas lógicas Arquitetura e Organização de Computadores Curso de Análise e Desenvolvimento de Sistemas 1 Componentes Álgebra dos de computadores Boole Vimos anteriormente que os números binários não representam
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina - Campus São José. Prof. Glauco Cardozo.
Eletrônica Digital I (EDL I) Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina - Campus São José Prof. Glauco Cardozo glauco.cardozo@ifsc.edu.br Ementa Sistemas de numeração. Funções
Unidades de Medidas Computacionais
Unidades de Medidas Computacionais Professor: Vilson Heck Junior vilson.junior@ifsc.edu.br Unidades de Medidas Computacionais QUANTIFICAÇÃO DE DADOS Dados e Informações Como nós representamos? Texto: Nome
CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL
1 CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL Sumário 1.1. Sistemas de Numeração... 3 1.1.1. Conversão Decimal Binária... 3 1.1.2. Conversão Binária Decimal... 3 1.1.3. Conversão Binária Hexadecimal...
SISTEMAS DE NUMERAÇÃO. Introdução à Ciência da Computação ICC0001
SISTEMAS DE NUMERAÇÃO Introdução à Ciência da Computação ICC0001 2 Histórico Como surgiram os sistemas de numeração? Primeiro: As pessoas precisavam contar... Dias, rebanho, árvores e tudo mais... Segundo:
Sistemas de Numeração
Computação e Processamento de Dados CPD INF400 Professor: André Ferreira andre.ferreira@ifba.edu.br Material baseado: Prof.ª Renata Vilas e outros Sistemas de Numeração Observações Gerais Definição: Conjunto
Sistemas de numeração. Prof. Douglas M. dos Santos Arquitetura e Suporte de computadores IFPR Campus Umuarama
Sistemas de numeração Prof. Douglas M. dos Santos douglas.santos@ifpr.edu.br Arquitetura e Suporte de computadores IFPR Campus Umuarama Proposta Contar um pouco sobre a origem dos números e dos sistemas
3. CAPÍTULO LÓGICAS DIGITAIS
3. CAPÍTULO LÓGICAS DIGITAIS 3.1. Introdução A Lógica é um conjunto de regras para raciocínio sobre um determinado assunto, ela é muito utilizada no ramo da Filosofia e da Matemática. 3.2. Portas lógicas
Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14?
Unidade III 6 CIRCUITOS DIGITAIS 6.1 Sistemas de numeração O que quer dizer 14? Sabemos, por força de educação e hábito, que os algarismos 1 e 4 colocados desta forma representam a quantidade catorze.
Automação Industrial Parte 8
Automação Industrial Parte 8 Prof. Ms. Getúlio Teruo Tateoki http://www.getulio.eng.br/meusalunos/autind.html -Vamos supor que seja necessário determinar a função lógica interna de um sistema desconhecido.
Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA
Conversão de Bases 1 NOTAÇÃO POSICIONAL - BASE DECIMAL Desde os primórdios da civilização o homem adota formas e métodos específicos para representar números, para contar objetos e efetuar operações aritméticas.
Abaixo descreveremos 6 portas lógicas: AND, OR, NOT, NAND, NOR e XOR.
9. Apêndice - Portas e Operações Lógicas Uma porta lógica é um circuito eletrônico (hardware) que se constitui no elemento básico de um sistema de computação. A CPU, as memórias, as interfaces de E/S são
Nível da Lógica Digital (Aula 6) Portas Lógicas e Lógica Digital Nível da Lógica Digital Estudar vários aspectos da lógica digital Base de estudo para os níveis mais elevados da hierarquia das máquinas
Capítulo 04 : Sistemas Numéricos
Departamento de Engenharia Elétrica FEIS - UNESP Capítulo 04 : Sistemas Numéricos 1.1 - Representação de Quantidades Numéricas Analógica Digital 1.2 - Sistemas Numéricos 1. 3 1.2 - Sistemas Numéricos 1.2
Formação dos números: Aplicação da fórmula geral para o numero
www.samuelcavalcante.com samuelmbc@gmail.com /5/ SISTEMAS DE NUMERAÇÃO SISTEMA DECIMAL Número de algarismos: Dígitos:,,,,, 5, 6, 7,, 9 Base: n Fórmula geral: a.... a. a. a. Formação dos números: Aplicação
Introdução à Computação: Introdução às Portas Lógicas
Introdução à Computação: Introdução às Portas Lógicas Beatriz F. M. Souza (bfmartins@inf.ufes.br) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes),
Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof.
Conversão de Bases Introdução à Organização de Computadores 5ª Edição/2007 Página 54 1 NOTAÇÃO POSICIONAL - BASE DECIMAL O SISTEMA DE NUMERAÇÃO É FORMADO POR UM CONJUNTO DE SÍMBOLOS UTILIZADOS PARA REPRESENTAR
Elementos de Lógica Digital Aula 1: Introdução 04/08/2011
Elementos de Lógica Digital Aula 1: Introdução 04/08/2011 Website http://www.inf.ufes.br/~pdcosta/ensino/2010-2-elementos-de-logica-digital/ Prof a. Patrícia Dockhorn Costa Objetivos O objetivo desta disciplina
Sistemas de Computação
Sistemas de Computação Sistemas de Numeração Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 26 de abril de 2010 Haroldo Gambini Santos Sistemas de Computação 1/17 Preâmbulo Computadores
Introdução à Computação: Sistemas de Numeração
Introdução à Computação: Sistemas de Numeração Beatriz F. M. Souza (bfmartins@inf.ufes.br) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes), Vitória,
PORTAS NOR e NAND OR - AND - NOT. Considerando as entradas A e B, teremos na saída a complementação ou negação das mesmas.
PORTAS NOR e NAND As portas NOR e NAND são obtidas a partir da complementação das funções OR e AND. Podemos então dizer que o operador booleano lógico NOR é a negação do operador booleano OR enquanto que
Transistor. Portas Lógicas (2) Base; Coletor; Emissor.
Nível da Lógica Digital Nível da Lógica Digital (Aula 6) Portas Lógicas e Lógica Digital Estudar vários aspectos da lógica digital Base de estudo para os níveis mais elevados da hierarquia das máquinas
Arquitetura de computadores BASE NUMÉRICAS
Arquitetura de computadores BASE NUMÉRICAS Base Numérica A base numérica é um conjunto de símbolos (algarismos) usados para representar uma certa quantidade ou número. Notação Posicional Esta notação representa
SISTEMAS DE NUMERAÇÃO
SISTEMAS DE NUMERAÇÃO 1. INTRODUÇÃO Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo
Base: número de símbolos empregados no sistema numérico.
Instituto Federal Catarinense IFC Campus - Sombrio Curso Técnico em Informática Integrado ao Ensino Médio Disciplina: Introdução a Informática e Sistemas Operacionais Professor: Alexssandro C. Antunes
Aula 2 - Sistemas de Numeração
Aula 2 - Sistemas de Numeração Marcos Guerine Universidade Federal Fluminense mguerine@ic.uff.br História Contagem de animais, intuitiva Um, dois e muitos Contagem através de pedras Numeração escrita através
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Sistemas de numeração Questão: Qual o significado da seguinte sequência de símbolos
UFMG DCC Álgebra de Boole. Slides ligeiramente adaptados daqueles do professor Osvaldo Farhat de Carvalho, DCC, UFMG
UFMG DCC001 2013-1 1 Álgebra de Boole Slides ligeiramente adaptados daqueles do professor Osvaldo Farhat de Carvalho, DCC, UFMG UFMG DCC001 2013-1 2 Bits e informação Representamos números, caracteres,
Unidade 2: Sistemas de Numeração Numerais Binários e Bases de Potência de Dois Prof. Daniel Caetano
Arquitetura e Organização de Computadores Atualização: /8/ Unidade : Sistemas de Numeração Numerais Binários e Bases de Potência de Dois Prof. Daniel Caetano Objetivo: Apresentar as diferentes bases numéricas,
Lógica Boolena. Aula 05. Prof. Msc. Arthur G. Bartsch
Lógica Boolena Aula 05 Prof. Msc. Arthur G. Bartsch Departamento de engenharia elétrica DEE Centro de ciências tecnológicas CCT Universidade do estado de Santa Catarina UDESC Álgebra de Boole ALB0001 arthur.bartsch@udesc.br
LÓGICA DIGITAL - CONCEITOS. * Constantes. * Expressões: Aritméticas; Lógicas; Tabela Verdade; Relacionais; Booleanas. * Portas Lógicas.
* Tipos de Dados. * Constantes. * Expressões: Aritméticas; Lógicas; Tabela Verdade; Relacionais; Booleanas. * Portas Lógicas. 1 TIPOS DE DADOS Dados inteiros Representação das informações pertencentes
Números Binários. Apêndice A V1.0
Números Binários Apêndice A V1.0 Roteiro Histórico Números de Precisão Finita Números Raiz ou Base Conversão de Base Números Binários Negativos Questões Histórico As maquinas do século XIX eram decimais
2. Conversões de base
0 2. Conversões de base Antes de começar a programar é preciso entender como o computador representa a informação. E quando falamos em informação estamos falando basicamente de números, pois os caracteres,
Representação Digital da Informação I
Representação Digital da Informação I José Costa Introdução à Arquitetura de Computadores Departamento de Engenharia Informática (DEI) Instituto Superior Técnico 2013-09-25 José Costa (DEI/IST) Representação
Introdução à Ciência da Computação
1 Universidade Federal Fluminense Campus de Rio das Ostras Curso de Ciência da Computação Introdução à Ciência da Computação Professor: Leandro Soares de Sousa e-mail: lsousa@id.uff.br site: http://www.ic.uff.br/~lsousa
Organização de computadores
Organização de computadores Aula 6 - Álgebra de Boole Professora Marcela Santos marcela@edu.estacio.br Tópicos Portas lógicas e álgebra de boole Álgebra de boole regras e propriedades Provas de algumas
Arquitetura e Organização de computadores
Arquitetura e Organização de computadores Aula 4: Sistemas de Numeração Prof. MSc. Pedro Brandão Neto pedroobn@gmail.com Sistemas de Informação - UNDB Introdução (I) Desde os primórdios da sua história
Computadores III: Lógica digital e Álgebra booleana
Computadores III: Lógica digital e Álgebra booleana A3 Texto 1 http://www.bpiropo.com.br/fpc20050704.htm Sítio Fórum PCs /Colunas Coluna: B. Piropo Publicada em 04/07/2005 Autor: B.Piropo Lógica digital
HARDWARE SISTEMA NUMÉRICO E CODIFICAÇÃO. Wagner de Oliveira
HARDWARE SISTEMA NUMÉRICO E CODIFICAÇÃO Wagner de Oliveira SUMÁRIO Sistemas de Numeração Base de um Sistema Notação Posicional Sistema Binário (Base dois) Sistema Hexadecimal (Base 16) Codificação BCD
Eletrônica Digital Sistemas de Numeração. Prof. Wanderley
Eletrônica Digital Sistemas de Numeração Prof. Wanderley Introdução Os sistemas de numeração são uma invenção humana Dentre os sistemas de numeração inventados, destacam-se: O decimal; O binário; O octal;
Binário Decimal
Sistema Binário Existem duas maneiras de representar uma informação eletrônica: analogicamente ou digitalmente. Uma música qualquer, por exemplo, gravada em uma fita K-7 é uma forma analógica de gravação.
FACULDADE PITÁGORAS PRONATEC
FACULDADE PITÁGORAS PRONATEC DISCIPLINA: ARQUITETURA DE COMPUTADORES Prof. Ms. Carlos José Giudice dos Santos carlos@oficinadapesquisa.com.br www.oficinadapesquisa.com.br Objetivos Ao final desta apostila,
Sistemas de Numeração
Sistemas de Numeração Objetivos Conhecer representações numéricas para inteiros positivos (naturais) nas bases binária, hexadecimal e octal. Generalizar representações para qualquer base. Manipular fluentemente
Curso Profissional de Técnico de Gestão de Equipamentos Informáticos 10º ANO
Planificação Anual 2016/2017 Curso Profissional de Técnico de Gestão de Equipamentos Informáticos SISTEMAS DIGITAIS E ARQUITETURA DE COMPUTADORES 10º ANO 1 MÓDULO 1 - Sistemas de Numeração 32 aulas de
Conversões numéricas de base. Organização de Computadores
Conversões numéricas de base Organização de Computadores Sistema de base binária O sistema binário ou de base 2 é um sistema de numeração posicional em que todas as quantidades se representam com base
Eletrônica Digital Apresentação e Cap.1 PROF. EDUARDO G. BERTOGNA UTFPR / DAELN
Eletrônica Digital Apresentação e Cap.1 PROF. EDUARDO G. BERTOGNA UTFPR / DAELN Conteúdos da Disciplina: Sistemas Numéricos e Códigos; Portas Lógicas e Algebra Booleana; Lógica Combinacional: Expressões
Sistemas Digitais. Prof. Valbério Gonzaga
Sistemas Digitais Prof. Valbério Gonzaga Introdução. Hoje em dia, o termo digital tornou-se parte do nosso vocabulário diário. Isso se deve a sua ampla utilização em quase todas as áreas: Computadores,
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Departamento de Ciências da Computação
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT Departamento de Ciências da Computação Nota importante: Existem materiais incluídos neste texto de outros autores e fontes bibliográficas
Notas de Aula Guilherme Sipahi Arquitetura de Computadores. Aritmética de Inteiros
Notas de Aula Guilherme Sipahi Arquitetura de Computadores - Aritmética de Computadores "Matemática Real" f: RxR R Aritmética de Inteiros "Matemática no Computador" nº finito de números representáveis
Introdução à Computação MAC0110
Introdução à Computação MAC0110 Prof. Dr. Paulo Miranda IME-USP Aula 2 Variáveis e Atribuições Memória Principal: Introdução Vimos que a CPU usa a memória principal para guardar as informações que estão
Aula 2 - Sistemas de Numeração
Aula 2 - Sistemas de Numeração Marcos A. Guerine Instituto de Computação - UFF mguerine@ic.uff.br História Contagem e controle de rebanhos Noção de quantidade intuitiva; Um, dois e muitos Montes de pedras
Sistemas de Numeração. Sistemas Decimal, Binário e Hexadecimal.
Sistemas de Numeração Sistemas Decimal, Binário e Hexadecimal. Sistema Decimal - Origem Pré-História Como o homem pré-histórico sabia se nenhum animal se perdeu no pasto? Sistema Decimal - Origem O homem
3. Computadores Industriais
UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENG. DE PRODUÇÃO E SISTEMAS - DEPS INFORMÁTICA INDUSTRIAL IFD 3. Computadores Industriais Igor Kondrasovas
Bits e operações. Sistemas de Computação
Bits e operações Porque utilizar base 2? Representação na base 10 Estamos acostumados Representação natural para transações financeiras (precisão) Implementação eletrônica na base 10 Difícil de armazenar
1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total
Cursos Técnicos Habilitações Plenas Eletrônica Digital Professor Arnaldo Sistemas de Numeração Bases Numéricas - Conversões Op. Sistema de Numeração Decimal Composto pela Base 10 e pelos Símbolos ( Algarismos
UFMT. Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO
UFMT 1) IDENTIFICAÇÃO: Disciplina: Lógica Matemática e Elementos de Lógica Digital Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO Curso:
14/03/2011. A INFORMAÇÃO E SUA REPRESENTAÇÃO (Parte I)
A INFORMAÇÃO E SUA REPRESENTAÇÃO (Parte I) Prof: Alberto Melo O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob forma eletrônica; tudo o que faz é reconhecer
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) joao.carvalho@inesc.pt Álgebra de Boole Binária A Álgebra de Boole binária
Arquitetura de Computadores
Engenharia da Computação Universidade Católica de Petrópolis Arquitetura de Computadores Sistema de Numeração v. 0.1 Luís Rodrigo de O. Gonçalves luisrodrigoog@gmail.com Petrópolis, 1 de Março de 2016
ELETRÔNICA DIGITAL Aula 1- Sistemas de Numeração. Prof.ª Msc. Patricia Pedroso Estevam Ribeiro
ELETRÔNICA DIGITAL Aula 1- Sistemas de Numeração Prof.ª Msc. Patricia Pedroso Estevam Ribeiro Email: patriciapedrosoestevam@hotmail.com 12/08/2016 1 Critérios de avaliação Duas provas e listas de exercícios
ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES
ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES A aplicação principal da álgebra de Boole é o estudo e a simplificação algébrica de circuitos lógicos. As variáveis booleanas podem assumir apenas dois
Tecnologia dos Computadores 2002/2003. Exercícios
Introdução à Álgebra de Boole 1 Introdução Em 1854, George Boole, um matemático inglês, inventou um sistema algébrico de dois valores, cujo resultado da sua evolução até aos dias de hoje se dá o nome de
Circuitos Digitais. Prof. Esp. Pedro Luís Antonelli Anhanguera Educacional
Circuitos Digitais Prof. Esp. Pedro Luís Antonelli Anhanguera Educacional OBJETIVOS DA AULA : Relembrar os conceitos: - Sinais Analógicos e Digitais; - Sistemas de Numeração Decimal, Binário, Octal e Hexadecimal;
Introdução. Universidade Federal de Campina Grande. A Informação e sua Representação (Parte I) Centro de Engenharia Elétrica e Informática
Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte I) Prof.a Joseana
Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações
Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos
FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES REPRESENTAÇÃO NUMÉRICA. Cristina Boeres
FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES REPRESENTAÇÃO NUMÉRICA Cristina Boeres ! Sistema de escrita para expressão de números Notação matemática! Composto por símbolos Símbolos tem significados ou
3. Portas Lógicas. Objetivos. Objetivos. Introdução. Circuitos Digitais 31/08/2014
Objetivos 3. Portas Lógicas Descrever a operação do inversor, da porta AND e da porta OR Descrever a operação da porta NAND e da porta NOR Expressar a operação da função NOT e das portas AND, OR, NAND
A computação do futuro
A computação do futuro Miguel Afonso Oliveira Laboratório de Instrumentação e Física Experimental de Partículas Computadores do futuro??? Porque é que vamos falar de computadores numa sessão de física?
EELi02 Circuitos Lógicos
EELi02 Circuitos Lógicos Prof. Vinícius Valamiel vvalamiel@gmail.com https://sites.google.com/site/vvalamiel/ Transparências: Profa. Mara Cristina... Prof. Tiago Ferreira... Avaliações Nota 1: Prova teórica
INFORMÁTICA E CONTABILIDADE. Prof. Me. Fábio Assunção CMP 1128 Parte 01
INFORMÁTICA E CONTABILIDADE Prof. Me. Fábio Assunção CMP 1128 Parte 01 INFORMAÇÃO Informação significa fatos. Expressada verbalmente, visualmente, por ondas, etc. Primórdios do processamento da informação:
Circuitos Lógicos. Capítulo 1 Sistema de Numeração e Códigos
Circuitos Lógicos Capítulo 1 Sistema de Numeração e Códigos Prof. Erivelton Geraldo Nepomuceno http://www.ufsj.edu.br/nepomuceno nepomuceno@ufsj.edu.br São João del-rei, agosto de 2015 Tópicos da aula
SISTEMAS DIGITAIS ÁLGEBRA BOOLEANA. Professor Carlos Muniz
Professor Carlos Muniz Uma álgebra Booleana pode ser definida com um conjunto de operadores e um conjunto de axiomas, que são assumidos verdadeiros sem necessidade de prova. Em 1854, George Boole introduziu
Sistemas Digitais. 6 Funções lógicas
Para o estudo das funções lógicas usa-se a álgebra de Boole, assim chamada em homenagem ao seu criador George Boole. A álgebra de Boole opera com relações lógicas e não com relações quantitativas como
Instalação de Sistemas Eletrônicos Digitais
Curso de Formação Profissional Técnico em Eletroeletrônica Módulo II Senai Arcos-MG Instalação de Sistemas Eletrônicos Digitais Raphael Roberto Ribeiro Silva Técnico em eletroeletrônica pelo INPA Arcos
FUNDAMENTOS DA INFORMÁTICA. Sistemas de Numeração
FUNDAMENTOS DA INFORMÁTICA Sistemas de Numeração OBJETIVOS DA AULA Conhecer os sistemas de numeração antigos; Entender, compreender e usar um Sistema de Numeração; Relacionar os Sistemas de Numeração com
Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k
Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Cristina Boeres Instituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Material de Fernanda Passos
Arquitetura e Organização de Computadores. Sistemas Numéricos
Arquitetura e Organização de Computadores Sistemas Numéricos 1 A Notação Posicional Todos os sistemas numéricos usados são posicionais. Exemplo 1 (sistema decimal): 1999 = 1 x 1000 + 9 x 100 + 9 x 10 +
Operações com números binários
Operações com números binários Operações com sistemas de numeração Da mesma forma que se opera com os números decimais (somar, subtrair, multiplicar e dividir) é possível fazer essas mesmas operações com
APOSTILA COMPLEMENTAR
APOSTILA COMPLEMENTAR Conteúdo A ÁLGEBRA DE BOOLE... 1 Os níveis lógicos... 2 Operações Lógicas... 3 Função Lógica NÃO ou Inversora... 4 Função Lógica E... 5 Função lógica OU... 6 Função NÃO E... 7 Função
Introdução à Computação
Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Introdução à Computação A Informação
Sistemas de Numeração
Infra-Estrutura de Hardware Sistemas de Numeração Conversão entre bases Bit e byte ECC Prof. Edilberto Silva www.edilms.eti.br edilms@yahoo.com Sumário Conversão de bases Aritmética binária e hexadecimal