NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos"

Transcrição

1 1 NÚMEROS E OPERAÇÕES Sistema de Numeração Decimal O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional Na base 10, dispomos de 10 algarismos para a representação dos números, são eles: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 Por ser um sistema posicional, cada algarismo assume um valor relativo de acordo com a posição ocupada em um número, por exemplo, no número 32, o algarismo 2 representa duas unidades ou vinte, e o 3 representa três dezenas ou 30 Já, no número 320, o algarismo 3 representa três centenas ou 300, o 2 representa duas unidades ou vinte e o 0 representa zero unidades Exercícios Resolvidos 1 O medidor de energia elétrica de uma residência, conhecido por relógio de luz, é constituído de quatro pequenos relógios, cujos sentidos de rotação estão indicados conforme a figura A medida é expressa em kwh O número obtido na leitura é composto por quatro algarismos Cada posição do número é formada pelo último algarismo ultrapassado pelo ponteiro O número obtido pela leitura em kwh, na imagem, é: a) 2614 b) 3624 c) 2715 d) 3725 e) Jogar baralho é uma atividade que estimula o raciocínio Um jogo tradicional é a Paciência, que utiliza 52 cartas Inicialmente são formadas sete colunas com as cartas A primeira coluna tem uma carta, a segunda tem duas cartas, a terceira tem três cartas, a quarta tem quatro cartas, e assim sucessivamente até a sétima coluna, a qual tem sete cartas, e o que sobra forma o monte, que são as cartas utilizadas nas colunas Qual é a quantidade de cartas que forma o monte? De acordo com o enunciado formam-se 7 montes; o primeiro com uma carta, o segundo com duas cartas, o terceiro com 3 cartas Assim, temos que calcular a soma = 28 Como o baralho possui 52 cartas, temos que calcular = 24 Portanto, o monte possui 24 cartas

2 2 3 Quantos números naturais de dois algarismos têm a soma de seus algarismos maior que 8? números números números Assim, são = 54 números 4 Henrique escreveu a sequência de números naturais de 1 a 170 Quantos algarismos Henrique escreveu? 1 a 99 números 9 algarismos 10 a números 902 = 180 algarismos 100 a números 713 = 213 algarismos Assim, = 402 algarismos 5 Em uma fila, a vigésima primeira pessoa ocupa o lugar central Quantas pessoas há nessa fila? Se ela ocupa o lugar central, então há vinte pessoas antes e vinte depois Assim, = 41 pessoas 6 A, B e C representam algarismos distintos na adição a seguir Entre as alternativas abaixo qual delas apresenta respectivamente os algarismos relativos a A, B e C? a) 1, 4 e 8 b) 2, 3 e 5 c) 4, 5 e 6 d) 1, 3 e 9 e) 1, 6 e 5

3 3 Dessa adição resulta a seguinte equação: 3(ABC) BBB 3(100A 10B C) 100B 10B B 100A C B 27 Como A, B e C são números inteiros compreendidos entre 0 e 9 essa equação só é válida para A = 1, B = 4 e C = 8 7 Observe a sequência de figuras abaixo Continuando com esse padrão, quantos quadradinhos haverá na figura 8? Podemos contar quantas filas há na base e na altura de cada figura Figura 1: 2 x 1 = 2 Figura 2: 3 x 2 = 6 Figura 3: 4 x 3 = 12 Figura 8: 9 x 8 = 72 Portanto, a figura 8 será formada por 72 quadradinhos 8 Um estacionamento para carros cobra 1 real pela primeira hora e 75 centavos a cada hora ou fração de hora seguinte André estacionou seu carro às 11h 20 min e saiu às 15h 40 min Quantos reais ele deve pagar pelo estacionamento? 15h 40min 11h 20min = 4h 20min 1h + 3h 20min R$ 1, R$ 0,75 = R$ 4,00 André deve pagar R$ 4,00 pelo tempo estacionado

4 4 Exercícios Propostos 1 Qual é o resultado da expressão x 5? a) 10 b) 11 c) 17 d) 25 e) 30 3 Em um escritório, há 3 caixas, cada uma contendo 5 blocos para anotações Se 6 blocos forem utilizados, quantos blocos sobrarão? a) 2 b) 5 c) 7 d) 9 e) 10 2 O gráfico a seguir mostra o número de pontos que cada jogador do time de handebol do colégio marcou no último jogo Qual foi o número total de pontos marcados pelo time? 4 Uma pizza em formato circular deve ser dividida em fatias iguais, correspondentes a setores de 24º a) 8 b) 12 c) 54 d) 56 e) 58 Dessa forma, a quantidade total de fatias obtidas será de a) 20 b) 18 c) 16 d) 15 e) 12

5 5 5 Para abrir o cofre de sua casa, Glória precisa usar uma senha, que é um número de quatro algarismos diferentes de zero Ela sabe que: o algarismo da unidade é o dobro do algarismo da unidade de milhar; o algarismo da centena é o triplo do algarismo da unidade de milhar; o algarismo da centena é o dobro do algarismo da dezena Qual é a senha do cofre de glória? 7 Observe a tabela de preços de um estacionamento Com base na tabela acima, é correto afirmar que não compensará pagar uma diária completa caso o carro fique no estacionamento por, no máximo: a) 3 horas b) 4 horas c) 5 horas d) 6 horas e) 7 horas 6 A linha poligonal que começa em A e termina em B é desenhada mantendo-se sempre o mesmo padrão mostrado na figura a seguir: O comprimento da linha poligonal AB é: a) 85 b) 88 c) 90 d) 97 e) Um dado comum tem os números naturais de 1 a 6 em cada uma de suas faces e foi lançado sobre uma mesa A soma dos números nas faces visíveis é 16 A face voltada para baixo tem o número: a) 6 b) 5 c) 4 d) 3 e) 2 Gabarito c c d d 2634 c a b

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano

COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano DATA PARA ENTREGA: / /2017 1. Determine os números correspondentes as decomposições

Leia mais

Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017

Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 Solução da prova da 1.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 2 QUESTÃO 1 Para obter o maior resultado possível, devemos fazer com que os termos que contribuem positivamente

Leia mais

XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível

XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível 1-1998 01. Qual dos números a seguir é o maior? A) 3 45 B) 9 20 C) 27 14 D) 243 9 E) 81 12 02. Um menino joga três dados e soma os números que

Leia mais

QUESTÃO 16 (OBMEP-adaptada) Simão precisa descobrir um número que é o código da Arca do Tesouro que está escondido na tabela.

QUESTÃO 16 (OBMEP-adaptada) Simão precisa descobrir um número que é o código da Arca do Tesouro que está escondido na tabela. Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O Ọ ANO EM 0 Disciplina: matemática Prova: desafio nota: QUESTÃO (OBMEP-adaptada) Simão precisa descobrir um número que é o código da

Leia mais

IN={0, 1, 2, 3, 4, 5,...}

IN={0, 1, 2, 3, 4, 5,...} ALUNO(A) AULA 001 MATEMÁTICA DATA 18 / 10 /2013 PROFESSOR: Paulo Roberto Weissheimer AULA 001 - DE MATEMÁTICA Conjunto dos números naturais (IN) IN={0, 1, 2, 3, 4, 5,...} CONJUNTOS NUMÉRICOS Um subconjunto

Leia mais

Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Resolução de Exercícios Operações com Números Naturais 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Operações com Números Naturais 1 Exercícios Introdutórios Exercício

Leia mais

4º. ano 1º. VOLUME. Projeto Pedagógico de Matemática 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE. Números e operações.

4º. ano 1º. VOLUME. Projeto Pedagógico de Matemática 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE. Números e operações. 4º. ano 1º. VOLUME 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE Realização de compreendendo seus significados: adição e subtração (com e sem reagrupamento) Multiplicação (como adição de parcelas

Leia mais

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 2º Ano Metas / Objetivos

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 2º Ano Metas / Objetivos de Avaliação Números e Operações Números Sistema de numeração decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até mil Reconhecer a paridade Descodificar o sistema de numeração

Leia mais

Localizar objetos em representações do espaço. Identificar figuras geométricas e suas propriedades.

Localizar objetos em representações do espaço. Identificar figuras geométricas e suas propriedades. ELEMENTAR I DOMÍNIOS COMPETÊNCIAS 25 50 75 100 125 150 ESPAÇO E FORMA GRANDEZAS E MEDIDAS NÚMEROS E OPERAÇÕES/ ÁLGEBRA E FUNÇÕES TRATAMENTO DA INFORMAÇÃO Localizar objetos em representações do espaço.

Leia mais

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL Nível* Nível 1: 125-150 Nível 2: 150-175 Nível 3: 175-200 Nível 4: 200-225 Descrição do Nível - O estudante provavelmente é capaz de: Determinar

Leia mais

Questão 1. Questão 2. Lista de Exercícios ENEM H01 Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios ENEM H01 Aluno: Série: Turma: Data: Lista de Exercícios ENEM H01 Aluno: Série: Turma: Data: Questão 1 Um dos diversos instrumentos que o homem concebeu para medir o tempo foi a ampulheta, também conhecida como relógio de areia. Suponha que

Leia mais

Solução. Este problema pode ser resolvido de modo análogo ao problema anterior.

Solução. Este problema pode ser resolvido de modo análogo ao problema anterior. page 11 1.2 Sistema posicional de numeração 11 Solução. Este problema pode ser resolvido de modo análogo ao problema anterior. Exercício 15: Em um conjunto de 101 moedas, há 50 falsas e as demais são verdadeiras.

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 205 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (FATEC-205) Um grupo de alunos da Fatec

Leia mais

Canguru Matemático sem Fronteiras 2012

Canguru Matemático sem Fronteiras 2012 http://wwwmatucpt/canguru/ Destinatários: alunos dos 10 o e 11 o anos de escolaridade Nome: Turma: Duração: 1h 0min Não podes usar calculadora Em cada questão deves assinalar a resposta correta As questões

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 MÚLTIPLA ESCOLHA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 0. Sejam os conjuntos: A = Conjunto dos números no quadrado B = Conjunto dos números no pentágono C =

Leia mais

Plano Geral de Trabalho da Disciplina de Matemática 2016/ º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas

Plano Geral de Trabalho da Disciplina de Matemática 2016/ º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas AGRUPAMENTO DE ESCOLAS MARQUÊS DE MARIALVA Plano Geral de Trabalho da Disciplina de Matemática 2016/ 2017 2º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas Gestão dos

Leia mais

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 1. Um professor

Leia mais

Prepara a Prova Final Matemática 4.º ano

Prepara a Prova Final Matemática 4.º ano Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.

Leia mais

Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm.

Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm. Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental 1. ALTERNATIVA C Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,25, obtemos o número de moedas de 25 centavos

Leia mais

PADRÕES DE DESEMPENHO ESTUDANTIL. O que são Padrões de Desempenho? ABAIXO DO BÁSICO Até 150 pontos. BÁSICO De 150 até 200 pontos

PADRÕES DE DESEMPENHO ESTUDANTIL. O que são Padrões de Desempenho? ABAIXO DO BÁSICO Até 150 pontos. BÁSICO De 150 até 200 pontos PADRÕES DE DESEMPENHO ESTUDANTIL O que são Padrões de Desempenho? Os Padrões de Desempenho constituem uma caracterização das competências e habilidades desenvolvidas pelos alunos de determinada etapa de

Leia mais

MATEMÁTICA DESCRITORES BIM4/2017

MATEMÁTICA DESCRITORES BIM4/2017 4º ANO Calcular o resultado de uma multiplicação ou de uma divisão de números naturais. Em um problema, estabelecer trocas entre cédulas e moedas do Sistema Monetário Brasileiro, em função de seus valores.

Leia mais

CADERNO DE ATIVIDADES DE RECUPERAÇÃO

CADERNO DE ATIVIDADES DE RECUPERAÇÃO COLÉGIO ARNALDO 2014 CADERNO DE ATIVIDADES DE RECUPERAÇÃO MATEMÁTICA Aluno(a) 3º ano Turma Professora: Valor: 20 pontos DISCIPLINA: MATEMÁTICA PROFESSOR(A): DATA: 17 / 12 / 2014 VALOR: 20,0 NOTA: NOME

Leia mais

Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016 1.º Período Números e Operações Conteúdos Programados Aulas Previstas Aulas Dadas Números naturais Conhecer os numerais ordinais Utilizar corretamente

Leia mais

A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha.

A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha. XXII OLIMPÍADA BRASILEIRA DE MATEMÁTIA Primeira Fase Nível 1 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para

Leia mais

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,

Leia mais

Observe o que ocorre com as multiplicações com parcelas iguais cujos algarismos são todos iguais a 1:

Observe o que ocorre com as multiplicações com parcelas iguais cujos algarismos são todos iguais a 1: 1 QUESTÃO 1 Ao efetuarmos a operação 111 x 111 obtemos: Logo a soma dos algarismos do resultado é 1+ 2+ 3+ 2+ 1= 9. A conta acima também pode ser feita da seguinte maneira: 111 111 = 111 (100 + 10 + 1)

Leia mais

CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL

CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL 1 CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL Sumário 1.1. Sistemas de Numeração... 3 1.1.1. Conversão Decimal Binária... 3 1.1.2. Conversão Binária Decimal... 3 1.1.3. Conversão Binária Hexadecimal...

Leia mais

QUESTÃO 16 A moldura de um quadro de um excêntrico pintor moderno é formada por 5 trapézios, todos com altura igual a 5 cm.

QUESTÃO 16 A moldura de um quadro de um excêntrico pintor moderno é formada por 5 trapézios, todos com altura igual a 5 cm. Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM 016 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 A moldura de um quadro de um excêntrico pintor

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo TIPO F P-2 tipo D-3 Matemática (P-2) Ensino Fundamental 3º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avaliar o desempenho dos alunos do 3

Leia mais

Provão. Matemática 4 o ano

Provão. Matemática 4 o ano Provão Matemática 4 o ano 21 Com base em seus estudos sobre sistema de numeração decimal, marque a alternativa correta para escrevermos por extenso, os números: 1.423 94 195 a) Mil quatrocentos e vinte

Leia mais

Lista de Exercícios Sistemas de Numeração

Lista de Exercícios Sistemas de Numeração Lista de Exercícios Sistemas de Numeração 1- (Questão 52 BNDES Profissional Básico Análise de Sistemas - Suporte ano 2010) Um administrador de sistemas, ao analisar o conteúdo de um arquivo binário, percebeu

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 O tabuleiro 7 7 pode ser facilmente preenchido e constata-se que na casa central deve aparecer o número 25, mas existe uma maneira melhor de fazer isto: no tabuleiro quadrado de casas, a quantidade

Leia mais

D J F M A M J A) R$ 700,00 B) R$ 850,00 C) R$ 650,00 D) R$ 900,00 E) R$ 800,00

D J F M A M J A) R$ 700,00 B) R$ 850,00 C) R$ 650,00 D) R$ 900,00 E) R$ 800,00 XXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 1 a. Fase Olimpíada Regional BA - ES - GO - RJ - RN - RS - SC - SP - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras

Leia mais

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA Conversão de Bases 1 NOTAÇÃO POSICIONAL - BASE DECIMAL Desde os primórdios da civilização o homem adota formas e métodos específicos para representar números, para contar objetos e efetuar operações aritméticas.

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

EB1 de. MATEMÀTICA Nome Data / / Tarefa: Quadro da centena de milhar e quadro do milhão

EB1 de. MATEMÀTICA Nome Data / / Tarefa: Quadro da centena de milhar e quadro do milhão Tarefa: Quadro da centena de milhar e quadro do milhão Os alunos completam e exploram tabelas com números de 1000 em 1000 e de 10000 em 10000, como apoio na contagem de números até ao milhão. O quadro

Leia mais

32 Matemática. Programação anual de conteúdos

32 Matemática. Programação anual de conteúdos Programação anual de conteúdos 2 ọ ano 1 ọ volume 1. A localização espacial e os números Construção do significado dos números e identificação da sua utilização no contexto diário Representação das quantidades

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas AOCP... 3 Relação das questões comentadas... 7 Gabarito... 8

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas AOCP... 3 Relação das questões comentadas... 7 Gabarito... 8 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas AOCP... 3 Relação das questões comentadas... 7 Gabarito... 8 1 Apresentação Olá, pessoal! Tudo bem com vocês? Como vocês bem sabem, saiu

Leia mais

Instruções para a realização da Prova Leia com muita atenção. Prova da primeira fase

Instruções para a realização da Prova Leia com muita atenção. Prova da primeira fase Nível 1 Instruções para a realização da Prova Leia com muita atenção Prova da primeira fase Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Esta é uma prova de múltipla escolha.

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 11: 1ª PROVA SIMULADA. Acelere.

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 11: 1ª PROVA SIMULADA. Acelere. MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 11: 1ª PROVA SIMULADA Acelere www.laercio.com.br MATEMÁTICA PARA VENCER, www.laercio.com.br Prova Simulada Colégio Militar, 6º ano PREPARATÓRIO

Leia mais

3. Quantos triângulos existem na figura abaixo? a) 36 b) 48 c) 50 d) 53

3. Quantos triângulos existem na figura abaixo? a) 36 b) 48 c) 50 d) 53 1. Luana fez uma caminhada de 14 km em quatro dias. No 2 o dia, andou o triplo que andou no 1 o. No 3 o dia, andou metade do que andou no 2 o e no 4 o dia, andou o mesmo que no 3 o. Quantos quilômetros

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

Instruções para a realização da Prova Leia com muita atenção. Prova da primeira fase

Instruções para a realização da Prova Leia com muita atenção. Prova da primeira fase Nível 2 Instruções para a realização da Prova Leia com muita atenção Prova da primeira fase Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Esta é uma prova de múltipla escolha.

Leia mais

QUESTÃO 18 Observe o paralelepípedo reto retângulo representado na figura:

QUESTÃO 18 Observe o paralelepípedo reto retângulo representado na figura: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 03 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (OBMEP) Se dividirmos um cubo de m de aresta em

Leia mais

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015

Leia mais

Competências e Habilidades - Concurso de Bolsas 2015/2016. Ensino Médio e Fundamental. Ensino Fundamental (6º Ano )

Competências e Habilidades - Concurso de Bolsas 2015/2016. Ensino Médio e Fundamental. Ensino Fundamental (6º Ano ) Ensino Fundamental (6º Ano ) Língua Portuguesa Em Língua Portuguesa (com foco em leitura) serão avaliadas habilidades e competências, agrupadas em 9 tópicos que compõem a Matriz de Referência dessa disciplina,

Leia mais

Descrição da Escala Matemática - 5 o ano EF

Descrição da Escala Matemática - 5 o ano EF Os alunos do 5º Ano do Ensino Fundamental

Leia mais

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa

Leia mais

Um Pouco de História: Sistema de Numeração dos Romanos. Valores

Um Pouco de História: Sistema de Numeração dos Romanos. Valores PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 4º ANO - ENSINO FUNDAMENTAL ========================================================================== Um Pouco de História: Sistema de

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS/2015) Para fazer a aposta mínima na mega sena uma pessoa deve escolher 6 números diferentes em um cartão de apostas que contém os números de 1 a 60. Uma pessoa escolheu

Leia mais

Recordarido O sistema de numeração. De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos?

Recordarido O sistema de numeração. De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos? De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos? Meça a página do seu livro com uma régua. Como você representa, em centímetros, a medida encontrada?

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Canguru Brasil 2013 Nível E Soluções

Canguru Brasil 2013 Nível E Soluções Canguru Brasil 2013 Nível E Soluções Problemas de 3 pontos 01. Existem cangurus brancos e pretos. Em qual das figuras há mais cangurus pretos do que cang u- rus brancos? 01. Resposta: alternativa D Na

Leia mais

PROVA DE MATEMÁTICA MÓDULO III DO PISM (triênio )

PROVA DE MATEMÁTICA MÓDULO III DO PISM (triênio ) QUESTÕES OBJETIVAS PROVA DE MATEMÁTICA MÓDULO III DO PISM (triênio 004-006) 09. Num determinado jogo, cada participante recebe uma ficha circular (tipo uma moeda) com um número impresso em cada uma das

Leia mais

b) Um pacote de amendoim e dois sucos custam 20 reais, e dois pacotes de amendoim e suco custam 25 reais.

b) Um pacote de amendoim e dois sucos custam 20 reais, e dois pacotes de amendoim e suco custam 25 reais. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 7º ANO - ENSINO FUNDAMENTAL ============================================================================================= Responda às questões

Leia mais

Sistemas de Equações do 1º Grau

Sistemas de Equações do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Sistemas de Equações 9º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/013 Aluno(: Número: Turma: Sistemas de Equações

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo Planificação Anual. Ano Letivo 2012/13 Área - Matemática 2º Ano. - Sequências

Agrupamento de Escolas Eugénio de Castro 1º Ciclo Planificação Anual. Ano Letivo 2012/13 Área - Matemática 2º Ano. - Sequências Ver documento METAS CURRICULARES de MATEMÁTICA http://www.dgidc.min-edu.pt Números e Operações Números Naturais Operações com números naturais Regularidades - Relações numéricas composição e decomposição

Leia mais

O uso de materiais manipuláveis e a construção de conceitos matemáticos

O uso de materiais manipuláveis e a construção de conceitos matemáticos Formação Continuada - Matemática O uso de materiais manipuláveis e a construção de conceitos matemáticos Professores - 3º ano 2º Encontro 24/05/2016 Coordenadora Pedagógica: Adriana da Silva Santi MATERIAL

Leia mais

Prof. Luiz Felix. Unidade I MATEMÁTICA APLICADA

Prof. Luiz Felix. Unidade I MATEMÁTICA APLICADA Prof. Luiz Felix Unidade I MATEMÁTICA APLICADA Sistemas de numeração A vida do homem, há milhares de anos, era muito diferente da atual. Ele não tinha necessidade de contar, uma vez que não comprava, não

Leia mais

O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...}

O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...} 07 I. Números naturais e inteiros O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0,,,, 4,...} Já o conjunto dos números inteiros é representado pela letra Z

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

Exercícios Variados. 8 ano/e.f.

Exercícios Variados. 8 ano/e.f. Módulo Miscelânea Eercícios Variados. 8 ano/e.f. Miscelânea. Eercícios Variados. 1 Eercícios Introdutórios Eercício 1. Um número par tem 10 algarismos e a soma desses algarismos é 8. Qual é o algarismo

Leia mais

Prova da segunda fase - Nível 3

Prova da segunda fase - Nível 3 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

Agrupamento de Escolas de Portela e Moscavide

Agrupamento de Escolas de Portela e Moscavide Domínio: NÚMEROS E OPERAÇÕES (NO2) Números Naturais (Conhecer os numerais ordinais) 1.Utilizar corretamente os numerais ordinais até vigésimo. Números Naturais ( Contar até mil) 1.Estender as regars de

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES 1.º CEB Planificação Anual Matemática- _ 2.º Ano /2013

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES 1.º CEB Planificação Anual Matemática- _ 2.º Ano /2013 ANUAL 164 dias letivos Números naturais Noção de número natural Números ordinais e cardinais Relações numéricas 1. Conhecer os numerais ordinais 1. Utilizar corretamente os numerais ordinais até «vigésimo».

Leia mais

a) Quantas placas distintas podemos ter sem o algarismo zero na primeira posição reservada aos algarismos?

a) Quantas placas distintas podemos ter sem o algarismo zero na primeira posição reservada aos algarismos? 1 1. (Fuvest-gv 91) As atuais placas de licenciamento de automóveis constam de sete símbolos sendo três letras, dentre as 26 do alfabeto, seguidas de quatro algarismos. a) Quantas placas distintas podemos

Leia mais

ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º bimestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação

Leia mais

Lista de Exercícios de Matemática

Lista de Exercícios de Matemática Lista de Exercícios de Matemática Álgebra e Aritmética 01) (Epcar/2003) - De dois conjuntos A e B, sabe-se que: I) O número de elementos que pertencem a A B é 45; II) 40% desses elementos pertencem a ambos

Leia mais

QUESTÃO 2 ALTERNATIVA B Trocamos a posição de dois algarismos vizinhos do número , conforme a tabela

QUESTÃO 2 ALTERNATIVA B Trocamos a posição de dois algarismos vizinhos do número , conforme a tabela 1 QUESTÃO 1 Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,5, obtemos o número de moedas de 5 centavos que ele recebeu. Como 1,50 0,5 = 6, segue que ele recebeu de troco seis moedas

Leia mais

setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO

setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO setor 1102 1102008 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 1 PRINCÍPIOS BÁSICOS DA CONTAGEM Seja, por exemplo, uma lanchonete que vende três tipos de refrigerantes e dois tipos de cerveja. Pergunta-se:

Leia mais

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52

Leia mais

Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase

Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima primeira edição da Olimpíada de Matemática de São José do

Leia mais

INSTITUTO EDUCACIONAL MANOEL PINHEIRO. LÍNGUA PORTUGUESA 1. Leitura e interpretação de diferentes gêneros textuais (verbais e não verbais): contexto;

INSTITUTO EDUCACIONAL MANOEL PINHEIRO. LÍNGUA PORTUGUESA 1. Leitura e interpretação de diferentes gêneros textuais (verbais e não verbais): contexto; 2º ANO DO ENSINO FUNDAMENTAL 1. Leitura e interpretação de diferentes gêneros textuais (verbais e não verbais): contexto; 2. Expressão escrita: Produção de narrativa, com clareza, sequência lógico-temporal,

Leia mais

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F.

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A figura abaixo representa um pentágono regular, do qual foram

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel

Leia mais

01/06/015 MATEMÁTICA PROFESSOR: CRISTIANO JORGE PROGRESSÃO ARITMÉTICA (PA) 1 01/06/015 Sequência ou sucessão: A palavra seqüência sugere a ideia de termos sucessivos e pode ser finita ou infinita. Toda

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção. Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas

Leia mais

3 + i na forma trigonométrica. Um casal deseja ter quatro filhos. Qual a probabilidade de serem todos do mesmo sexo?

3 + i na forma trigonométrica. Um casal deseja ter quatro filhos. Qual a probabilidade de serem todos do mesmo sexo? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - ª SERIE - ENSINO MÉDIO - 3ª ETAPA ============================================================================================== 0- Assunto: Análise Combinatória

Leia mais

OBMEP - Novas Soluções para os Bancos de Questões

OBMEP - Novas Soluções para os Bancos de Questões OBMEP - Novas Soluções para os Bancos de Questões 4 CONTEÚDO Banco 011 7 Banco 01 9 Banco 014 11 Banco 015 13 Banco 017 15 BANCO 011 1 Produto 000 (Problema 68 do Banco) Quantos números naturais de cinco

Leia mais

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números.

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. 1º período Os números naturais: Sistema de Numeração Decimal. (SND). Pág.30 a 32. Um pouco de história: sistema de numeração dos romanos. Pág. 33 a 35 Os números naturais. Pág. 36 e 37 Sistema de Numeração

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

Nome: n o : Recuperação de Matemática 3ª. E.M. 2017

Nome: n o : Recuperação de Matemática 3ª. E.M. 2017 Nome: n o : Ensino: Médio Série: 3ª. Turma: Data: Professor: Márcio Recuperação de Matemática 3ª. E.M. 017 Números Complexos 1. Sejam os números complexos z 1 = x 5 + ( + y)i e z = 4 3i. Determine x e

Leia mais

PLANIFICAÇÃO DE MATEMÁTICA- setembro/outubro

PLANIFICAÇÃO DE MATEMÁTICA- setembro/outubro PLANIFICAÇÃO DE MATEMÁTICA- setembro/outubro Recorda os números até 100 Estratégias de cálculo Adição e subtração Números ordinais Números pares e números ímpares Sólidos geométricos - Saber de memória

Leia mais

Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof.

Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof. Conversão de Bases Introdução à Organização de Computadores 5ª Edição/2007 Página 54 1 NOTAÇÃO POSICIONAL - BASE DECIMAL O SISTEMA DE NUMERAÇÃO É FORMADO POR UM CONJUNTO DE SÍMBOLOS UTILIZADOS PARA REPRESENTAR

Leia mais

PROBLEMA A TROCA DE CARTAS

PROBLEMA A TROCA DE CARTAS PROBLEMA A TROCA DE CARTAS Nome do arquivo fonte: troccard.c, troccard.cpp ou troccard.java Alice e Beatriz colecionam cartas de Pokémon. As cartas são produzidas para um jogo que reproduz a batalha introduzida

Leia mais

2 a SÉRIE. Habilidades

2 a SÉRIE. Habilidades 1 2 1. Comparar os números de elementos de duas coleções dadas e indicar a que tem maior (ou menor) quantidade de elementos. 2. Produzir escritas numéricas, demonstrando compreender regras do sistema de

Leia mais

ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa Atual da Disciplina e Metas Curriculares 1º CICLO MATEMÁTICA 2º ANO TEMAS/DOMÍNIOS

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA)

MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA) MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA) Como pode cair no enem (ENEM) Jogar baralho é uma atividade que estimula o raciocínio. Um jogo tradicional é a Paciência, que utiliza 52 cartas.

Leia mais

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11.

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11. Aula n ọ 05 A conta do 11 Para multiplicar um número de dois algarismos por 11, podemos fazê-lo assim: conservamos a unidade na unidade do resultado; a dezena na centena do resultado; e a dezena do resultado

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana. Projeto Novos Talentos Edital CAPES 55/12. Professor Responsável Ivan José Coser.

Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana. Projeto Novos Talentos Edital CAPES 55/12. Professor Responsável Ivan José Coser. 1 Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Professor Responsável Ivan José Coser. Atividades de Matemática Julho 2014 2 1. TANGRAM O TANGRAM

Leia mais

Percebendo Padrões. Vitor T T T F T T T F T T T F T T T F T T T F Maria T T T T T T T F F F T T T T T T T F F F

Percebendo Padrões. Vitor T T T F T T T F T T T F T T T F T T T F Maria T T T T T T T F F F T T T T T T T F F F Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 6 Percebendo Padrões Uma das principais habilidades que deve ser desenvolvida pelos alunos que desejam ter um bom

Leia mais

FÍSICA - 2 o ANO MÓDULO 20 POTÊNCIA E ENERGIA ELÉTRICA REVISÃO

FÍSICA - 2 o ANO MÓDULO 20 POTÊNCIA E ENERGIA ELÉTRICA REVISÃO FÍSICA - 2 o ANO MÓDULO 20 POTÊNCIA E ENERGIA ELÉTRICA REVISÃO Como pode cair no enem Não havendo aumento no preço do kwh nem nos impostos embutidos, você deverá pagar sua próxima conta de luz em torno

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual

Leia mais