Prova da segunda fase - Nível 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prova da segunda fase - Nível 3"

Transcrição

1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões que você vai enfrentar não serão compreendidas na primeira leitura. Leia-as novamente para entender perfeitamente o que se pede. Depois, pense... Bem-vindo ao mundo dos desafios!!! Não importa a quantidade de questões que vai acertar ou errar ao final da prova. Cada exercício que você conseguir resolver representa uma vitória. Dos erros você poderá tirar várias lições e, com certeza, passará a entender um pouco mais dessa apaixonante ciência que é a Matemática. Desejamos a todos uma boa prova. Atenciosamente, Comissão Organizadora Instruções: O tempo de duração da prova é de três horas. Esta é uma prova de múltipla escolha. Cada questão é seguida por cinco alternativas (a, b, c, d, e). Somente uma delas é correta. Marque as opções no quadro de respostas da folha em anexo, utilizando caneta azul ou preta. Por exemplo, para marcar a opção B na questão 10: 10) A B C D E Realização: Departamento de Matemática do Ibilce - Unesp, São José do Rio Preto. SOMA - Sociedade dos Matemáticos. Apoio: CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico. AOBM - Associação Olimpíada Brasileira de Matemática. Diretoria Regional de Ensino de São José do Rio Preto. Secretaria Municipal de Educação de São José do Rio Preto. O gabarito estará disponível no site da Olimpíada, a partir das 20 horas de 27/05/2011 (sexta-feira).

2 RASCUNHO

3 1. Qual é a menor raiz da equação (x 37) = 0? a) 50 b) 43 c) 47 d) 24 e) Três quadrados com lados medindo 10 cm, 8 cm e 6 cm, respectivamente, são colocados um ao lado do outro como mostra a figura. A área da região sombreada é igual a: a) 120 cm 2 b) 80cm 2 c) 60cm 2 d) 92 cm 2 e) 100cm 2 3. Chico das Contas troca dois dígitos do número 888 buscando o maior número de três dígitos divisível por 8. Zé da Álgebra troca dois dígitos do número 888 buscando o menor número de três dígitos divisível por 8. A diferença entre esses dois números é igual a: a) 766 b) 163 c) 856 d) 853 e) Uma mistura é composta de 90 kg de água e 10 kg de sal. Pondo-a para evaporar, obtém-se uma nova mistura da qual 24 kg contém 3 kg de sal. Determine a quantidade de água evaporada. a) 60 b) 50 c) 40 d) 30 e) Num conjunto de 30 pessoas, 5 são brasileiros e matemáticos, 11 são japoneses e 13 são matemáticos. Quantas são japoneses ou não matemáticos? a) 28 b) 17 c) 25 d) 19 e) Em uma feira há uma barraca com cinco caixas alinhadas contendo frutas distintas. A caixa com ameixas está ao lado da caixa com melancias e ao lado da caixa com maçãs; a caixa com laranjas e a caixa com mamões não estão colocadas uma ao lado da outra; a caixa com laranjas está a direita da caixa de melancias. O tipo da fruta que se encontra na caixa localizada na extremidade esquerda da fila é: a) ameixa b) melancia c) maçã d) laranja e) mamão. 7. Um tapete mágico, de forma retangular, depois de cumprir um desejo de seu dono, reduz-se à metade de seu comprimento e à terça parte de sua largura. Após três desejos realizados o tapete tem 4m 2 de área. Sabendo que sua largura inicial era de 9 m, determine seu comprimento inicial. a) 96 m b) 76 m c) 84 m d) 12m e) 25 m 8. Um comandante dispõe sua tropa formando um quadrado e vê que ficam 36 homens fora do quadrado formado. Decide aumentar uma fila e uma coluna de homens em dois lados consecutivos do quadrado e verifica que faltam 75 homens para completar o quadrado. Então, podemos afirmar que a tropa tem um total de: a) 3061 homens b) 55 homens c) 3025 homens d) 2004 homens e) 110 homens 9. A soma dos fatores primos do inteiro positivo n = é igual a: a) 279 b) 282 c) 119 d) 189 e) 157

4 10. ABCD é um retângulo, M e N são os pontos médios dos lados AD e BC, respectivamente. P é um ponto sobre o lado AB que pode ocupar qualquer posição sobre esse lado. Analogamente, Q é um ponto sobre o lado CD, que também pode andar sobre esse lado. Sabendo que a área do retângulo ABCD é igual a 100 cm 2, determine a área do quadrilátero MPNQ. a) 80 cm 2 b) 70 cm 2 c) 60 cm 2 d) 50 cm 2 e) 25 cm Chico das Contas escreveu um número inteiro em cada círculo e depois escreveu em cada quadrado o resultado da multiplicação dos números que estavam nos dois círculos vizinhos. Alguns números foram apagados e estão representados por letras. x 85 y 136 u 9 z 120 Detemine o valor de w. a) 17 b) 5 c) 8 d) 45 e) 135. t w 12. Inicialmente, as casas 1 e 3 do tabuleiro mostrado abaixo estão pintadas de branco, enquanto as casas 2 e 4 estão pintadas de preto Em intervalos de tempo regulares, uma da casas troca sua cor com a cor oposta. Se as casas trocam na ordem: 1, 2, 3, 4, 1, 2, 3, 4, etc, então qual será o aspecto do tabuleiro após 2011 trocas? a) b) c) d) e) 13. Seis bolsas de bolas contêm 18, 19, 21, 23, 25 e 34 bolas, respectivamente. Cinco das bolsas contêm bolas azuis e a outra, bolas vermelhas. Chico das Contas escolhe três bolsas e Maicon Binatória escolhe duas outras. Somente a bolsa com bolas vermelhas não foi escolhida. Se Chico das Contas está com o dobro de bolas que Maicon Binatória, o número de bolas vermelhas é: a) 19 b) 21 c) 34 d) 23 e) 25

5 14. Para um grupo de crianças formado de cinco meninos e cinco meninas, as seguintes afirmações são verdadeiras: (1) as crianças de cabelos longos não gostam de bombom; (2) não há meninas com cabelos curtos; (3) o número de meninas que não gostam de bombom é igual ao número de meninos com cabelos longos. Quantos meninos (se existirem) gostam de bombons? a) 4 b) 3 c) 2 d) 1 e) Na figura abaixo o quadrilátero ABCD é um paralelogramo e C é o ponto médio de GB. G D E C A B Se (ABGD) = 180 cm 2, então determine (AEB). a) 20 cm 2 b) 60 cm 2 c) 30 cm 2 d) 45 cm 2 e) 55 cm 2 nota: a notação (XYZW) representa a área do polígono de vértices X, Y, Z e W. 16. Quantos números naturais menores que 1000 existem com a seguinte propriedade: a soma de seus algarismos é igual a 7? a) 24 b) 30 c) 33 d) 36 e) Sejam A e B dois dígitos. Se o produto dos números 2A5 e 13B é divisível por 36, a quantidade de possíveis pares ordenados de inteiros positivos (A; B) que satisfazem a condição do enunciado é igual a: a) 6 b) 4 c) 1 d) 5 e) No mesmo mês, três domingos caíram em dias com numerações pares. Qual dia da semana foi o dia 20 de tal mês? a) segunda-feira b) terça-feira c) quarta-feira d) quinta-feira e) sexta-feira 19. O quadrilátero ABCD tem ângulos retos em A e C. Sejam E e F os pés das perpendiculares traçadas em AC de B e D, respectivamente. Se AE = 3 cm, BE = 5 cm e CE = 7 cm, então o segmento DF mede: a) 4,2 cm b) 5 cm c) 5,3 cm d) 4 cm e) 5,5 cm 20. Chico das Contas arrumou seis livros de 100, 200, 300, 400, 500 e 600 gramas, em quatro prateleiras. Sabendo-se que na primeira prateleira colocou 900 gramas, na segunda colocou 500 gramas e na terceira 300 gramas, quantos livros colocou Chico na quarta prateleira? a) 5 b) 4 c) 3 d) 2 e) Aplica-se em um par ordenado uma operação que transforma o par (a, b) no par 3a + b a + 3b ;. Se começamos com o par 4 4 (2048; 1024), qual dos pares abaixo não foi obtido, depois de se aplicar várias vezes essa operação no par original? a) (1664; 1408) b) (1539; 1531) c) (1540; 1532) d) (1792; 1280) e) (2040; 1032)

6 22. Ana Lítica pintou a seguinte sequência de desenhos em papel quadriculado:... Quantos quadradinhos pintados tem o décimo desenho? a) 41 b) 50 c) 100 d) 130 e) Em um tabuleiro com o da figura abaixo há, inicialmente, uma ficha em cada casa. Uma jogada consiste em escolher duas fichas e movê-las, uma para a casa que está a sua direita e a outra para a casa que está a sua esquerda. Se, depois de quatro jogadas, as oito fichas estão distribuídas somente em duas casas, as casas que ficaram com as fichas são, da esquerda para a direita: a) segunda e quarta b) primeira e terceira c) terceira e sexta d) quinta e sétima e) sexta e sétima 24. Efetua-se a adição até que apareçam 9999 algarismos 1 na soma resultante. Quantas parcelas tem a adição? a) 9999 b) 9998 c) 9997 d) 9996 e) Os divisores positivos do número N = são escritos em uma lista, em ordem decrescente. O divisor que ocupa o décimo quinto lugar da lista é: a) b) c) d) e)

7 GABARITO - Nível 3 01) D 02) B 03) C 04) E 05) C 06) E 07) A 08) A 09) B 10) D 11) E 12) E 13) D 14) E 15) B 16) D 17) B 18) D 19) A 20) E 21) B 22) E 23) C 24) A 25) A Observação: a questão 12 foi anulada para efeito de correção por não ter a alternativa correta. Mas, nesse arquivo ela já está corrigida.

Instruções para a realização da Prova Leia com muita atenção!

Instruções para a realização da Prova Leia com muita atenção! Nível 1 Instruções para a realização da Prova Leia com muita atenção! Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do

Leia mais

Instruções para a realização da Prova Leia com muita atenção

Instruções para a realização da Prova Leia com muita atenção Nível 1 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima terceira edição da Olimpíada de Matemática de São José do

Leia mais

Instruções para a realização da Prova Leia com muita atenção

Instruções para a realização da Prova Leia com muita atenção Nível 2 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do

Leia mais

Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase

Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase Nível 1 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima primeira edição da Olimpíada de Matemática de São José do

Leia mais

Instruções para a realização da Prova Leia com muita atenção!

Instruções para a realização da Prova Leia com muita atenção! Nível 3 Instruções para a realização da Prova Leia com muita atenção! Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do

Leia mais

Instruções para a realização da Prova Leia com muita atenção. Prova da primeira fase

Instruções para a realização da Prova Leia com muita atenção. Prova da primeira fase Nível 2 Instruções para a realização da Prova Leia com muita atenção Prova da primeira fase Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Esta é uma prova de múltipla escolha.

Leia mais

Instruções para a realização da Prova Leia com muita atenção. Prova da primeira fase

Instruções para a realização da Prova Leia com muita atenção. Prova da primeira fase Nível 1 Instruções para a realização da Prova Leia com muita atenção Prova da primeira fase Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Esta é uma prova de múltipla escolha.

Leia mais

Prova da segunda fase - Nível 2

Prova da segunda fase - Nível 2 Caro Aluno, Parabéns pela sua participação na sexta edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

Prova da primeira fase - Nível 1

Prova da primeira fase - Nível 1 Prova da primeira fase - Nível Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente

Leia mais

Prova da primeira fase - Nível III

Prova da primeira fase - Nível III Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente uma resposta é correta. Marque

Leia mais

Prova da segunda fase - Nível 2

Prova da segunda fase - Nível 2 Instruções: O tempo de duração da prova é de duas horas. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente uma resposta é correta. Marque as opções no

Leia mais

Canguru Matemático sem Fronteiras 2009

Canguru Matemático sem Fronteiras 2009 Destinatários: alunos dos 7 e 8 anos de Escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis:

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries)

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) PROBLEMA 1 Parte das casas de um quadriculado com o mesmo número de linhas (fileiras horizontais) e colunas (fileiras verticais) é pintada de preto, obedecendo

Leia mais

Canguru Matemático sem Fronteiras 2013

Canguru Matemático sem Fronteiras 2013 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar. II Simulado de Matemática ITA. ALUNO(A): N o : TURMA:

FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar. II Simulado de Matemática ITA. ALUNO(A): N o : TURMA: FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar Central de Atendimento: 4006.7777 3 o Ensino Médio II Simulado de Matemática ITA ALUNO(A): N o : TURMA: TURNO: MANHÃ DATA: 1/04/007

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

Nível SBM. Cole aqui a etiqueta com os dados do aluno.

Nível SBM. Cole aqui a etiqueta com os dados do aluno. Cole aqui a etiqueta com os dados do aluno. Nível 2 8º e 9º anos do Ensino Fundamental 2ª FASE 5 de novembro de 2011 Nome completo do aluno Endereço completo do aluno (Rua, Av., nº) Complemento Bairro

Leia mais

Ministério da SOCIEDADE BRASILEIRA DE MATEMÁTICA. 6. Respostas sem justificativas não serão consideradas na correção.

Ministério da SOCIEDADE BRASILEIRA DE MATEMÁTICA. 6. Respostas sem justificativas não serão consideradas na correção. Ensino Médio Nível a FASE 18 de novembro de 006 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1 a Fase da OBMEP. É com grande satisfação que contamos agora com sua participação

Leia mais

a. 0 b. 1 c. 2 d. 3 e. 5

a. 0 b. 1 c. 2 d. 3 e. 5 X OM NÍVEL ª OPM. Maria foi à feira e comprou duas dúzias de laranjas, duas dúzias de bananas e uma dúzia de maçãs, gastando R$ 5,80. Na outra semana, quando voltou à feira, comprou três dúzias de laranjas,

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / 0 / 01 Assunto: Triângulos, quadriláteros e outros polígonos Lição nº _ e _ Um Quadrilátero é um polígono com quatro lados. Os quadriláteros

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou

Leia mais

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 5ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) D) 6) D) 11) E) 16) B) 1) Anulada ) A) 7) D) 1) C) 17) C) ) B) ) D) 8) E) 1) D)

Leia mais

XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível

XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível 1-1998 01. Qual dos números a seguir é o maior? A) 3 45 B) 9 20 C) 27 14 D) 243 9 E) 81 12 02. Um menino joga três dados e soma os números que

Leia mais

Análise Combinatória Intermediário

Análise Combinatória Intermediário Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

Canguru Matemático sem Fronteiras 2011

Canguru Matemático sem Fronteiras 2011 http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 0. e. anos de escolaridade Nome: Turma: Duração: h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões

Leia mais

CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO :

CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO : COLÉGIO MILITAR DE ELO HORIZONTE ELO HORIZONTE MG DE OUTURO DE 00 DURAÇÃO: 0 MINUTOS CONCURSO DE ADMISSÃO 00 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 90 minutos de março de 01 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/01 Matemática 7.º Ano Nome: N.º Turma: Classificação: Fraco (0% 19%) Insuficiente

Leia mais

XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos

XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos Reservado para a correção Prova Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 otal # 0 Nota Instruções e Regulamento: 1. Identifique

Leia mais

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a 01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância

Leia mais

Fonte: Livro: CRESCER EM SABEDORIA - Matemática 8º ano - Sistema Mackenzie de Ensino

Fonte: Livro: CRESCER EM SABEDORIA - Matemática 8º ano - Sistema Mackenzie de Ensino Atividade extra aula 26 e 29 (módulo 01) 8º ano Prof.ª Adriana/Madalena (matemática 02) Objetivo: promover uma maior compreensão de algumas propriedades de quadriláteros e interpretação de enunciados mais

Leia mais

Prova de Habilitação

Prova de Habilitação Prova de Habilitação professor 13 de setembro de 2014 INStRUÇÕES 1. Verifi que se os seus dados informados no quadro abaixo estão corretos. Caso as informações não estejam corretas, comunique o erro ao

Leia mais

(CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015)

(CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015) MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015) NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA MATEMATICA 1) Seja S a soma dos valores

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 03 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (OBMEP) Se dividirmos um cubo de m de aresta em

Leia mais

XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXVII OLIPÍADA BRASILEIRA DE ATEÁTICA PRIEIRA FASE NÍVEL 3 (Ensino édio) GABARITO GABARITO NÍVEL 3 1) D 6) C 11) C 16) D 1) C ) C 7) B 1) C 17) C ) Anulada 3) Anulada 8) D 13) B 18) A 3) B ) B 9) B 1)

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

, com a, b e c inteiros, 0 a 8, 0 b 5 e 0 c 3. Apenas 45 = 2 3

, com a, b e c inteiros, 0 a 8, 0 b 5 e 0 c 3. Apenas 45 = 2 3 XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. ou 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) B 11) D 16) A 1) E ) D 7) C 1) E 17) D ) C ) E 8) C 1) B 18) D ) E 4) E 9) D 14) C 19) E 4)

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

Resolução de questões de provas específicas de

Resolução de questões de provas específicas de 4.11.016 Resolução de questões de provas específicas de 4.11.016 #6 - Resoluções de Questões Específicas de Matemática 1. Em um triângulo equilátero de perímetro igual a 6 cm, inscreve-se um retângulo

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível Segunda Fase 4/09/16 Duração: 4 Horas e 30 minutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR(A) nos campos acima. Esta prova contém

Leia mais

Canguru de Matemática Brasil 2016 Nível E Soluções

Canguru de Matemática Brasil 2016 Nível E Soluções Problemas de 3 pontos Canguru de Matemática Brasil 2016 Nível E Soluções 1. Ana, Bruna, Cris, Dora e Edna jogaram dois dados cada uma. Qual das meninas obteve a maior soma do número de pontos? (A) Ana

Leia mais

Nível. Cole aqui a etiqueta com os dados do aluno. 7ª e 8ª séries (8º e 9º anos) do Ensino Fundamental 2ª FASE 08 de novembro de 2008

Nível. Cole aqui a etiqueta com os dados do aluno. 7ª e 8ª séries (8º e 9º anos) do Ensino Fundamental 2ª FASE 08 de novembro de 2008 Nível 2 7ª e 8ª séries (8º e 9º anos) do Ensino Fundamental 2ª FASE 08 de novembro de 2008 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

Canguru sem fronteiras 2005

Canguru sem fronteiras 2005 Duração: 1h30mn Destinatários: alunos do 12 ano de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada, és penalizado

Leia mais

XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009

XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009 XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009 PROVA DA SEGUNDA ETAPA NÍVEL I (Estudantes da 6 a e 7 a Séries) Problema 1 A expressão E, a seguir, é o produto de 20 números:

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

MATEMÁTICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO.

MATEMÁTICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. UNIVERSIDADE FEDERAL DE MINAS GERAIS MATEMÁTICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Prova contém seis questões, constituídas de itens,

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 MÚLTIPLA ESCOLHA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 0. Sejam os conjuntos: A = Conjunto dos números no quadrado B = Conjunto dos números no pentágono C =

Leia mais

A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha.

A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha. XXII OLIMPÍADA BRASILEIRA DE MATEMÁTIA Primeira Fase Nível 1 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para

Leia mais

GABARITO Prova Verde. GABARITO Prova Rosa

GABARITO Prova Verde. GABARITO Prova Rosa Sistema ELITE de Ensino COLÉGIO NAVAL 011/01 GABARITO Prova Verde MATEMÁTICA 01 E 11 D 0 D 1 A 03 E 13 ANULADA 0 E 1 ANULADA 05 D 15 B 06 D 16 C 07 B 17 C 08 E 18 B 09 A 19 A 10 C-Passível de anulação

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / 98 1ª QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / 98 1ª QUESTÃO MÚLTIPLA ESCOLHA 1 1ª QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES A ESQUERDA. Item 01. Dos conjuntos abaixo especificados, o conjunto unitário é o conjunto a. ( ) dos rios

Leia mais

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02 Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de

Leia mais

Seções de Prismas Julho/ 2009

Seções de Prismas Julho/ 2009 Seções de Prismas Heloiza Rangel da Silva Josie Pacheco de Vasconcellos Souza Paula Eveline da Silva dos Santos Orientadora: Gilmara Teixeira Barcelos Julho/ 2009 Apostila de atividades disponível em http://www.es.iff.edu.br/softmat/projeto_tic/prismas

Leia mais

Resoluções. Aula 1 NÍVEL 2. Classe

Resoluções. Aula 1 NÍVEL 2. Classe www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVEL 2 Resoluções Aula 1 Classe 1. Observe que: 14 1 = 14 14 2 = 196 14 par termina em 6 e 14 ímpar termina em 4 14 3 = 2.744 14 4 = 38.416...

Leia mais

a) 6% b) 7% c) 70% d) 600% e) 700%

a) 6% b) 7% c) 70% d) 600% e) 700% - MATEMÁTICA 01) Supondo-se que o número de vagas em um concurso vestibular aumentou 5% e que o número de candidatos aumentou 35%, o número de candidatos por vaga para esse curso aumentou: a) 8% b) 9%

Leia mais

MOMENTOS DE MATEMÁTICA

MOMENTOS DE MATEMÁTICA MOMENTOS DE MATEMÁTICA... 5º Ano............ Ficha Global n.º 1 1. Calcula o valor de a de cada uma das igualdades: a) 4,5 + a = 15,8 b) 11,2 - a = 5,4 c) 4,5 : a = 0,9 d) 4,5 : a = 0,9 e) 1,24 x a = 3,1

Leia mais

OBMEP na Escola 2014 Soluções QUESTÃO 1. Começamos por designar os valores a serem colocados nos diversos quadradinhos pelas letras a, b, c, d, e, f.

OBMEP na Escola 2014 Soluções QUESTÃO 1. Começamos por designar os valores a serem colocados nos diversos quadradinhos pelas letras a, b, c, d, e, f. 1 QUESTÃO 1 Começamos por designar os valores a serem colocados nos diversos quadradinhos pelas letras a, b, c, d, e, f. a. [6 pontos] Igualando os produtos dos números na primeira linha e na primeira

Leia mais

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um

Leia mais

LISTA DE EXERCÍCIO DE MATEMÁTICA

LISTA DE EXERCÍCIO DE MATEMÁTICA LIST DE EXERCÍCIO DE MTEMÁTIC SÉRIE: 2º NO TURM: DT D PROV: / /2010 PROFESSOR: RI LUNO(): NOT VLOR 01.: (MCKENZIE) 9 pessoas desejam subir à cobertura de um edifício, dispondo, para isso, de dois elevadores,

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

Ensino Fundamental Nível I Currículo Brasileiro

Ensino Fundamental Nível I Currículo Brasileiro 1) A sala de Cristiane jogou o Jogo dos círculos. Conte os pontos que ela fez em cada jogada e escreva-os com algarismos (11) e por extenso (onze). Veja o exemplo: 5 + 1 + 5 = 11 pontos ou onze pontos.

Leia mais

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções: EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS

Leia mais

Canguru Matemático sem Fronteiras 2009

Canguru Matemático sem Fronteiras 2009 Duração: 1h30min Destinatários: alunos dos 10 e 11 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis:

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 O tabuleiro 7 7 pode ser facilmente preenchido e constata-se que na casa central deve aparecer o número 25, mas existe uma maneira melhor de fazer isto: no tabuleiro quadrado de casas, a quantidade

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

Gráficos de Logaritmos

Gráficos de Logaritmos Gráficos de Logaritmos 1. (Ueg 013) O gráfico da função y log(x 1) é representado por: a) b) c) d). (Espcex (Aman) 01) Na figura abaixo, dois vértices do trapézio sombreado estão no eixo x e os outros

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO GABARITO NÍVEL 1) D 6) B 11) A 16) A 1) B ) C 7) E 1) D 17) A ) B 3) C 8) C 13) C 18) B

Leia mais

SOMENTE COM CANETA AZUL

SOMENTE COM CANETA AZUL º SIMULADO - 8º ANO - 016 ENSINO FUNDAMENTAL Matemática 45 Questões 0 de dezembro - sexta-feira Nome: Turma: Unidade: º A DI CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI 1 O aluno

Leia mais

UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO MATEMÁTICA Seleção 2008 Prova Escrita 13/02/2008.

UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO MATEMÁTICA Seleção 2008 Prova Escrita 13/02/2008. UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO MATEMÁTICA Seleção 2008 Prova Escrita 13/02/2008 Nome: N o Esta prova é composta de três partes: Parte A: conteúdos específicos

Leia mais

Olimpíadas Portuguesas de Matemática

Olimpíadas Portuguesas de Matemática Olimpíadas Portuguesas de Matemática XXV OPM Final o dia 7 Categoria B Justifica convenientemente as tuas respostas e indica os principais cálculos Não é permitido o uso de calculadoras http://wwwpt/~opm

Leia mais

FOLHA DE ROSTO PARA A PROVA DE AFERIÇÃO DE CONHECIMENTOS (PAC) CONCURSO DE ADMISSÃO AO 45º CURSO DE FORMAÇÃO DE SARGENTOS

FOLHA DE ROSTO PARA A PROVA DE AFERIÇÃO DE CONHECIMENTOS (PAC) CONCURSO DE ADMISSÃO AO 45º CURSO DE FORMAÇÃO DE SARGENTOS FOLHA DE ROSTO PARA A PROVA DE AFERIÇÃO DE CONHECIMENTOS (PAC) CONCURSO DE ADMISSÃO AO 4º CURSO DE FORMAÇÃO DE SARGENTOS LEIA COM ATENÇÃO, ATÉ AO FIM, ESTAS INSTRUÇÕES 1. Para o preenchimento da folha

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Canguru Matemático sem Fronteiras 2010 Duração: 1h30min Destinatários: alunos do 12 Ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões

Leia mais

Olimpíada Pernambucana de Matemática 2016, Nível - 3, Caderno de Questões

Olimpíada Pernambucana de Matemática 2016, Nível - 3, Caderno de Questões Olimpíada Pernambucana de Matemática 2016 Nível - 3 Caderno de Questões LEIA COM ATENÇÃO 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

1 a Olimpíada Paranaense de Matemática Terceira Fase Nível 1 12/11/16 Duração: 5 Horas

1 a Olimpíada Paranaense de Matemática Terceira Fase Nível 1 12/11/16 Duração: 5 Horas 1. Sofia colou, em cada face de um cubo com 5cm de lado, um cubo de lado 3cm. Em cada face livre dos cubos de lado 3cm colou um cubo com 1cm de lado. Depois pintou o sólido resultante como se indica na

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

Canguru Brasil 2013 Nível E Soluções

Canguru Brasil 2013 Nível E Soluções Canguru Brasil 2013 Nível E Soluções Problemas de 3 pontos 01. Existem cangurus brancos e pretos. Em qual das figuras há mais cangurus pretos do que cang u- rus brancos? 01. Resposta: alternativa D Na

Leia mais

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL Nível* Nível 1: 125-150 Nível 2: 150-175 Nível 3: 175-200 Nível 4: 200-225 Descrição do Nível - O estudante provavelmente é capaz de: Determinar

Leia mais

GEOMETRIA: POLÍGONOS

GEOMETRIA: POLÍGONOS Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente

Leia mais

MATEMÁTICA MARATONA AFA 2012 SIMULADO AFA

MATEMÁTICA MARATONA AFA 2012 SIMULADO AFA MARATONA AFA 0 SIMULADO AFA. Duas cidades A e B, que distam entre si 6 km, estão ligadas por uma estrada de ferro de linha dupla. De cada uma das estações, partem trens de 3 em 3 minutos. Os trens trafegam

Leia mais

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 1. Um professor

Leia mais

Polígonos Regulares. 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero.

Polígonos Regulares. 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero. Polígonos Regulares 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero. Sabendo que o perímetro do polígono ABCDE é 456 cm e CD mede 68 cm, qual é a medida do lado

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 1 Páginas Entrelinha 1,5 Duração da Prova: 90 minutos.

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Cada questão da parte A vale 4 pontos e cada questão da parte B vale 10 pontos (total de pontos do nível III-fase de seleção = 60 pontos).

Cada questão da parte A vale 4 pontos e cada questão da parte B vale 10 pontos (total de pontos do nível III-fase de seleção = 60 pontos). III OLIMPÍADA REGIONAL DE MATEMÁTICA Nível III Ensino Médio DE RIEIRÃO PRETO FASE DE SELEÇÃO - 7 de setembro de 008 Cada questão da parte A vale 4 pontos e cada questão da parte vale 10 pontos (total de

Leia mais

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA DE MATEMÁTICA 2015 GABARITO 5º E 6º ANOS Questão Resposta 1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) 450 13) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA

Leia mais