Lista Considere um oscilador harmonico tridimencional com o potencial, resolve a Equação de Schrödinger independente no tempo

Tamanho: px
Começar a partir da página:

Download "Lista Considere um oscilador harmonico tridimencional com o potencial, resolve a Equação de Schrödinger independente no tempo"

Transcrição

1 Lista 8. Considere um oscilador harmonico tridimencional com o potencial, V = m 2 ( ω 2 x x 2 + ω 2 yy 2 + ω 2 zz 2), onde ω x, ω y e ω z representam as frequências deste oscilador (clássico) nas direções, x, y e z, respectivamente. (a) Escrevendo ψ (x, y, z) x, y, z ψ. resolve a Equação de Schrödinger independente no tempo [ 2 2m 2 + m ( ω 2 2 x x 2 + ωyy ωzz 2 2)] ψ E (x, y, z) = Eψ E (x, y, z), () com método de separação de variáveis em x, y e z e obtenha os autovalores do Hamiltoniano. (b) Dependendo dos valores de frequência ω x, ω y e ω z, o espectro de energia apresenta degenerescência. Em que situações? Classifique. (c) Em que situação que apresenta a degenerescência maior? 2. Consideramos dois operadores unitários U e U 2. Se U e U 2 não comutam, mas o Hamiltoniano do sistema H comutam com ambos os operadores, [U, U 2 ] 0, [H, U ] = 0, [H, U 2 ] = 0. Prove que, nesta situação, deve existir a degenerescência no espectro do H. 3. Introduzindo o sistema de coordenadas esféricas, x = r sin θ cos φ, (2) y = r sin θ sin φ, (3) z = r cos θ, (4)

2 (a) Prove que 2 = r 2 r r2 r + r 2 sin θ (b) Definindo operador de momento angular, θ sin θ θ + r 2 sin 2 θ 2 φ 2. (5) ˆL = ˆr ˆP, (6) expresse ˆL em termos de coordenadas esféricas, L x = ( sin φ ) + cos φ cot θ, (7) i θ φ L y = ( cos φ ) sin φ cot θ, (8) i θ φ L z = i φ. (9) (c) Calcule ˆL 2 (0) diretamente usando o resultado do item acima, e confere que ˆL 2 = 2 [ sin θ θ sin θ θ + sin 2 θ (d) Para um sistema que possui simetria esférica, 2 φ 2 ]. () H = 2 2m 2 + V (r), (2) onde o potencial é função de r apenas, demostre que a Equação de Schrödinger independente no tempo pode ser separada em variáveis radial e angulares, ψ (r, θ, φ) = R (r) Y (θ, φ), (3) e obtenha as equações para R (r) e Y (θ, φ). 2

3 4. Consideramos a transformação de variáveis, x = x (u, u 2, u 3 ), (4) y = y (u, u 2, u 3 ), (5) z = z (u, u 2, u 3 ). (6) Para pequena variações de variáveis u í s, a variação do vetor de posição r pode ser escrito onde com d r = du h e + du 2 h 2 e 2 + du 3 h 3 e 3, (7) e i = d r, h i du i (8) h i = d r du i. (9) Um sistema de coordenadas (u, u 2, u 3 ) é dito sistema de coordenadas ortogonais, quando satisfaz (a) Definindo os tres vetores, ( e i e j ) = δ ij. d r i = du i ξi = du i h i e i. expresse o volume dv do paralelepipedo reto-retangulo (bloco retangular) formado dos tres vetores d r, d r 2, d r 3 (20) em termos de h í s e du í s. No caso (r, θ, φ), mostre que dv = r 2 sin θ drdθdφ. (b) Mostre que podemos escrever em geral onde J é o Jacobiando da transformação. dv = Jdu du 2 du 3, (2) 3

4 (c) Demonstre que os vetores normais dos elementos de superfícies do paralelopípedo fica onde ɛ ijk é o símbolo de Levi-Civita. d σ ij = ɛ ijk h i h j h k d r k, (22) 5. Definindo J = r/ x θ/ x φ/ x r/ y θ/ y φ/ y φ/ z φ/ z φ/ z (a) Exlicite J em função de (r, θ, φ) (b) Calcule o inverso J = 6. Verifique que o operador x/ r y/ r z/ r x/ θ y/ θ z/ θ r/ φ y/ φ z/ φ. (23) p r = ( r p), (24) r não é hermitiano no espaço radial, onde o produto escalar entre duas funções radiais f (r) e g (f) é definido como (f, g) = 4π 7. Mostre que o operador definido como P r = i é hermitiano. Verifique que 2 0 r 2 dr f (r) g(r). ( r r + r r P r = r ). (25) d r. (26) dr 4

5 8. Calcule os comutadores [L i, L j ], (i, j) = (x, y, z), (27) [r, L i ], [P r, L i ], i = x, y, z [ ] L 2, L i, i = x, y, z. 9. Consideramos o problema de autovalor do momento angular. Temos [ sin θ θ sin θ θ + ] 2 sin 2 Y (θ, φ) = αy (θ, φ), (28) θ φ 2 (a) Fazendo a separação de variáveis, Y (θ, φ) = Θ (θ) Φ (φ), obtenha as equações para Θ (θ) e Φ (φ). (b) Obtenha Φ (φ) e determine os autovalores m para L z. (c) Introduzindo a nova variável, x = cos θ, re-escreva a equação de autovalor da função Θ. (d) Para o caso m = 0, escrevendo em série, Θ 0 = C n x n. (29) n=0 obtenha a fórmula de recorrência para C n. (e) Conclua que a série deve terminar com termo finito, e partindo com isso, obtenha o autovalor α. (f) Da questão acima, temos α = l (l + ) com l inteiros não negativos. Denontamos Θ 0 α=l(l+) (x) = P l (x), onde P l (x) é polinômio de ordem l. Argumente que P l (x) P l (x) dx δ ll (30) e com isso podemos identificar P l (x) como os polinômios de Legendre. 5

6 (g) A partir de fórmula da recorrência para C n, prove que ( ) x 2 dp l dx = l xp l + lp l, (3) (l + ) P l+ = (2l + ) xp l lp l. (32) (h) Mostre que a função de geratriz de polinômios de Legendre é dada por P l (x) s l F (x, s) l=0 0. Introduzindo as seguitnes combinações lineares, = 2xs + s 2. (33) L + = L x + il y, L 0 = L z, L = (L ) = L x il y, (34) mostre que [L +, L ] = 2L 0, (35) [L ±, L 0 ] = L ±, (36) [ L 2, L i ] = 0, i = ±, 0 (37). Como os L s não comutam entre si, não podemos construir autovetor simultaneo para todo mundo, mas pelo menos para um deles. Escolhendo L 0. L 0 comuta com L 2, podemos considerar um autovetor simultâneo dos dois, α, β, L 2 α, β = α α, β, (38) L 0 α, β = β α, β. (39) Aqui, assumimos que o autovetor é normalizado, α, β α, β =. (40) (a) Prove que estes autovalores devem satisfazer a desigualdade, α β 2. (4) ou α β α. (42) 6

7 (b) Mostre que L 0 L ± α, β = (β ± ) L ± α, β. (43) (c) Extrai as consequências mais geral da equação acima. (d) Conclua que devem existir o valor máximo β max e o valor mínimo β min de β tal que L + α, β max = 0, (44) (e) Mostre que L 2 pode ser escrito como L α, β min = 0. (45) L 2 = L L + L L 0, (46) ou L 2 = L L L + + L 0. (47) (f) Mostre que (g) Prove que (h) Prove que α = β 2 min β min, (48) α = β 2 max + β max. (49) β min = β max, 2β max = N, onde N é um inteiro. Escrevendo j = N/2, temos α = j (j + ). (50) (i) Quantos diferentes valores de β existem para um dado j? (j) Denotamos os autovetores como L 2 j, m = j(j + ) j, m, (5) L z j, m = m j, m, (52) com j m j, onde j é um número inteiro, ou semi-inteiro. Escrevendo L + j, m = N + j, m +, (53) L j, m = N j, m. (54) determine as constantes de normalização N ±. N ± = (j m)(j ± m + ). (55) 7

8 2. Podemos decompondo a base de coordenada { r } em parte radial e angular, r = r Ω, onde r é o autoestado de coordenada radial r, e Ω = θ, φ é o autoestado de coordenada angular, Ω = (θ, φ). Aqui a base dos estados angulares Ω > satisfaz as propriedades, d Ω Ω Ω = Ω (56) onde Ω representa a identidade no subespaço integral. { } Ω com a medida de π 2π d Ω = sin θdθ dφ. (57) 0 0 ou seja, o produto escalar das funções de ondas ψ (Ω) = Ω ψ e φ (Ω) = Ω φ é definido por ψ φ = d Ω ψ (Ω) φ (Ω). (58) (a) Mostre que a ortogonalidade pode ser expressa como Ω Ω =δ 2 ( Ω Ω ) = δ(cos θ cos θ )δ(φ φ ). (59) (b) Identificando mostre que Y jm (θ, φ) = Ω j, m, (60) d ΩY l m( Ω)Y lm ( Ω) = δ ll δ mm. (6) (c) Mostre que vale a relação de completeza para um dado l l m= l l, m l, m = l (62) onde l é o operador de identidade no espaço de l fixo. Este espaço tem a dimensão (2l + ) (2l + ). (d) Mostre que l m= l Y lm (Ω )Y lm(ω) = δ(cos θ cos θ )δ(φ φ ). (63) 8

9 (e) Mostre que Y l,m (θ, φ) = (f) Mostre que podemos escrever (g) Mostre que com i φ Y l,m(θ, φ) = my l,m (θ, φ), (64) [ i θ cot θ ] Y l,l (θ, φ) = 0. (65) φ ( e iφ (l + m)(l m + ) θ + i cot θ φ ) Y l,m (θ, φ). (66) Y lm (θ, φ) = Θ m l (θ) e imφ. (67) Y l,l = N l e ilφ sin l (θ). N l = ( ) l 2l + (2l)!, 4π 2 l l! fora o fator ( ) l que foi escolhido pela conveniência. (h) Mostre que ( ) θ + m cot θ Y l,m (θ, φ) = sin m θ θ sinm θy l,m (θ, φ), e portanto temos Y l,m (θ, φ) = e iφ (l + m)(l m + ) sin m θ θ sinm θy l,m (θ). (i) Mostre que para m 0, Y l,m (x, φ) = ( ) l m (2l + ) (l + m)! d ( ) 2 l l! 4π (l m)! eimφ x 2 2l ( x 2 ) m/2 dx com x = cos θ. 9

10 (j) Mostre que para m < 0, podemos definir Y l,m (θ, φ) = ( ) m Y l, m (θ, φ). (68) 3. Mostre que a função de onda de uma partícula livre pode ser escrita como l ψ E (r, θ, φ) = α lm j l (kr) Y lm (θ, φ). (69) l=0 m= l 4. No caso de ψ E (r, θ, φ) é a onda na direção z, ψ E (r, θ, φ) e ikr cos θ (70) (a) argumente que a somatório em m não deve existir, e podemos escrever 2l + e ikr cos θ = α l j l (kr) 4π P l (cos θ). (7) (b) Determine α l. l=0 5. Considere o poço de potencial esférico. { V0, V ( r) = V (r) = 0, 0 r < a r a. (a) Deduza a equação para a função de onda radial R l (r) com o momento angular l. (b) Mostre que a solução interna do potencial é onde R l (r) = Aj l (kr), (72) 2m k = (V 0 + E). 2 (c) Analize o comportamento da R l (r) fora do potencial quando E < 0 e determina a solução. (d) Obtenha a condição de ter um estado ligado e determine graficamente os autovalores da energia para l = 0 (estadof de onda s). Qual é a condição para a qual não exista nenhum estado ligado? E para existir apenas duas estados ligados? 0

11

Momento Angular. 8.1 Álgebra do Momento Angular

Momento Angular. 8.1 Álgebra do Momento Angular Capítulo 8 Momento Angular Neste capítulo vamos estudar os autovalores e autovetores do momento angular. Este problema também pode ser analisado com o uso do método de operadores, o que faremos na primeira

Leia mais

Partícula em 3 dimensões

Partícula em 3 dimensões Part I Partícula em 3 dimensões Neste Catítulo, estudamos a dinâmica de uma partícula numa situação mais realistica, ou seja, o movimento no espaço tridimensional sob a força derivada de um potencial V

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

Lista Definimos uma rotação em termos de um vetor unitário que difine o plano da rotação e o ângulo em torno deste vetor.

Lista Definimos uma rotação em termos de um vetor unitário que difine o plano da rotação e o ângulo em torno deste vetor. Lista 4 1. Definimos uma rotação em termos de um vetor unitário que difine o plano da rotação e o ângulo em torno deste vetor. = ( ) (a) Mostre que a rotação própria (o que não envolve inversão dos eixos,

Leia mais

CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II. q exp( q 2 ) ( 2 π. 2 (2q 2 1) exp( q 2 )

CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II. q exp( q 2 ) ( 2 π. 2 (2q 2 1) exp( q 2 ) CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II 1) Dadas as funções ψ 1 (q) e ψ 2 (q), definidas no intervalo < q < + : ψ 1 (q) = ( 2 π ) 1/2 q exp( q 2 ) Calcule: a) (ψ 1, ψ 2 ); b)

Leia mais

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro Mecânica Quântica Spin 1/ e a formulação da M. Q. Parte II A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 10 de Maio de 01 Mais dois postulados, agora

Leia mais

1 O Átomo de Hidrogênio

1 O Átomo de Hidrogênio O modelo de Bohr para o átomo de hidrogênio, embora forneça valores corretos para as energias dos estados atômicos e do espectro da radiação emitida, não pode ser correto do ponto de vista da mecânica

Leia mais

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) =

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = SEGUNDA PROVA - F789 NOME: RA:. Considere uma partícula de spin. Seja S seu spin e L seu momento angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = r, ± Ψ na base r, ± de autoestados

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

Não serão aceitas respostas sem justificativa:

Não serão aceitas respostas sem justificativa: Primeira Prova de Conceitos de Mecânica Quântica -(,5) Uma partícula de massa m encontra-se no estado ψ(x,t)= A exp[ω(mx /ħ+it)], onde A e a são constantes reais e positivas. a- Normalize ψ(x,t); b- Calcule

Leia mais

Momento Angular. Química Teórica e Estrutural. P.J.S.B. Caridade & U. Miranda. 18/11/ /11/2013, Aula 6

Momento Angular. Química Teórica e Estrutural. P.J.S.B. Caridade & U. Miranda. 18/11/ /11/2013, Aula 6 Momento Angular Química Teórica e Estrutural P.J.S.B. Caridade & U. Miranda 18/11/2013 21/11/2013, Aula 6 Química Teórica & Estrutural (2013) Caridade & Ulises 1 Momento angular orbital Em mecânica clássica

Leia mais

FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y )

FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y ) FNC376N: ista 3 31 de março de 5 Tipler - Capítulo 7 7-7 Considere a função de onda ψ = A r a e r/a cos θ, onde A é uma constante e a = /µkze é o raio de Bohr dividido por Z a) Mostre que éla é uma solução

Leia mais

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 1

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 1 Universidade de São Paulo em São Carlos 9514 Mecânica Quântica Aplicada Prova 1 Nome: Questão 1: Sistema de dois níveis (3 pontos) Considere um sistema de dois estados 1 e ortonormais H do sistema seja

Leia mais

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica 1 Introdução. Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o livro texto. Antes iremos fazer um paralelo entre

Leia mais

Princípios Gerais da Mecânica Quântica

Princípios Gerais da Mecânica Quântica Princípios Gerais da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ)

Leia mais

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido ÁTOMO DE HIDROGÊNIO Primeiro sistema tratado quanticamente por Schrödinger Modelo de Bohr Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento

Leia mais

h (1 cos θ) onde, m e é a massa do elétron, θ é o ângulo pelo qual a direção do fóton muda λ 1 é o comprimento de onda do fóton antes do espalhamento,

h (1 cos θ) onde, m e é a massa do elétron, θ é o ângulo pelo qual a direção do fóton muda λ 1 é o comprimento de onda do fóton antes do espalhamento, Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Física Exame de Seleção - Data: 09/06/2014 Nome do Candidato: Nível: Mestrado Doutorado 1. A função de

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

A Experiência de Stern-Gerlach e o Spin do Elétron

A Experiência de Stern-Gerlach e o Spin do Elétron UFPR 28 de Abril de 2014 Figura: Placa Comemorativa. ela foi realizada em 1922; ela investiga os possíveis valores do momento de dipolo magnético, µ, de um átomo de prata; ela explora a dinâmica do dipolo

Leia mais

Fundamentos da Mecânica Quântica

Fundamentos da Mecânica Quântica Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio

Leia mais

Simetrias na Mecânica Quântica

Simetrias na Mecânica Quântica Simetrias na Mecânica Quântica Prof. 7 de junho de 2011 Definição de Simetria na Mecânica Quântica G(a) elemento de um grupo G de transformações contínuas, G(a) M.Q. ˆT(G(a)), ˆT(G(a)) operador unitário.

Leia mais

Simetrias na Mecânica Quântica

Simetrias na Mecânica Quântica Simetrias na Mecânica Quântica Prof. 26 de maio de 2010 Definição de Simetria na Mecânica Quântica G(a) elemento de um grupo G de transformações contínuas, ˆT(G(a)) operador unitário. G(a) M.Q. ˆT(G(a)),

Leia mais

Os Postulados da Mecânica Quântica

Os Postulados da Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o

Leia mais

Equação de Schrödinger em 3D

Equação de Schrödinger em 3D Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração

Leia mais

Breve Revisão de Mecânica

Breve Revisão de Mecânica Capítulo 1 Breve Revisão de Mecânica Quântica Seguimos as secções 5.1 a 5.3 do Griffiths [1] e a secção 1.1 do meu texto de Introdução à Teoria de Campo []. É assumido como pré-requisito o conhecimento

Leia mais

Universidade Estadual de Santa Cruz

Universidade Estadual de Santa Cruz Universidade Estadual de Santa Cruz PROFÍSICA Programa de Pós-graduação em Física Seleção 2009. Prova Escrita 2/0/2009 Candidato (nome legível): - Esta prova consta de oito questões distribuídas da seguinte

Leia mais

Lista de Exercícios 5

Lista de Exercícios 5 FFI5 Física-Matemática II Lista de Eercícios 5 Seja Φ a distribuição definida por Φ[f] := f (n) (a), n N, a R, onde f representa uma função teste qualquer e f (n) (a) sua n-ésima derivada calculada em

Leia mais

2. No instante t = 0, o estado físico de uma partícula livre em uma dimensão é descrito pela seguinte função de onda:

2. No instante t = 0, o estado físico de uma partícula livre em uma dimensão é descrito pela seguinte função de onda: Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Física Exame de Seleção - Data: 03/08/2011 Nome do Candidato: Nível: Mestrado Doutorado 1. No cálculo da

Leia mais

Fases de Berry. David A. Ruiz Tijerina. November 11, Evolução temporal de um autoestado e a fase de Berry

Fases de Berry. David A. Ruiz Tijerina. November 11, Evolução temporal de um autoestado e a fase de Berry Fases de Berry David A. Ruiz Tijerina November 11, 15 1 Evolução temporal de um autoestado e a fase de Berry Vamos supor que temos um Hamiltoniano H(R) que depende de um conjunto de parámetros R = {R i

Leia mais

F 789 A - MECÂNICA QUÂNTICA II -Prof. Eduardo Granado - PROVA 1 (01/04/2015) (θ,ϕ), em que u k,l. (r). Nesta equação, E k,l e l (l+1)ħ 2 são os

F 789 A - MECÂNICA QUÂNTICA II -Prof. Eduardo Granado - PROVA 1 (01/04/2015) (θ,ϕ), em que u k,l. (r). Nesta equação, E k,l e l (l+1)ħ 2 são os F 789 A - MECÂNICA QUÂNTICA II -Prof. Eduardo Granado - PROVA 1 (01/04/2015) 1) Considere um sistema de duas partículas de massa m 1 e m 2 que interagem através de um potencial central V(r), onde r é a

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas Equação de Schrödinger em 3D: 2 = 1 r 2 # % r $ r2 r & (+ ' 1 r 2 senθ # θ senθ & % (+ $ θ ' 1 r 2 sen 2 θ 2 φ 2 Podemos, então, escrever a eq. de Schrödinger

Leia mais

Exame Unificado EUF. 1º Semestre/2013 Parte 1 16/10/2012

Exame Unificado EUF. 1º Semestre/2013 Parte 1 16/10/2012 Exame Unificado das Pós-graduações em Física EUF 1º Semestre/2013 Parte 1 16/10/2012 Instruções: NÃO ESCREVA O SEU NOME NA PROVA. Ela deverá ser identificada apenas através do código (EUFxxx). Esta prova

Leia mais

Equação de Dirac e o Átomo de Hidrogênio

Equação de Dirac e o Átomo de Hidrogênio Equação de Dirac e o Átomo de Hidrogênio Rodrigo Andrade e Silva Mecânica Quântica 2 Introdução A equação de Dirac fornece o análogo da equação de Schrodinger para uma mecânica quantica relativistica,

Leia mais

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica

Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Quântica Química Quântica Prof a. Dr a. Carla Dalmolin A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Clássica O movimento de uma partícula é governado pela Segunda Lei de Newton:

Leia mais

Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin

Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin Partícula na Caixa Química Quântica Prof a. Dr a. Carla Dalmolin Caixa unidimensional Caixa tridimensional Degenerescência Partícula no anel (mov. de rotação) Partícula na Caixa Partícula numa caixa unidimensional

Leia mais

Universidade Federal do Espírito Santo Centro de Ciências Exatas Programa de Pós-Graduação em Física

Universidade Federal do Espírito Santo Centro de Ciências Exatas Programa de Pós-Graduação em Física Universidade Federal do Espírito Santo Centro de Ciências Exatas Av. Fernando Ferrari, 514, 29075-910. Vitória, ES - Brasil. E-mail: ppgfis.ufes@gmail.com. Telefone: +55-27-4009-2833 Exame de ingresso

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

Exame de Ingresso na Pós-graduação

Exame de Ingresso na Pós-graduação Exame de Ingresso na Pós-graduação Instituto de Física - UFF Profissional - 09 de Junho de 009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das seções. A duração da prova é de 3 (três)

Leia mais

Mecânica Quântica:

Mecânica Quântica: Mecânica Quântica: 016-017 6 a Série 1. Considere as matrizes de Pauli, dadas por ( 0 1 0 i 1 0 σ x =, σ 1 0 y =, σ i 0 z = 0 1 ) 1.1. Demonstre que estas matrizes são Hermíticas. Determine os seus valores

Leia mais

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 2

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 2 Universidade de São Paulo em São Carlos.7.04 Mecânica Quântica Aplicada Prova Nome: Questão : Método variacional (.5 pontos) Considere o oscilador harmônico descrito pelo hamiltoniano H = + m dx mω x.

Leia mais

Mecânica Quântica:

Mecânica Quântica: Mecânica Quântica: 2016-2017 1. Traço de um operador. 4 a Série 1.1. Invariância do traço: Prove que o traço de uma matriz, que representa um operador A, numa base arbitrária não depende da mesma. (vide

Leia mais

O ÁTOMO DE HIDROGÊNIO

O ÁTOMO DE HIDROGÊNIO O ÁTOMO DE HIDROGÊNIO Alessandra de Souza Barbosa 04 de dezembro de 013 O átomo de hidrogênio Alessandra de Souza Barbosa CF37 - Mecânica Quântica I /36 Sistema de duas particulas um elétron e um próton;

Leia mais

Variáveis Dinâmicas e Operadores

Variáveis Dinâmicas e Operadores Variáveis Dinâmicas e Operadores Variável Dinâmica é qualquer função de x e p: K = p2 2m U = U(x) E = p2 2m + U(x) L = r p Só estudamos sistemas conservativos em MQ. Qual o valor de ω(x, p) (uma VD qualquer)

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o primeiro semestre de 2016 14 de outubro de 2015 Parte 1 Instruções ˆ Não escreva seu nome na prova. Ela deverá ser identificada apenas através do

Leia mais

Exame de Seleção. Doutorado em Física. 2º Semestre de ª Prova 12/07/2016. Mecânica Clássica e Mecânica Quântica

Exame de Seleção. Doutorado em Física. 2º Semestre de ª Prova 12/07/2016. Mecânica Clássica e Mecânica Quântica UNIVERSIDADE FEDERAL DO MARANHÃO FUNDAÇÃO Instituída nos termos da Lei nº 5.15, de 1/10/1996 São Luís Maranhão CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleção

Leia mais

O poço quadrado finito

O poço quadrado finito O poço quadrado infinito FNC375N: ista 8 5//4. Um próton se encontra num poço infinito de largura. Compute a energia do estado fundamental para (a), nm, o tamanho aproximado de uma molécula, e (b) fm,

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS DE UM ELÉTRON Primeira Edição junho de 2005 CAPÍTULO 08 ÁTOMOS DE UM ELÉTRON ÍNDICE 8.1- Introdução 8.2- Força Central 8.3- Equação

Leia mais

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/ e de Dois Níveis Bruno Felipe Venancio 8 de abril de 014 1 Partícula de Spin 1/: Quantização do Momento Angular 1.1

Leia mais

Equações de Maxwell e densidades Lagrangiana e Hamiltoniana do eletromagnetismo clássico

Equações de Maxwell e densidades Lagrangiana e Hamiltoniana do eletromagnetismo clássico Equações de Maxwell e densidades Lagrangiana e Hamiltoniana do eletromagnetismo clássico André Juan Ferreira Martins de Moraes Resumo Estas notas se baseiam na Seção 1.1 do artigo 1, na qual as equações

Leia mais

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2 Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos

Leia mais

Estrutura Atômica I. Química Quântica Prof a. Dr a. Carla Dalmolin. Átomo de Hidrogênio Átomos Hidrogenóides

Estrutura Atômica I. Química Quântica Prof a. Dr a. Carla Dalmolin. Átomo de Hidrogênio Átomos Hidrogenóides Estrutura Atômica I Química Quântica Prof a. Dr a. Carla Dalmolin Átomo de Hidrogênio Átomos Hidrogenóides Aplicações da Mecânica Quântica Soluções da Equação de Schrödinger independente do tempo Partícula

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS Edição de agosto de 2008 CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS ÍNDICE 8.1- Introdução 8.2- Problema da Força Central

Leia mais

Eq. de Dirac com campo magnético

Eq. de Dirac com campo magnético Eq. de Dirac com campo magnético Rafael Cavagnoli GAME: Grupo de Médias e Altas Energias Eletromagnetismo clássico Eq. de Schrödinger Partícula carregada em campo mag. Eq. de Dirac Partícula carregada

Leia mais

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das Exame de Ingresso na Pós-graduação Instituto de Física - UFF Profissional - 11 de Dezembro de 009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das seções. A duração da prova é de 3

Leia mais

EUF. Exame Unificado. Para o segundo semestre de de abril de 2017 FORMULÁRIO

EUF. Exame Unificado. Para o segundo semestre de de abril de 2017 FORMULÁRIO EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 07 04-05 de abril de 07 FORMULÁRIO Não escreva nada neste formulário. Devolva-o ao final da prova. Constantes físicas Velocidade

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

O Método de Hartree-Fock

O Método de Hartree-Fock O Método de Hartree-Fock CF740 Tópicos Especiais de Física Atômica e Molecular Cálculos de Estrutura Eletrônica Utilizando Funcionais de Densidade Departamento de Física Universidade Federal do Paraná

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,

Leia mais

Universidade de São Paulo em São Carlos Lista 8, resolver até

Universidade de São Paulo em São Carlos Lista 8, resolver até Universidade de São Paulo em São Carlos Lista 8, resolver até 54206 FCM04 Eletromagnetismo Nome: Campo de uma esfera com buraco (H Na superfície de uma esfera oca de raio R, da qual foi cortado no polo

Leia mais

Operadores Tensoriais

Operadores Tensoriais Operadores Tensoriais Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br CF70 Física Quântica I Operadores Tensoriais Operadores Vetoriais Como os operadores

Leia mais

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por: Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular

Leia mais

PSI 3481 SISTEMAS ÓPTICOS E DE MICRO- ONDAS. Fibras Ópticas

PSI 3481 SISTEMAS ÓPTICOS E DE MICRO- ONDAS. Fibras Ópticas PSI 3481 SISTEMAS ÓPTICOS E DE MICRO- ONDAS Fibras Ópticas Luz guiada: reflexão interna total (1854) Fibra Óptica: multicamadas (1950). Antes de 1970: perda 1000 db/km Em 1970: perda 0 db/km Em 1979: perda

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Fundamentos de Química Quântica

Fundamentos de Química Quântica Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Aula 3 Professora: Melissa Soares Caetano Átomo de Hidrogênio Um núcleo

Leia mais

Ângulo e ortogonalidade em espaços com produto interno

Ângulo e ortogonalidade em espaços com produto interno Ângulo e ortogonalidade em espaços com produto interno Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 Definir a noção de ângulo

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual

Leia mais

Linear. 5.1 Espaços vetoriais

Linear. 5.1 Espaços vetoriais Capítulo 5 Mecânica Quântica e a Álgebra Linear Neste capítulo faremos uma recordação de alguns fatos básicos de Álgebra Linear, sem preocuparmos com o rigor matemático. Também formularemos os postulados

Leia mais

Vectores e Geometria Analítica

Vectores e Geometria Analítica Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário

Leia mais

Postulados da Mecânica Quântica

Postulados da Mecânica Quântica Postulados da Mecânica Quântica Química Quântica Prof a. Dr a. Carla Dalmolin Operadores Propriedades Princípio da Incerteza Princípios da Mecânica Quântica A função de onda contém toda a informação que

Leia mais

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny 1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações

Leia mais

Equação de autovalores para o spin. Ŝ z = m s ~ Ŝ 2 = s (s + 1) ~ 2. "i= Autoestados de S z. Ŝ z = ~ #i= Ŝ z "i = ~ 2 "i Ŝ z #i = ~ 2 #i

Equação de autovalores para o spin. Ŝ z = m s ~ Ŝ 2 = s (s + 1) ~ 2. i= Autoestados de S z. Ŝ z = ~ #i= Ŝ z i = ~ 2 i Ŝ z #i = ~ 2 #i Equação de autovalores para o spin Ŝ z = m s ~ Ŝ = s (s + ) ~ Ŝ = Ŝ x + Ŝ y + Ŝ z Ŝ z = ~ 0 0 Autoestados de S z "i= #i= 0 0 Ŝ z "i = ~ "i Ŝ z #i = ~ #i Equação de autovalores para o spin Ŝ z = ~ 0 0 Ŝ

Leia mais

Mecânica Quântica:

Mecânica Quântica: Mecânica Quântica: 2016-2017 5 a Série 1. Considere o movimento de uma partícula, no caso unidimensional, em que esta é sujeita a um potencial que é nulo na região x a e innito em x > a. Num determinado

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento)

CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento) CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento) Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Ementa: Motivação:

Leia mais

CONTEÚDO PROGRAMÁTICO EMENTA

CONTEÚDO PROGRAMÁTICO EMENTA UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. GAL. RODRIGO OTÁVIO JORDÃO RAMOS, 3000 JAPIIM CEP: 69077-000 - MANAUS-AM, FONE/FAX (92) 3305-2829 CONTEÚDO PROGRAMÁTICO

Leia mais

Simetria em Mecânica Quântica

Simetria em Mecânica Quântica Simetria em Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br CF703 Física Quântica I Simetria em Mecânica Quântica Simetrias em física

Leia mais

Exame Unificado EUF. 1 Semestre/2011 Parte 1 28/09/2010

Exame Unificado EUF. 1 Semestre/2011 Parte 1 28/09/2010 Exame Unificado das Pós-graduações em Física EUF 1 Semestre/2011 Parte 1 28/09/2010 Instruções: NÃO ESCREVA O SEU NOME NA PROVA. Ela deverá ser identificada apenas através do código (EUFxxx). Esta prova

Leia mais

Exame Unificado EUF. 1 Semestre/2011 Parte 1 28/09/2010

Exame Unificado EUF. 1 Semestre/2011 Parte 1 28/09/2010 Exame Unificado das Pós-graduações em Física EUF 1 Semestre/2011 Parte 1 28/09/2010 Instruções: NÃO ESCREVA O SEU NOME NA PROVA. Ela deverá ser identificada apenas através do código (EUFxxx). Esta prova

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9. Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.1 Vibrações de uma membrana Como mencionado na aula passada, pode-se deduzir

Leia mais

Universidade Estadual de Santa Cruz (UESC) Segunda prova de seleção para ingresso em 2012/2. Nome: Data: 13/08/2012

Universidade Estadual de Santa Cruz (UESC) Segunda prova de seleção para ingresso em 2012/2. Nome: Data: 13/08/2012 Universidade Estadual de Santa Cruz (UESC) Programa de Pós-Graduação em Física Segunda prova de seleção para ingresso em 2012/2 Nome: Data: 13/08/2012 1 Seção A: Mecânica Clássica Uma nave espacial cilíndrica,

Leia mais

QuVis: Energy Uncertainty of Quantum States. Responda a todos os 5 challenges

QuVis: Energy Uncertainty of Quantum States. Responda a todos os 5 challenges Praticando sobre E e E = E 2 E 2 QuVis: Energy Uncertainty of Quantum States https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/energyuncertainty/energyuncertainty.html Responda a todos

Leia mais

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna

Leia mais

Exame de Ingresso Unificado IFUSP IFSC IFGW IFT CCNH

Exame de Ingresso Unificado IFUSP IFSC IFGW IFT CCNH Exame de Ingresso Unificado das Pós-graduações em Física IFUSP IFSC IFGW IFT CCNH Semestre/008 Parte 1 15/04/008 Instruções NÃO ESCREVA O SEU NOME NA PROVA. Ela deverá ser identificada apenas através do

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 2015 14 de abril 2015 Parte 1 Instruções ˆ Não escreva seu nome na prova. Ela deverá ser identificada apenas através do código

Leia mais

CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento)

CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento) CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento) Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Tópicos: O método

Leia mais

( eq. 12.1) No caso de um campo com várias componentes, se a transformação for linear em φ, podemos escrever:

( eq. 12.1) No caso de um campo com várias componentes, se a transformação for linear em φ, podemos escrever: Temos então a corrente conservada: Teoria Quântica de Campos I 12 ( eq. 12.1) No caso de um campo com várias componentes, se a transformação for linear em φ, podemos escrever: De forma que : ( eq. 12.2)

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.1 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Questão 01: Oscilador harmônico Considere o oscilador harmônico ẋ = y, ẏ

Leia mais

Transformação de Coordenadas

Transformação de Coordenadas Geração de Malhas SME5827 Transformação de Coordenadas Afonso Paiva ICMC-USP 28 de agosto de 2013 Cálculo Vetorial Revisitado Notação de Einstein Cálculo Vetorial Revisitado Notação de Einstein Índices

Leia mais

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá MOMENTO ANGULAR Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 Roteiro 1 Quando todas as partículas de um corpo rígido se movem ao longo de trajetórias que

Leia mais

PROBLEMAS DIRETO E INVERSO. A Teoria do Potencial admite um: Problema DIRETO: determinação do potencial a partir das massas geradoras

PROBLEMAS DIRETO E INVERSO. A Teoria do Potencial admite um: Problema DIRETO: determinação do potencial a partir das massas geradoras INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes TEORIA DO POTENCIAL Aula 06 PROBLEMAS DIRETO E INVERSO A Teoria do Potencial admite um: Problema DIRETO: determinação

Leia mais

Eletromagnetismo I - Segundo Semestre de 2017

Eletromagnetismo I - Segundo Semestre de 2017 4333 - Eletromagnetismo I - Segundo Semestre de 17 11 de agosto de 17 Resolução dos exercícios da lista 1[]: (a) A Lagangeana do oscilador harmônico de frequência ω e sua ação são 1 : L = 1 mẋ 1 mω x S[x]

Leia mais

PGF Mecânica Clássica

PGF Mecânica Clássica PGF 5005 - Mecânica Clássica Prof. Iberê L. Caldas Segunda Lista de Exercícios o semestre de 018 1. Considere, inicialmente, a seguinte Hamiltoniana integrável: H 0 = I 1 + I I 1 3I 1 I + I, a qual está

Leia mais

EAC-082: Geodésia Física. Aula 5 Teoria do Potencial e PVCG

EAC-082: Geodésia Física. Aula 5 Teoria do Potencial e PVCG EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 5 Teoria do Potencial e PVCG https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1 1/55 Potencial Gravitacional Vimos anteriormente

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais