935 MATEMÁTICA Prova escrita
|
|
|
- Samuel Bardini Lobo
- 10 Há anos
- Visualizações:
Transcrição
1 935 MATEMÁTICA Prova escrita PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Duração: 120 minutos Ano: ª fase - julho 11º e 12º anos Identifique claramente os grupos e os itens a que responde e apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Utilize apenas caneta ou esferográfica de tinta azul ou preta (exceto nas respostas que impliquem a elaboração de construções, desenhos ou outras representações). É interdito o uso de corretor. Dentro do enunciado encontrará uma folha de resposta, para responder às questões 3.b e 5.a e a outras que necessitem de papel quadriculado. As cotações da prova encontram-se na página 6. A prova inclui um formulário e um fluxograma para classificação de frisos na página 7. A página 8 foi propositadamente deixada em branco. Prova de 8
2 Grupo I 1. A figura ao lado foi publicada num suplemento do jornal Diário de Notícias, por ocasião das comemorações dos 40 anos do 25 de Abril de a. A partir dos dados da figura, calcule, em percentagem, a variação do número de alunos no ensino secundário entre 1970 e b. Baseie os seus argumentos nos números da figura para fazer um comentário sobre uma conquista do 25 de Abril, importante para os portugueses. 2. Na duas primeiras semanas do mês de Dezembro de 2013, numa determinada cidade, registaram-se diariamente os valores das temperaturas máximas, em graus Celsius: 2,5 7,1 8,9 10,5 9,9 10,4 10,5 11,5 9,4 8,6 4,7 6,4 10 3,7 a. Calcule a frequência relativa dos dias em que as temperaturas máximas foram inferiores a 8 C. b. Indique a média e a mediana dos valores apresentados, com aproximação às décimas de grau. Explique o que se alteraria nestes dois indicadores se as temperaturas no primeiro e no último dia tivessem sido de 7ºC. c. Calcule o desvio-padrão desta distribuição e explique o que aconteceria a esta medida se as temperaturas no primeiro e no último dia tivessem sido de 7ºC. Prova de 8
3 Grupo II 3. Considere o cubo ABCDEFGH, com 15 cm de aresta, representado na figura, em que P é um ponto da aresta AE tal que AP mede 5 cm. C B a. Para cada um dos pares de retas seguintes, indique a posição relativa dessas retas paralelas, concorrentes perpendiculares, concorrentes não perpendiculares ou não complanares: PF e AB AH e BF PF e CG H E b. Na Folha de resposta, no cubo aí representado para o efeito, desenhe a secção que se obtém quando se interseta o cubo pelo plano paralelo à diagonal AH, que passa nos pontos P e F. Classifique a figura obtida e determine as medidas dos seus lados. D G A P F 4. Considere um referencial cartesiano ortogonal e monométrico (0, x, y) e a reta r de equação y = ,5 x. a. Represente geometricamente o referencial e a reta r. b. Indique as coordenadas do ponto da reta r que tem ordenada A imagem abaixo representa um friso de azulejos que serve de revestimento na fachada de um edifício em Ovar. a. Descreva todas as simetrias do friso, e represente, no friso da Folha de resposta, os elementos necessários à sua definição. b. Classifique este friso usando o fluxograma que se encontra na página 7. Prova de 8
4 Grupo III 6. A figura ABCD representa um estudo para um painel publicitário quadrado, que está dividido em duas zonas: uma zona branca, onde será colocado o texto; e uma zona colorida onde irão ser colocadas imagens, formada pelo quadrado DEFG e pelo círculo inscrito no quadrado BIFH. C I O quadrado ABCD tem 46 cm de lado e o ponto G é um ponto qualquer do lado CD. Considere x a distância variável CG e T a função que a cada valor de x faz corresponder a área da zona branca, em centímetros quadrados, com aproximação às décimas. a. Calcule T(0) e T(46) e explique o significado dos números obtidos no contexto deste problema. b. Considere a situação em que G é o ponto médio de DC. Qual é a área da zona colorida, nesse caso? c. Mostre que, para cada valor de x, a área da zona branca pode ser calculada através da fórmula: T(x) = 92 x (1+ ) π x 2 4 d. Represente graficamente a função T e estude-a quanto à monotonia e extremos. Indique qual o valor de x que corresponde à maior área da zona branca, e indique o valor dessa área. G D E F B H A Prova de 8
5 Grupo IV 7. A figura representa um trapézio isósceles PQRS, em que são conhecidas as medidas das duas bases, 15 cm e 6 cm, e os ângulos adjacentes à base maior, 58. S 6 cm R a. Determine a medida dos dois lados não paralelos do trapézio. b. Calcule a área do trapézio. P cm Q 8. A imagem abaixo é uma vista aérea do rio Tejo. Para determinar a largura do rio em frente a Porto Brandão, um ciclista no ponto assinalado com Partida, em Lisboa, mediu o ângulo de visão entre Porto Brandão e a Torre de Belém, e obteve 30. Depois foi até à torre de Belém, percorrendo 3 km na margem, e aí mediu o ângulo de visão entre Porto Brandão e o ponto de onde tinha partido, 80. Calcule a largura do rio Tejo em frente a Porto Brandão, com aproximação às décimas de km. Fim da prova Prova de 8
6 Cotações Grupo I a b a b c Grupo II a b a b a b Grupo III a b c d Grupo IV a b Total Prova de 8
7 FORMULÁRIO Losango: Áreas de figuras planas Diagonal maior Diagonal menor 2 Áreas de superfícies Área lateral do cone: π raio da base geratriz Trapézio: Base maior + Base menor 2 Altura Área da superfície esférica: 4 π raio 2 Polígono regular: Semiperímetro Apótema Círculo: π raio 2 Prisma ou Cilindro: Pirâmide ou Cone: Esfera: 4 π raio 3 3 Volumes Área da base Altura 1 3 Área da base Altura a Lei dos senos: sen A Trigonometria b c = = sen B sen C Teorema de Carnot: a 2 = b 2 + c 2 2bc cos  FLUXOGRAMA DE WASHBURN E CROWE PARA A CLASSIFICAÇÃO DE FRISOS MONOCROMÁTICOS No conjunto das simetrias do friso... Existe uma reflexão de eixo vertical? sim não Existe uma reflexão de eixo horizontal? Existe uma reflexão de eixo horizontal ou reflexão deslizante? sim não sim não Existe uma meia volta? Existe uma reflexão de eixo horizontal? Existe uma meia volta? sim não sim não sim não pmm2 pma2 pm11 p1m1 p1a1 p112 p111 Prova de 8
8 Prova de 8
9 A preencher pela Escola Número convencional PROVA ESCRITA DE MATEMÁTICA - COD. 935 FOLHA DE RESPOSTA NOME DO ALUNO 2.ª FASE - julho de 2014 Número convencional PROVA ESCRITA DE MATEMÁTICA - COD. 935 FOLHA DE RESPOSTA 2.ª FASE - julho de 2014 C B D A P G F H E
10 Utilize esta página para desenhar gráficos ou outras figuras que o ajudem a responder às questões.
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.
Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/11 Págs. Duração da prova: 150
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/12 Págs. Duração da prova: 150
935 MATEMÁTICA Prova escrita
935 MATEMÁTICA Prova escrita PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Duração: 120 minutos Ano: 2013 2ª fase - Julho 11º e 12º anos Identifique claramente os grupos e os itens a que responde e apresente o seu
NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007
EXAME DO ENSINO SECUNDÁRIO DE RESUMOS.TK Prova Escrita de Matemática A 10.ºAno de Escolaridade Prova MAT10 14 páginas Duração da Prova: 120 minutos. Tolerância: 30 minutos. Autor: Francisco Cubal, como
Prova Escrita de MATEMÁTICA
Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,
Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro
Matemática para as Artes
Informação Prova de Equivalência à Frequência Prova 95 014 Disciplina 11º e 1º Anos de Escolaridade Matemática para as Artes 1. Introdução O presente documento visa divulgar as características da prova
Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2011 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,
Caderno de Respostas
Caderno de Respostas DESENHO TÉCNICO BÁSICO Prof. Dr.Roberto Alcarria do Nascimento Ms. Luís Renato do Nascimento CAPÍTULO 1: ELEMENTOS BÁSICOS DO DESENHO TÉCNICO 1. A figura ilustra um cubo ao lado de
Prova Escrita de Matemática B
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 139/01, de 5 de julho Prova Escrita de Matemática B 10.º e 11.º Anos de Escolaridade Prova 735/Época Especial 13 Páginas Duração da Prova: 150 minutos.
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM
Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.
Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica
Caderno 1: 35 minutos. Tolerância: 10 minutos
Nome: Ano / Turma: N.º: Data: - - Caderno 1: 35 minutos. Tolerância: 10 minutos (é permitido o uso de calculadora) A prova é constituída por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta
a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36
MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade
Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750
Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo
Prova Escrita de Matemática B
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática B 10.º e 11.º Anos de Escolaridade Prova 735/2.ª Fase 11 Páginas Duração da Prova: 150 minutos. Tolerância:
Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e
Escola Secundária de Lousada Matemática do 8º ano FT nº15 Data: / / 013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Apresentação dos Conteúdos e Objetivos para o 3º Teste de Avaliação de
MATEMÁTICA PARA CONCURSOS II
1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma
Prova Escrita de Matemática A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 39/0, de 5 de julho Prova Escrita de Matemática A.º Ano de Escolaridade Prova 635/Época Especial 5 Páginas Duração da Prova: 50 minutos. Tolerância:
REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.
NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a
Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura
Lista de Exercícios de Recuperação de MATEMÁTICA 2
Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar
Escola Básica de Santa Catarina
Escola Básica de Santa Catarina Matemática Assunto Sólidos geométricos. Áreas e Volumes. 9º ano Nome: Nº. Turma: data / / GRUPO I 1. 2. 3. 4. 1 5. 6. 7. 8. 9. 10. GRUPO II 2 GRUPO II (Exame Nacional de
Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.
Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique
Caderno de Prova TECNOLOGIA E ANÁLISE DE DESENVOLVIMENTO DE SISTEMAS. Nome do Candidato:
Universidade do Estado de Santa Catarina Vestibular Vocacionado 1. Caderno de Prova ª FASE 1ª Etapa TECNOLOGIA E ANÁLISE DE DESENVOLVIMENTO DE SISTEMAS Nome do Candidato: INSTRUÇÕES GERAIS Confira o Caderno
Prova de Aferição de Matemática
PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA
FUNÇÕES AULA 2 DO PLANO DE
Matemática Tema 2 Professora: Rosa Canelas FUNÇÕES AULA 2 DO PLANO DE TRABALHO Nº1 FUNÇÃO - DEFINIÇÃO Uma função é uma relação entre duas variáveis em que a cada valor da primeira, a variável independente,
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)
Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de
ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS
1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma
Prova Final de Matemática
PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/2.ª Chamada/2013 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI n.º
Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema
Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a
9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9.
MATEMÁTICA 6. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. 10 9 é 7. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a (A) (B) (C) (D)
Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces
Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria
Matemática Régis Cortes GEOMETRIA ESPACIAL
GEOMETRIA ESPACIAL 1 GEOMETRIA ESPACIAL PIRÂMIDE g g = apótema da pirâmide ; a p = apótema da base h g 2 = h 2 + a p 2 a p Al = p. g At = Al + Ab V = Ab. h 3 triangular quadrangular pentagonal hexagonal
Prova Prática de Geometria Descritiva A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Prática de Geometria Descritiva A 11.º/ 12.º anos de Escolaridade Prova 708/2.ª Fase 5 Páginas Duração da Prova: 150 minutos.
CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS
VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,
QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,
QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas
Prova Final de Matemática. Caderno 2: 45 minutos. Tolerância: 15 minutos. 1.º Ciclo do Ensino Básico. Prova 42/2.ª Fase
Prova Final de Matemática 1.º Ciclo do Ensino Básico Prova 42/2.ª Fase/2014 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo
Atividade 01 Ponto, reta e segmento 01
Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na
Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio
Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais
MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a
1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual
No arquivo Exames e Provas podem ser consultados itens e critérios de classificação de provas e de testes intermédios desta disciplina.
INFORMAÇÃO-PROVA MATEMÁTICA 2016 Prova 92 3.º Ciclo do Ensino Básico (Decreto-Lei n.º 139/2012, de 5 de julho) O presente documento divulga informação relativa à prova final do 3.º Ciclo da disciplina
LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI
01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.
Geometria Métrica Espacial. Geometria Métrica Espacial
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica
TOPOGRAFIA. Áreas e Volumes
TOPOGRAFIA Áreas e Volumes A estimativa da área de um terreno pode ser determinada através de medições realizadas diretamente no terreno ou através de medições gráficas sobre uma planta topográfica. As
www.exatas.clic3.net
www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de
Grupo I... 70 Cada resposta certa...10 Grupo II...130 1...35 3...30 1.1...15 3.1...10 1.2...10 3.2...20 1.3...10 4...35 2...30 4.1...5 2.1...
Material necessário: Material de escrita. Máquina de calcular científica (não gráfica). A prova é constituída por dois grupos, I e II. O grupo I inclui 7 questões de escolha múltipla. Para cada uma delas,
UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?
UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe
Prova de Aferição de Matemática
PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A.
Aula 12 Áreas de Superfícies Planas
MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número
AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A
AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero
ESCOLA BÁSICA VASCO DA GAMA - SINES
ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala
Canguru Matemático sem Fronteiras 2015
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
>> EXERCÍCIOS SEMANA 8 (5/11 a 9/11)
Considere a figura seguinte composta por quadrados rodados a 45º uns relativamente aos outros. Note os pontos de referência A e B. 1 A figura anterior será considerada como projecção de cubos ou de prismas
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Agrupamento de Escolas de Rio de Mouro Escola E.B. 2,3 Padre Alberto Neto Ano Letivo 2013/2014. Nome: N.º Turma: 1.ª
Agrupamento de Escolas de Rio de Mouro Escola E.B. 2,3 Padre Alberto Neto Ano Letivo 2013/2014 M&M - Mathmais n.º 6 Matemática 8.º Ano Nome: N.º Turma: 1.ª Assunto: Teorema de Pitágoras. Semelhança de
Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 5.05.2010. 10.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 5.05.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES
B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos
Identifica claramente, na folha de respostas, os números dos itens a que respondes.
Teste Intermédio de Matemática Teste Intermédio Matemática Duração do Teste: 90 minutos 31.01.2008 3.º Ciclo do Ensino Básico Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente, na folha de
Sistemas de Informação. Matemática. Redação
Universidade do Estado de Santa Catarina Vestibular Vocacionado 1. Caderno de Prova ª FASE 1ª Etapa SISTEMAS DE INFORMAÇÃO Nome do Candidato: INSTRUÇÕES GERAIS Confira o Caderno de Prova, as Folhas de
Proposta de Prova Final de Matemática
Proposta de Prova Final de Matemática 3. o Ciclo do Ensino Básico Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos Tolerância: 30 minutos Data: Caderno 1: 35 minutos. Tolerância: 10 minutos (é permitido
Aula 10 Triângulo Retângulo
Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,
2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.
ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 1 Páginas Entrelinha 1,5 Duração da Prova: 90 minutos.
PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.
PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos
19 de Outubro de 2012
Escola Básica Integrada com JI de Santa Catarina Ficha de Avaliação de Matemática 19 de Outubro de 2012 A PREENCHER PELO ALUNO 8ºano Nome: nº Turma A PREENCHER PELO PROFESSOR Classificação: Nível: ( )
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1
FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1
Prova de Aferição de Matemática
PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA UNICAMP-FASE. POR PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO Em uma determinada região do planeta, a temperatura média anual subiu de 3,35 ºC em 995 para
O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
Problemas de volumes
Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução
01 Os anos do calendário chinês, um dos mais antigos que a história registra, começam sempre
01 Os anos do calendário chinês, um dos mais antigos que a história registra, começam sempre em uma lua nova, entre 21 de janeiro e 20 de fevereiro do calendário gregoriano. Eles recebem nomes de animais,
GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011
GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano
Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada
Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.
COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.
COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André
Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos
Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I
Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada
PROVA MODELO 2015. Duração da prova: 120 minutos
Página 1 de 8 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 3 anos, Decreto-Lei n.º 64/006, de 1 de março AVALIAÇÃO DA CAPACIDADE
Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência
Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,
Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:
Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2
